-
1
-
-
33244481088
-
Three-dimensional QSAR using the k-nearest neighbor method and its interpretation
-
Ajmani, S., Jadhav, K., and Kulkarni, S. A. (2006). Three-dimensional QSAR using the k-nearest neighbor method and its interpretation. J. Chem. Inf. Model. 46, 24-31. doi: 10.1021/ci0501286
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 24-31
-
-
Ajmani, S.1
Jadhav, K.2
Kulkarni, S.A.3
-
2
-
-
59149106151
-
Toxicity testing in the 21st century: bringing the vision to life
-
Andersen, M. E., and Krewski, D. (2009). Toxicity testing in the 21st century: bringing the vision to life. Toxicol. Sci. 107, 324-330. doi: 10.1093/toxsci/kfn255
-
(2009)
Toxicol. Sci.
, vol.107
, pp. 324-330
-
-
Andersen, M.E.1
Krewski, D.2
-
3
-
-
84903779279
-
Searching for exotic particles in high-energy physics with deep learning
-
Baldi, P., Sadowski, P., and Whiteson, D. (2014). Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5:4308. doi: 10.1038/ncomms5308
-
(2014)
Nat. Commun
, vol.5
, pp. 4308
-
-
Baldi, P.1
Sadowski, P.2
Whiteson, D.3
-
4
-
-
17244367849
-
DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis
-
Bartkova, J., Horejší, Z., Koed, K., Krämer, A., Tort, F., Zieger, K., et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864-870. doi: 10.1038/nature03482
-
(2005)
Nature
, vol.434
, pp. 864-870
-
-
Bartkova, J.1
Horejší, Z.2
Koed, K.3
Krämer, A.4
Tort, F.5
Zieger, K.6
-
5
-
-
1842690601
-
Molecular similarity searching using atom environments, information-based feature selection, and a naive Bayesian classifier
-
Bender, A., Mussa, H., Glen, R. C., and Reiling, S. (2004). Molecular similarity searching using atom environments, information-based feature selection, and a naive Bayesian classifier. J. Chem. Inf. Comput. Sci. 44, 170-178. doi: 10.1021/ci034207y
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 170-178
-
-
Bender, A.1
Mussa, H.2
Glen, R.C.3
Reiling, S.4
-
7
-
-
0035478854
-
Random forests
-
Breiman, L. (2001). Random forests. Mach. Learn. 45, 5-32. doi: 10.1023/A:1010933404324
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
8
-
-
84862796149
-
Kernel k-nearest neighbor algorithm as a flexible SAR modeling tool
-
Cao, D.-S., Huang, J.-H., Yan, J., Zhang, L.-X., Hu, Q.-N., Xu, Q.-S., et al. (2012). Kernel k-nearest neighbor algorithm as a flexible SAR modeling tool. Chemometr. Intell. Lab. 114, 19-23. doi: 10.1016/j.chemolab.2012.01.008
-
(2012)
Chemometr. Intell. Lab.
, vol.114
, pp. 19-23
-
-
Cao, D.-S.1
Huang, J.-H.2
Yan, J.3
Zhang, L.-X.4
Hu, Q.-N.5
Xu, Q.-S.6
-
9
-
-
84876266543
-
ChemoPy: freely available python package for computational biology and chemoinformatics
-
Cao, D.-S., Xu, Q.-S., Hu, Q.-N., and Liang, Y.-Z. (2013). ChemoPy: freely available python package for computational biology and chemoinformatics. Bioinformatics 29, 1092-1094. doi: 10.1093/bioinformatics/btt105
-
(2013)
Bioinformatics
, vol.29
, pp. 1092-1094
-
-
Cao, D.-S.1
Xu, Q.-S.2
Hu, Q.-N.3
Liang, Y.-Z.4
-
10
-
-
0031189914
-
Multitask learning
-
Caruana, R. (1997). Multitask learning. Mach. Learn. 28, 41-75. doi: 10.1023/A:1007379606734
-
(1997)
Mach. Learn.
, vol.28
, pp. 41-75
-
-
Caruana, R.1
-
11
-
-
0035976638
-
Nuclear receptors and lipid physiology: opening the X-files
-
Chawla, A., Repa, J. J., Evans, R. M., and Mangelsdorf, D. J. (2001). Nuclear receptors and lipid physiology: opening the X-files. Science 294, 1866-1870. doi: 10.1126/science.294.5548.1866
-
(2001)
Science
, vol.294
, pp. 1866-1870
-
-
Chawla, A.1
Repa, J.J.2
Evans, R.M.3
Mangelsdorf, D.J.4
-
12
-
-
84866714584
-
Multi-column deep neural networks for image classification
-
Ciresan, D. C., Meier, U., and Schmidhuber, J. (2012). "Multi-column deep neural networks for image classification," in Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Providence, RI), 3642-3649. doi: 10.1109/CVPR.2012.6248110
-
(2012)
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Providence, RI)
, pp. 3642-3649
-
-
Ciresan, D.C.1
Meier, U.2
Schmidhuber, J.3
-
13
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
eds K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab (Nagoya)
-
Ciresan, D. C., Giusti, A., Gambardella, L. M., and Schmidhuber, J. (2013). "Mitosis detection in breast cancer histology images with deep neural networks," in 16th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013), eds K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab (Nagoya), 411-418. doi: 10.1007/978-3-642-40763-5_51
-
(2013)
16th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013)
, pp. 411-418
-
-
Ciresan, D.C.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
14
-
-
84872510997
-
Deep big multilayer perceptrons for digit recognition
-
eds G. Montavon, G. B. Orr, and K.-R. Müller (Heidelberg: Springer)
-
Ciresan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2012). "Deep big multilayer perceptrons for digit recognition," in Neural Networks: Tricks of the Trade, eds G. Montavon, G. B. Orr, and K.-R. Müller (Heidelberg: Springer), 581-598.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 581-598
-
-
Ciresan, D.C.1
Meier, U.2
Gambardella, L.M.3
Schmidhuber, J.4
-
15
-
-
84965180108
-
Rectified factor networks
-
eds C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Montreal, QC)
-
Clevert, D.-A., Mayr, A., Unterthiner, T., and Hochreiter, S. (2015). "Rectified factor networks," in Advances in Neural Information Processing Systems 28 (NIPS 2015), eds C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Montreal, QC), 1846-1854.
-
(2015)
Advances in Neural Information Processing Systems 28 (NIPS 2015)
, pp. 1846-1854
-
-
Clevert, D.-A.1
Mayr, A.2
Unterthiner, T.3
Hochreiter, S.4
-
17
-
-
84055222005
-
Context-dependent pre-trained deep neural networks for large vocabulary speech recognition
-
Dahl, G. E., Yu, D., Deng, L., and Acero, A. (2012). Context-dependent pre-trained deep neural networks for large vocabulary speech recognition. IEEE T Audio Speech 20, 30-42. doi: 10.1109/TASL.2011.2134090
-
(2012)
IEEE T Audio Speech
, vol.20
, pp. 30-42
-
-
Dahl, G.E.1
Yu, D.2
Deng, L.3
Acero, A.4
-
18
-
-
77649185953
-
Support vector machines: development of QSAR models for predicting anti-HIV-1 activity of TIBO derivatives
-
Darnag, R., Mazouz, E. M., Schmitzer, A., Villemin, D., Jarid, A., and Cherqaoui, D. (2010). Support vector machines: development of QSAR models for predicting anti-HIV-1 activity of TIBO derivatives. Eur. J. Med. Chem. 28, 1075-1086. doi: 10.1016/j.ejmech.2010.01.002
-
(2010)
Eur. J. Med. Chem.
, vol.28
, pp. 1075-1086
-
-
Darnag, R.1
Mazouz, E.M.2
Schmitzer, A.3
Villemin, D.4
Jarid, A.5
Cherqaoui, D.6
-
19
-
-
84890526837
-
New types of deep neural network learning for speech recognition and related applications: an overview
-
Speech and Signal Processing (ICASSP) (Vancouver, BC)
-
Deng, L., Hinton, G. E., and Kingsbury, B. (2013). "New types of deep neural network learning for speech recognition and related applications: an overview," in Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Vancouver, BC), 8599-8603. doi: 10.1109/ICASSP.2013.6639344
-
(2013)
Proceedings of the 2013 IEEE International Conference on Acoustics
, pp. 8599-8603
-
-
Deng, L.1
Hinton, G.E.2
Kingsbury, B.3
-
20
-
-
84941076570
-
Prediction of human population responses to toxic compounds by a collaborative competition
-
Eduati, F., Mangravite, L. M., Wang, T., Tang, H., Bare, J. C., Huang, R., et al. (2015). Prediction of human population responses to toxic compounds by a collaborative competition. Nat. Biotechnol. 33, 933-940. doi: 10.1038/nbt.3299
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 933-940
-
-
Eduati, F.1
Mangravite, L.M.2
Wang, T.3
Tang, H.4
Bare, J.C.5
Huang, R.6
-
21
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1-22. doi: 10.18637/jss.v033.i01
-
(2010)
J. Stat. Softw.
, vol.33
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
22
-
-
84862294866
-
Deep sparse rectifier neural networks
-
eds G. J. Gordon, D. B. Dunson, and M. Dudík (Fort Lauderdale, FL)
-
Glorot, X., Bordes, A., and Bengio, Y. (2011). "Deep sparse rectifier neural networks," in Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2011), eds G. J. Gordon, D. B. Dunson, and M. Dudík (Fort Lauderdale, FL), 315-323.
-
(2011)
Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2011)
, pp. 315-323
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
23
-
-
84890543083
-
Speech recognition with deep recurrent neural networks
-
Speech and Signal Processing (ICASSP) (Vancouver, BC)
-
Graves, A., Mohamed, A. R., and Hinton, G. E. (2013). "Speech recognition with deep recurrent neural networks," in Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Vancouver, BC), 6645-6649. doi: 10.1109/ICASSP.2013.6638947
-
(2013)
Proceedings of the 2013 IEEE International Conference on Acoustics
, pp. 6645-6649
-
-
Graves, A.1
Mohamed, A.R.2
Hinton, G.E.3
-
24
-
-
34548749230
-
Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis
-
Grün, F., and Blumberg, B. (2007). Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Rev. Endocr. Metab. Dis. 8, 161-171. doi: 10.1007/s11154-007-9049-x
-
(2007)
Rev. Endocr. Metab. Dis.
, vol.8
, pp. 161-171
-
-
Grün, F.1
Blumberg, B.2
-
25
-
-
79951482239
-
CompoundMapper: an open source Java library and command-line tool for chemical fingerprints
-
Hinselmann, G., Rosenbaum, L., Jahn, A., Fechner, N., and Zell, A. (2011). jCompoundMapper: an open source Java library and command-line tool for chemical fingerprints. J. Cheminform. 3:3. doi: 10.1186/1758-2946-3-3
-
(2011)
J. Cheminform
, vol.3
, Issue.3
-
-
Hinselmann, G.1
Rosenbaum, L.2
Jahn, A.3
Fechner, N.4
Zell, A.5
-
26
-
-
84867720412
-
Improving neural networks by preventing co-adaptation of feature detectors
-
arXiv:1207.0580
-
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580.
-
(2012)
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
27
-
-
0003575034
-
Untersuchungen Zu Dynamischen Neuronalen Netzen
-
Master's thesis, Institut für Informatik, Lehrstuhl Prof. Dr. Dr. h.c. Brauer, Technische Universität München.
-
Hochreiter, S. (1991). Untersuchungen Zu Dynamischen Neuronalen Netzen. Master's thesis, Institut für Informatik, Lehrstuhl Prof. Dr. Dr. h.c. Brauer, Technische Universität München.
-
(1991)
-
-
Hochreiter, S.1
-
28
-
-
0041914606
-
Gradient flow in recurrent nets: the difficulty of learning long-term dependencies
-
eds J. Kolen and S. Kremer (New York, NY: IEEE)
-
Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J. (2000). "Gradient flow in recurrent nets: the difficulty of learning long-term dependencies," in A Field Guide to Dynamical Recurrent Networks, eds J. Kolen and S. Kremer (New York, NY: IEEE), 237-244.
-
(2000)
A Field Guide to Dynamical Recurrent Networks
, pp. 237-244
-
-
Hochreiter, S.1
Bengio, Y.2
Frasconi, P.3
Schmidhuber, J.4
-
29
-
-
84904350064
-
Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway
-
Huang, R., Sakamuru, S., Martin, M. T., Reif, D. M., Judson, R. S., Houck, K. A., et al. (2014). Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Sci. Rep. 4:5664. doi: 10.1038/srep05664
-
(2014)
Sci. Rep
, vol.4
, pp. 5664
-
-
Huang, R.1
Sakamuru, S.2
Martin, M.T.3
Reif, D.M.4
Judson, R.S.5
Houck, K.A.6
-
30
-
-
84855892790
-
Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity
-
Jaeschke, H., McGill, M. R., and Ramachandran, A. (2012). Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab. Rev. 44, 88-106. doi: 10.3109/03602532.2011.602688
-
(2012)
Drug Metab. Rev.
, vol.44
, pp. 88-106
-
-
Jaeschke, H.1
McGill, M.R.2
Ramachandran, A.3
-
31
-
-
1942516986
-
Marginalized kernels between labeled graphs
-
eds T. Fawcett and N. Mishra (Washington, DC)
-
Kashima, H., Tsuda, K., and Inokuchi, A. (2003). "Marginalized kernels between labeled graphs," in Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003), eds T. Fawcett and N. Mishra (Washington, DC), 321-328.
-
(2003)
Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003)
, pp. 321-328
-
-
Kashima, H.1
Tsuda, K.2
Inokuchi, A.3
-
32
-
-
33750317385
-
Kernels for graphs," in Kernel Methods in Computational Biology
-
eds B. Schölkopf, K. Tsuda, and J.-P. Vert (Cambridge, MA: MIT Press)
-
Kashima, H., Tsuda, K., and Inokuchi, A. (2004). "Kernels for graphs," in Kernel Methods in Computational Biology, eds B. Schölkopf, K. Tsuda, and J.-P. Vert (Cambridge, MA: MIT Press), 155-170.
-
(2004)
, pp. 155-170
-
-
Kashima, H.1
Tsuda, K.2
Inokuchi, A.3
-
33
-
-
0035498337
-
QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors
-
Kauffman, G. W., and Jurs, P. C. (2001). QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors. J. Chem. Inf. Comput. Sci. 41, 1553-1560. doi: 10.1021/ci010073h
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, pp. 1553-1560
-
-
Kauffman, G.W.1
Jurs, P.C.2
-
34
-
-
12144257810
-
Derivation and validation of toxicophores for mutagenicity prediction
-
Kazius, J., McGuire, R., and Bursi, R. (2005). Derivation and validation of toxicophores for mutagenicity prediction. J. Med. Chem. 48, 312-320. doi: 10.1021/jm040835a
-
(2005)
J. Med. Chem.
, vol.48
, pp. 312-320
-
-
Kazius, J.1
McGuire, R.2
Bursi, R.3
-
35
-
-
84947703462
-
Rchemcpp: a web service for structural analoging in ChEMBL, Drugbank and the Connectivity Map
-
Klambauer, G., Wischenbart, M., Mahr, M., Unterthiner, T., Mayr, A., and Hochreiter, S. (2015). Rchemcpp: a web service for structural analoging in ChEMBL, Drugbank and the Connectivity Map. Bioinformatics 31, 3392-3394. doi: 10.1093/bioinformatics/btv373
-
(2015)
Bioinformatics
, vol.31
, pp. 3392-3394
-
-
Klambauer, G.1
Wischenbart, M.2
Mahr, M.3
Unterthiner, T.4
Mayr, A.5
Hochreiter, S.6
-
36
-
-
77953994301
-
Toxicity testing in the 21st century: a vision and a strategy
-
Krewski, D., Acosta, D. Jr, Andersen, M., Anderson, H., Bailar III, J. C., Boekelheide, K., et al. (2010). Toxicity testing in the 21st century: a vision and a strategy. J. Toxicol. Environ. Health 13, 51-138. doi: 10.1080/10937404.2010.483176
-
(2010)
J. Toxicol. Environ. Health
, vol.13
, pp. 51-138
-
-
Krewski, D.1
Acosta, D.2
Andersen, M.3
Anderson, H.4
Bailar, J.C.5
Boekelheide, K.6
-
37
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
eds F. Pereira, C. Burges, L. Bottou, and K. Weinberger (Lake Tahoe)
-
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). "ImageNet classification with deep convolutional neural networks," in Advances in Neural Information Processing Systems 25 (NIPS 2012), eds F. Pereira, C. Burges, L. Bottou, and K. Weinberger (Lake Tahoe), 1097-1105.
-
(2012)
Advances in Neural Information Processing Systems 25 (NIPS 2012)
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
38
-
-
55949124005
-
Drug-induced liver injury through mitochondrial dysfunction: mechanisms and detection during preclinical safety studies
-
Labbe, G., Pessayre, D., and Fromenty, B. (2008). Drug-induced liver injury through mitochondrial dysfunction: mechanisms and detection during preclinical safety studies. Fund. Clin. Pharmacol. 22, 335-353. doi: 10.1111/j.1472-8206.2008.00608.x
-
(2008)
Fund. Clin. Pharmacol.
, vol.22
, pp. 335-353
-
-
Labbe, G.1
Pessayre, D.2
Fromenty, B.3
-
39
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., and Hinton, G. E. (2015). Deep learning. Nature 521, 436-444. doi: 10.1038/nature14539
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.E.3
-
40
-
-
80053540444
-
Unsupervised learning of hierarchical representations with convolutional deep belief networks
-
Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2011). Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun. ACM 54, 95-103. doi: 10.1145/2001269.2001295
-
(2011)
Commun. ACM
, vol.54
, pp. 95-103
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
41
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
eds A. P. Danyluk, L. Bottou, and M. L. Littman (Montreal, QC)
-
Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009). "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in Proceedings of the 26th International Conference on Machine Learning (ICML 2009), eds A. P. Danyluk, L. Bottou, and M. L. Littman (Montreal, QC), 609-616. doi: 10.1145/1553374.1553453
-
(2009)
Proceedings of the 26th International Conference on Machine Learning (ICML 2009)
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
42
-
-
0031085412
-
QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives
-
Luco, J. M., and Ferretti, F. H. (1997). QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives. J. Chem. Inf. Comput. Sci. 37, 392-401. doi: 10.1021/ci960487o
-
(1997)
J. Chem. Inf. Comput. Sci.
, vol.37
, pp. 392-401
-
-
Luco, J.M.1
Ferretti, F.H.2
-
43
-
-
84923367417
-
Deep neural nets as a method for quantitative Structure-Activity relationships
-
Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E., and Svetnik, V. (2015). Deep neural nets as a method for quantitative Structure-Activity relationships. J. Chem. Inf. Model. 55, 263-274. doi: 10.1021/ci500747n
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 263-274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
Dahl, G.E.4
Svetnik, V.5
-
44
-
-
33750294461
-
The pharmacophore kernel for virtual screening with support vector machines
-
Mahé, P., Ralaivola, L., Stoven, V., and Vert, J.-P. (2006). The pharmacophore kernel for virtual screening with support vector machines. J. Chem. Inf. Model. 46, 2003-2014. doi: 10.1021/ci060138m
-
(2006)
J. Chem. Inf. Model.
, vol.46
, pp. 2003-2014
-
-
Mahé, P.1
Ralaivola, L.2
Stoven, V.3
Vert, J.-P.4
-
45
-
-
23844458045
-
Graph kernels for molecular Structure-Activity relationship analysis with support vector machines
-
Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., and Vert, J.-P. (2005). Graph kernels for molecular Structure-Activity relationship analysis with support vector machines. J. Chem. Inf. Model. 45, 939-951. doi: 10.1021/ci050039t
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 939-951
-
-
Mahé, P.1
Ueda, N.2
Akutsu, T.3
Perret, J.-L.4
Vert, J.-P.5
-
46
-
-
54249156505
-
Molecule kernels: a descriptor- and alignment-free quantitative Structure-Activity relationship approach
-
Mohr, J. A., Jain, B. J., and Obermayer, K. (2008). Molecule kernels: a descriptor- and alignment-free quantitative Structure-Activity relationship approach. J. Chem. Inf. Model. 48, 1868-1881. doi: 10.1021/ci800144y
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 1868-1881
-
-
Mohr, J.A.1
Jain, B.J.2
Obermayer, K.3
-
47
-
-
77958554525
-
A maximum common subgraph kernel method for predicting the chromosome aberration test
-
Mohr, J. A., Jain, B. J., Sutter, A., Laak, A. T., Steger-Hartmann, T., Heinrich, N., et al. (2010). A maximum common subgraph kernel method for predicting the chromosome aberration test. J. Chem. Inf. Model. 50, 1821-1838. doi: 10.1021/ci900367j
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 1821-1838
-
-
Mohr, J.A.1
Jain, B.J.2
Sutter, A.3
Laak, A.T.4
Steger-Hartmann, T.5
Heinrich, N.6
-
49
-
-
80053437034
-
On optimization methods for deep learning
-
eds L. Getoor and T. Scheffer (Bellevue, WA)
-
Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Le, Q. V., and Ng, A. Y. (2011). "On optimization methods for deep learning," in Proceedings of the 28th International Conference on Machine Learning (ICML 2011), eds L. Getoor and T. Scheffer (Bellevue, WA), 689-696.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML 2011)
, pp. 689-696
-
-
Ngiam, J.1
Coates, A.2
Lahiri, A.3
Prochnow, B.4
Le, Q.V.5
Ng, A.Y.6
-
50
-
-
34347372642
-
Support vector machine for SAR/QSAR of phenethyl-amines1
-
Niu, B., Lu, W.-C., Yang, S.-S., Cai, Y.-D., and Li, G.-Z. (2007). Support vector machine for SAR/QSAR of phenethyl-amines1. Acta Pharma. Sinica. 28, 1075-1086. doi: 10.1111/j.1745-7254.2007.00573.x
-
(2007)
Acta Pharma. Sinica.
, vol.28
, pp. 1075-1086
-
-
Niu, B.1
Lu, W.-C.2
Yang, S.-S.3
Cai, Y.-D.4
Li, G.-Z.5
-
51
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
eds A. J. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans (Cambridge, MA: MIT Press)
-
Platt, J. C. (1999). "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," in Advances in Large Margin Classifiers, eds A. J. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans (Cambridge, MA: MIT Press), 61-74.
-
(1999)
Advances in Large Margin Classifiers
, pp. 61-74
-
-
Platt, J.C.1
-
52
-
-
72949084248
-
Application of random forest approach to QSAR prediction of aquatic toxicity
-
Polishchuk, P. G., Muratov, E. N., Artemenko, A. G., Kolumbin, O. G., Muratov, N. N., and Kuzmin, V. E. (2009). Application of random forest approach to QSAR prediction of aquatic toxicity. J. Chem. Inf. Model. 49, 2481-2488. doi: 10.1021/ci900203n
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 2481-2488
-
-
Polishchuk, P.G.1
Muratov, E.N.2
Artemenko, A.G.3
Kolumbin, O.G.4
Muratov, N.N.5
Kuzmin, V.E.6
-
53
-
-
70049092228
-
Large-scale deep unsupervised learning using graphics processors
-
eds A. P. Danyluk, L. Bottou, and M. L. Littman (Montreal, QC)
-
Raina, R., Madhavan, A., and Ng, A. Y. (2009). "Large-scale deep unsupervised learning using graphics processors," in Proceedings of the 26th International Conference on Machine Learning (ICML 2009), eds A. P. Danyluk, L. Bottou, and M. L. Littman (Montreal, QC), 873-880. doi: 10.1145/1553374.1553486
-
(2009)
Proceedings of the 26th International Conference on Machine Learning (ICML 2009)
, pp. 873-880
-
-
Raina, R.1
Madhavan, A.2
Ng, A.Y.3
-
54
-
-
23844480138
-
Graph kernels for chemical informatics
-
Ralaivola, L., Swamidass, S. J., Saigo, H., and Baldi, P. (2005). Graph kernels for chemical informatics. Neural Netw. 18, 1093-1110. doi: 10.1016/j.neunet.2005.07.009
-
(2005)
Neural Netw.
, vol.18
, pp. 1093-1110
-
-
Ralaivola, L.1
Swamidass, S.J.2
Saigo, H.3
Baldi, P.4
-
55
-
-
85161966246
-
Sparse feature learning for deep belief networks
-
eds D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (Vancouver, BC)
-
Ranzato, M., Boureau, Y.-I., and LeCun, Y. (2008). "Sparse feature learning for deep belief networks," in Advances in Neural Information Processing Systems 21 (NIPS 2008), eds D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (Vancouver, BC), 1185-1192.
-
(2008)
Advances in Neural Information Processing Systems 21 (NIPS 2008)
, pp. 1185-1192
-
-
Ranzato, M.1
Boureau, Y.-I.2
LeCun, Y.3
-
56
-
-
77952772341
-
Extended-connectivity fingerprints
-
Rogers, D., and Hahn, M. (2010). Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742-754. doi: 10.1021/ci100050t
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
57
-
-
84857624995
-
Interpreting linear support vector machine models with heat map molecule coloring
-
Rosenbaum, L., Hinselmann, G., Jahn, A., and Zell, A. (2011). Interpreting linear support vector machine models with heat map molecule coloring. J. Cheminform. 3:11. doi: 10.1186/1758-2946-3-11
-
(2011)
J. Cheminform
, vol.3
, pp. 11
-
-
Rosenbaum, L.1
Hinselmann, G.2
Jahn, A.3
Zell, A.4
-
58
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating errors. Nature 323, 533-536. doi: 10.1038/323533a0
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
59
-
-
77956066358
-
Computational toxicology: realizing the promise of the toxicity testing in the 21st century
-
Rusyn, I., and Daston, G. P. (2010). Computational toxicology: realizing the promise of the toxicity testing in the 21st century. Environ. Health Perspect. 118, 1047-1050. doi: 10.1289/ehp.1001925
-
(2010)
Environ. Health Perspect.
, vol.118
, pp. 1047-1050
-
-
Rusyn, I.1
Daston, G.P.2
-
60
-
-
84867894628
-
A new QSAR model, for angiotensin I-converting enzyme inhibitory oligopeptides
-
Sagardia, I., Roa-Ureta, R. H., and Bald, C. (2013). A new QSAR model, for angiotensin I-converting enzyme inhibitory oligopeptides. Food Chem. 136, 1370-1376. doi: 10.1016/j.foodchem.2012.09.092
-
(2013)
Food Chem.
, vol.136
, pp. 1370-1376
-
-
Sagardia, I.1
Roa-Ureta, R.H.2
Bald, C.3
-
61
-
-
84910651844
-
Deep learning in neural networks: an overview
-
Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural Netw. 61, 85-117. doi: 10.1016/j.neunet.2014.09.003
-
(2015)
Neural Netw.
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
62
-
-
78649630186
-
The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform
-
Shukla, S. J., Huang, R., Austin, C. P., and Xia, M. (2010). The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform. Drug Discov. Today 15, 997-1007. doi: 10.1016/j.drudis.2010.07.007
-
(2010)
Drug Discov. Today
, vol.15
, pp. 997-1007
-
-
Shukla, S.J.1
Huang, R.2
Austin, C.P.3
Xia, M.4
-
63
-
-
79952934063
-
Regularization paths for Cox's proportional hazards model via coordinate descent
-
Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011). Regularization paths for Cox's proportional hazards model via coordinate descent. J. Stat. Softw. 39, 1-13. doi: 10.18637/jss.v039.i05
-
(2011)
J. Stat. Softw.
, vol.39
, pp. 1-13
-
-
Simon, N.1
Friedman, J.2
Hastie, T.3
Tibshirani, R.4
-
64
-
-
85082208694
-
Deep learning for NLP (without magic)
-
eds L. Vanderwende, H. D. III, and K. Kirchhoff (Atlanta, GA)
-
Socher, R., and Manning, C. D. (2013). "Deep learning for NLP (without magic)," in 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, eds L. Vanderwende, H. D. III, and K. Kirchhoff (Atlanta, GA), 1-3.
-
(2013)
In 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
, pp. 1-3
-
-
Socher, R.1
Manning, C.D.2
-
65
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2014). Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929-1958. doi: 10.1021/ci034160g
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
66
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
eds Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger (Montreal, QC)
-
Sutskever, I., Vinyals, O., and Le, Q. V. (2014). "Sequence to sequence learning with neural networks," in Advances in Neural Information Processing Systems 27 (NIPS 2014), eds Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger (Montreal, QC), 3104-3112.
-
(2014)
Advances in Neural Information Processing Systems 27 (NIPS 2014)
, pp. 3104-3112
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
67
-
-
0345548657
-
Random forest: a classification and regression tool for compound classification and QSAR modeling
-
Svetnik, V., Liaw, A., Tong, C., Culberson, J., Sheridan, R. P., and Feuston, B. P. (2003). Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 43, 1947-1958.
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.4
Sheridan, R.P.5
Feuston, B.P.6
-
68
-
-
78049428484
-
Tautomer identification and tautomer structure generation based on the InChI code
-
Thalheim, T., Vollmer, A., Ebert, R.-U., Kuhne, R., and Schurmann, G. (2010). Tautomer identification and tautomer structure generation based on the InChI code. J. Chem. Inf. Model. 50, 1223-1232. doi: 10.1021/ci1001179
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 1223-1232
-
-
Thalheim, T.1
Vollmer, A.2
Ebert, R.-U.3
Kuhne, R.4
Schurmann, G.5
-
69
-
-
84958640223
-
-
arXiv:1503.01445.
-
Unterthiner, T., Mayr, A., Klambauer, G., and Hochreiter, S. (2015). Toxicity prediction using deep learning. arXiv:1503.01445.
-
(2015)
Toxicity prediction using deep learning
-
-
Unterthiner, T.1
Mayr, A.2
Klambauer, G.3
Hochreiter, S.4
-
70
-
-
84981496808
-
Deep learning as an opportunity in virtual screening
-
(Montreal, QC).
-
Unterthiner, T., Mayr, A., Klambauer, G., Steijaert, M., Ceulemans, H., Wegner, J. K., et al. (2014). "Deep learning as an opportunity in virtual screening," in NIPS Workshop on Deep Learning and Representation Learning (Montreal, QC).
-
(2014)
NIPS Workshop on Deep Learning and Representation Learning
-
-
Unterthiner, T.1
Mayr, A.2
Klambauer, G.3
Steijaert, M.4
Ceulemans, H.5
Wegner, J.K.6
-
71
-
-
84939942187
-
Using transcriptomics to guide lead optimization in drug discovery projects
-
Verbist, B., Klambauer, G., Vervoort, L., Talloen, W., The QSTAR Consortium, Shkedy, Z., Thas, O., et al. (2015). Using transcriptomics to guide lead optimization in drug discovery projects. Drug Discov. Today 20, 505-513. doi: 10.1016/j.drudis.2014.12.014
-
(2015)
Drug Discov. Today
, vol.20
, pp. 505-513
-
-
Verbist, B.1
Klambauer, G.2
Vervoort, L.3
Talloen, W.4
Shkedy, Z.5
Thas, O.6
-
72
-
-
77951950367
-
Graph kernels
-
Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., and Borgwardt, K. M. (2010). Graph kernels. J. Mach. Learn. Res. 11, 1201-1242.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 1201-1242
-
-
Vishwanathan, S.V.N.1
Schraudolph, N.N.2
Kondor, R.3
Borgwardt, K.M.4
-
74
-
-
4143122120
-
Classification of kinase inhibitors using a bayesian model
-
Xia, X., Maliski, E. G., Gallant, P., and Rogers, D. (2004). Classification of kinase inhibitors using a bayesian model. J. Med. Chem. 47, 4463-4470. doi: 10.1021/jm0303195
-
(2004)
J. Med. Chem.
, vol.47
, pp. 4463-4470
-
-
Xia, X.1
Maliski, E.G.2
Gallant, P.3
Rogers, D.4
|