메뉴 건너뛰기




Volumn 3, Issue FEB, 2016, Pages

DeepTox: Toxicity prediction using deep learning

Author keywords

Challenge winner; Deep Learning; Deep networks; Machine learning; Neural networks; Tox prediction; Tox21; Toxicophores

Indexed keywords


EID: 84987943069     PISSN: None     EISSN: 2296665X     Source Type: Journal    
DOI: 10.3389/fenvs.2015.00080     Document Type: Article
Times cited : (735)

References (74)
  • 1
    • 33244481088 scopus 로고    scopus 로고
    • Three-dimensional QSAR using the k-nearest neighbor method and its interpretation
    • Ajmani, S., Jadhav, K., and Kulkarni, S. A. (2006). Three-dimensional QSAR using the k-nearest neighbor method and its interpretation. J. Chem. Inf. Model. 46, 24-31. doi: 10.1021/ci0501286
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 24-31
    • Ajmani, S.1    Jadhav, K.2    Kulkarni, S.A.3
  • 2
    • 59149106151 scopus 로고    scopus 로고
    • Toxicity testing in the 21st century: bringing the vision to life
    • Andersen, M. E., and Krewski, D. (2009). Toxicity testing in the 21st century: bringing the vision to life. Toxicol. Sci. 107, 324-330. doi: 10.1093/toxsci/kfn255
    • (2009) Toxicol. Sci. , vol.107 , pp. 324-330
    • Andersen, M.E.1    Krewski, D.2
  • 3
    • 84903779279 scopus 로고    scopus 로고
    • Searching for exotic particles in high-energy physics with deep learning
    • Baldi, P., Sadowski, P., and Whiteson, D. (2014). Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5:4308. doi: 10.1038/ncomms5308
    • (2014) Nat. Commun , vol.5 , pp. 4308
    • Baldi, P.1    Sadowski, P.2    Whiteson, D.3
  • 4
    • 17244367849 scopus 로고    scopus 로고
    • DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis
    • Bartkova, J., Horejší, Z., Koed, K., Krämer, A., Tort, F., Zieger, K., et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864-870. doi: 10.1038/nature03482
    • (2005) Nature , vol.434 , pp. 864-870
    • Bartkova, J.1    Horejší, Z.2    Koed, K.3    Krämer, A.4    Tort, F.5    Zieger, K.6
  • 5
    • 1842690601 scopus 로고    scopus 로고
    • Molecular similarity searching using atom environments, information-based feature selection, and a naive Bayesian classifier
    • Bender, A., Mussa, H., Glen, R. C., and Reiling, S. (2004). Molecular similarity searching using atom environments, information-based feature selection, and a naive Bayesian classifier. J. Chem. Inf. Comput. Sci. 44, 170-178. doi: 10.1021/ci034207y
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 170-178
    • Bender, A.1    Mussa, H.2    Glen, R.C.3    Reiling, S.4
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Mach. Learn. 45, 5-32. doi: 10.1023/A:1010933404324
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 8
    • 84862796149 scopus 로고    scopus 로고
    • Kernel k-nearest neighbor algorithm as a flexible SAR modeling tool
    • Cao, D.-S., Huang, J.-H., Yan, J., Zhang, L.-X., Hu, Q.-N., Xu, Q.-S., et al. (2012). Kernel k-nearest neighbor algorithm as a flexible SAR modeling tool. Chemometr. Intell. Lab. 114, 19-23. doi: 10.1016/j.chemolab.2012.01.008
    • (2012) Chemometr. Intell. Lab. , vol.114 , pp. 19-23
    • Cao, D.-S.1    Huang, J.-H.2    Yan, J.3    Zhang, L.-X.4    Hu, Q.-N.5    Xu, Q.-S.6
  • 9
    • 84876266543 scopus 로고    scopus 로고
    • ChemoPy: freely available python package for computational biology and chemoinformatics
    • Cao, D.-S., Xu, Q.-S., Hu, Q.-N., and Liang, Y.-Z. (2013). ChemoPy: freely available python package for computational biology and chemoinformatics. Bioinformatics 29, 1092-1094. doi: 10.1093/bioinformatics/btt105
    • (2013) Bioinformatics , vol.29 , pp. 1092-1094
    • Cao, D.-S.1    Xu, Q.-S.2    Hu, Q.-N.3    Liang, Y.-Z.4
  • 10
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Caruana, R. (1997). Multitask learning. Mach. Learn. 28, 41-75. doi: 10.1023/A:1007379606734
    • (1997) Mach. Learn. , vol.28 , pp. 41-75
    • Caruana, R.1
  • 11
    • 0035976638 scopus 로고    scopus 로고
    • Nuclear receptors and lipid physiology: opening the X-files
    • Chawla, A., Repa, J. J., Evans, R. M., and Mangelsdorf, D. J. (2001). Nuclear receptors and lipid physiology: opening the X-files. Science 294, 1866-1870. doi: 10.1126/science.294.5548.1866
    • (2001) Science , vol.294 , pp. 1866-1870
    • Chawla, A.1    Repa, J.J.2    Evans, R.M.3    Mangelsdorf, D.J.4
  • 14
    • 84872510997 scopus 로고    scopus 로고
    • Deep big multilayer perceptrons for digit recognition
    • eds G. Montavon, G. B. Orr, and K.-R. Müller (Heidelberg: Springer)
    • Ciresan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2012). "Deep big multilayer perceptrons for digit recognition," in Neural Networks: Tricks of the Trade, eds G. Montavon, G. B. Orr, and K.-R. Müller (Heidelberg: Springer), 581-598.
    • (2012) Neural Networks: Tricks of the Trade , pp. 581-598
    • Ciresan, D.C.1    Meier, U.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 17
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large vocabulary speech recognition
    • Dahl, G. E., Yu, D., Deng, L., and Acero, A. (2012). Context-dependent pre-trained deep neural networks for large vocabulary speech recognition. IEEE T Audio Speech 20, 30-42. doi: 10.1109/TASL.2011.2134090
    • (2012) IEEE T Audio Speech , vol.20 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 18
    • 77649185953 scopus 로고    scopus 로고
    • Support vector machines: development of QSAR models for predicting anti-HIV-1 activity of TIBO derivatives
    • Darnag, R., Mazouz, E. M., Schmitzer, A., Villemin, D., Jarid, A., and Cherqaoui, D. (2010). Support vector machines: development of QSAR models for predicting anti-HIV-1 activity of TIBO derivatives. Eur. J. Med. Chem. 28, 1075-1086. doi: 10.1016/j.ejmech.2010.01.002
    • (2010) Eur. J. Med. Chem. , vol.28 , pp. 1075-1086
    • Darnag, R.1    Mazouz, E.M.2    Schmitzer, A.3    Villemin, D.4    Jarid, A.5    Cherqaoui, D.6
  • 19
    • 84890526837 scopus 로고    scopus 로고
    • New types of deep neural network learning for speech recognition and related applications: an overview
    • Speech and Signal Processing (ICASSP) (Vancouver, BC)
    • Deng, L., Hinton, G. E., and Kingsbury, B. (2013). "New types of deep neural network learning for speech recognition and related applications: an overview," in Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Vancouver, BC), 8599-8603. doi: 10.1109/ICASSP.2013.6639344
    • (2013) Proceedings of the 2013 IEEE International Conference on Acoustics , pp. 8599-8603
    • Deng, L.1    Hinton, G.E.2    Kingsbury, B.3
  • 20
    • 84941076570 scopus 로고    scopus 로고
    • Prediction of human population responses to toxic compounds by a collaborative competition
    • Eduati, F., Mangravite, L. M., Wang, T., Tang, H., Bare, J. C., Huang, R., et al. (2015). Prediction of human population responses to toxic compounds by a collaborative competition. Nat. Biotechnol. 33, 933-940. doi: 10.1038/nbt.3299
    • (2015) Nat. Biotechnol. , vol.33 , pp. 933-940
    • Eduati, F.1    Mangravite, L.M.2    Wang, T.3    Tang, H.4    Bare, J.C.5    Huang, R.6
  • 21
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1-22. doi: 10.18637/jss.v033.i01
    • (2010) J. Stat. Softw. , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 23
    • 84890543083 scopus 로고    scopus 로고
    • Speech recognition with deep recurrent neural networks
    • Speech and Signal Processing (ICASSP) (Vancouver, BC)
    • Graves, A., Mohamed, A. R., and Hinton, G. E. (2013). "Speech recognition with deep recurrent neural networks," in Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Vancouver, BC), 6645-6649. doi: 10.1109/ICASSP.2013.6638947
    • (2013) Proceedings of the 2013 IEEE International Conference on Acoustics , pp. 6645-6649
    • Graves, A.1    Mohamed, A.R.2    Hinton, G.E.3
  • 24
    • 34548749230 scopus 로고    scopus 로고
    • Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis
    • Grün, F., and Blumberg, B. (2007). Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Rev. Endocr. Metab. Dis. 8, 161-171. doi: 10.1007/s11154-007-9049-x
    • (2007) Rev. Endocr. Metab. Dis. , vol.8 , pp. 161-171
    • Grün, F.1    Blumberg, B.2
  • 25
    • 79951482239 scopus 로고    scopus 로고
    • CompoundMapper: an open source Java library and command-line tool for chemical fingerprints
    • Hinselmann, G., Rosenbaum, L., Jahn, A., Fechner, N., and Zell, A. (2011). jCompoundMapper: an open source Java library and command-line tool for chemical fingerprints. J. Cheminform. 3:3. doi: 10.1186/1758-2946-3-3
    • (2011) J. Cheminform , vol.3 , Issue.3
    • Hinselmann, G.1    Rosenbaum, L.2    Jahn, A.3    Fechner, N.4    Zell, A.5
  • 26
    • 84867720412 scopus 로고    scopus 로고
    • Improving neural networks by preventing co-adaptation of feature detectors
    • arXiv:1207.0580
    • Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580.
    • (2012)
    • Hinton, G.E.1    Srivastava, N.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.R.5
  • 27
    • 0003575034 scopus 로고
    • Untersuchungen Zu Dynamischen Neuronalen Netzen
    • Master's thesis, Institut für Informatik, Lehrstuhl Prof. Dr. Dr. h.c. Brauer, Technische Universität München.
    • Hochreiter, S. (1991). Untersuchungen Zu Dynamischen Neuronalen Netzen. Master's thesis, Institut für Informatik, Lehrstuhl Prof. Dr. Dr. h.c. Brauer, Technische Universität München.
    • (1991)
    • Hochreiter, S.1
  • 28
    • 0041914606 scopus 로고    scopus 로고
    • Gradient flow in recurrent nets: the difficulty of learning long-term dependencies
    • eds J. Kolen and S. Kremer (New York, NY: IEEE)
    • Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J. (2000). "Gradient flow in recurrent nets: the difficulty of learning long-term dependencies," in A Field Guide to Dynamical Recurrent Networks, eds J. Kolen and S. Kremer (New York, NY: IEEE), 237-244.
    • (2000) A Field Guide to Dynamical Recurrent Networks , pp. 237-244
    • Hochreiter, S.1    Bengio, Y.2    Frasconi, P.3    Schmidhuber, J.4
  • 29
    • 84904350064 scopus 로고    scopus 로고
    • Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway
    • Huang, R., Sakamuru, S., Martin, M. T., Reif, D. M., Judson, R. S., Houck, K. A., et al. (2014). Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Sci. Rep. 4:5664. doi: 10.1038/srep05664
    • (2014) Sci. Rep , vol.4 , pp. 5664
    • Huang, R.1    Sakamuru, S.2    Martin, M.T.3    Reif, D.M.4    Judson, R.S.5    Houck, K.A.6
  • 30
    • 84855892790 scopus 로고    scopus 로고
    • Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity
    • Jaeschke, H., McGill, M. R., and Ramachandran, A. (2012). Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab. Rev. 44, 88-106. doi: 10.3109/03602532.2011.602688
    • (2012) Drug Metab. Rev. , vol.44 , pp. 88-106
    • Jaeschke, H.1    McGill, M.R.2    Ramachandran, A.3
  • 32
    • 33750317385 scopus 로고    scopus 로고
    • Kernels for graphs," in Kernel Methods in Computational Biology
    • eds B. Schölkopf, K. Tsuda, and J.-P. Vert (Cambridge, MA: MIT Press)
    • Kashima, H., Tsuda, K., and Inokuchi, A. (2004). "Kernels for graphs," in Kernel Methods in Computational Biology, eds B. Schölkopf, K. Tsuda, and J.-P. Vert (Cambridge, MA: MIT Press), 155-170.
    • (2004) , pp. 155-170
    • Kashima, H.1    Tsuda, K.2    Inokuchi, A.3
  • 33
    • 0035498337 scopus 로고    scopus 로고
    • QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors
    • Kauffman, G. W., and Jurs, P. C. (2001). QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors. J. Chem. Inf. Comput. Sci. 41, 1553-1560. doi: 10.1021/ci010073h
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 1553-1560
    • Kauffman, G.W.1    Jurs, P.C.2
  • 34
    • 12144257810 scopus 로고    scopus 로고
    • Derivation and validation of toxicophores for mutagenicity prediction
    • Kazius, J., McGuire, R., and Bursi, R. (2005). Derivation and validation of toxicophores for mutagenicity prediction. J. Med. Chem. 48, 312-320. doi: 10.1021/jm040835a
    • (2005) J. Med. Chem. , vol.48 , pp. 312-320
    • Kazius, J.1    McGuire, R.2    Bursi, R.3
  • 35
    • 84947703462 scopus 로고    scopus 로고
    • Rchemcpp: a web service for structural analoging in ChEMBL, Drugbank and the Connectivity Map
    • Klambauer, G., Wischenbart, M., Mahr, M., Unterthiner, T., Mayr, A., and Hochreiter, S. (2015). Rchemcpp: a web service for structural analoging in ChEMBL, Drugbank and the Connectivity Map. Bioinformatics 31, 3392-3394. doi: 10.1093/bioinformatics/btv373
    • (2015) Bioinformatics , vol.31 , pp. 3392-3394
    • Klambauer, G.1    Wischenbart, M.2    Mahr, M.3    Unterthiner, T.4    Mayr, A.5    Hochreiter, S.6
  • 37
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • eds F. Pereira, C. Burges, L. Bottou, and K. Weinberger (Lake Tahoe)
    • Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). "ImageNet classification with deep convolutional neural networks," in Advances in Neural Information Processing Systems 25 (NIPS 2012), eds F. Pereira, C. Burges, L. Bottou, and K. Weinberger (Lake Tahoe), 1097-1105.
    • (2012) Advances in Neural Information Processing Systems 25 (NIPS 2012) , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 38
    • 55949124005 scopus 로고    scopus 로고
    • Drug-induced liver injury through mitochondrial dysfunction: mechanisms and detection during preclinical safety studies
    • Labbe, G., Pessayre, D., and Fromenty, B. (2008). Drug-induced liver injury through mitochondrial dysfunction: mechanisms and detection during preclinical safety studies. Fund. Clin. Pharmacol. 22, 335-353. doi: 10.1111/j.1472-8206.2008.00608.x
    • (2008) Fund. Clin. Pharmacol. , vol.22 , pp. 335-353
    • Labbe, G.1    Pessayre, D.2    Fromenty, B.3
  • 39
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y., and Hinton, G. E. (2015). Deep learning. Nature 521, 436-444. doi: 10.1038/nature14539
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.E.3
  • 40
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2011). Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun. ACM 54, 95-103. doi: 10.1145/2001269.2001295
    • (2011) Commun. ACM , vol.54 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 41
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • eds A. P. Danyluk, L. Bottou, and M. L. Littman (Montreal, QC)
    • Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009). "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in Proceedings of the 26th International Conference on Machine Learning (ICML 2009), eds A. P. Danyluk, L. Bottou, and M. L. Littman (Montreal, QC), 609-616. doi: 10.1145/1553374.1553453
    • (2009) Proceedings of the 26th International Conference on Machine Learning (ICML 2009) , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 42
    • 0031085412 scopus 로고    scopus 로고
    • QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives
    • Luco, J. M., and Ferretti, F. H. (1997). QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives. J. Chem. Inf. Comput. Sci. 37, 392-401. doi: 10.1021/ci960487o
    • (1997) J. Chem. Inf. Comput. Sci. , vol.37 , pp. 392-401
    • Luco, J.M.1    Ferretti, F.H.2
  • 43
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative Structure-Activity relationships
    • Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E., and Svetnik, V. (2015). Deep neural nets as a method for quantitative Structure-Activity relationships. J. Chem. Inf. Model. 55, 263-274. doi: 10.1021/ci500747n
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3    Dahl, G.E.4    Svetnik, V.5
  • 44
    • 33750294461 scopus 로고    scopus 로고
    • The pharmacophore kernel for virtual screening with support vector machines
    • Mahé, P., Ralaivola, L., Stoven, V., and Vert, J.-P. (2006). The pharmacophore kernel for virtual screening with support vector machines. J. Chem. Inf. Model. 46, 2003-2014. doi: 10.1021/ci060138m
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2003-2014
    • Mahé, P.1    Ralaivola, L.2    Stoven, V.3    Vert, J.-P.4
  • 45
    • 23844458045 scopus 로고    scopus 로고
    • Graph kernels for molecular Structure-Activity relationship analysis with support vector machines
    • Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., and Vert, J.-P. (2005). Graph kernels for molecular Structure-Activity relationship analysis with support vector machines. J. Chem. Inf. Model. 45, 939-951. doi: 10.1021/ci050039t
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 939-951
    • Mahé, P.1    Ueda, N.2    Akutsu, T.3    Perret, J.-L.4    Vert, J.-P.5
  • 46
    • 54249156505 scopus 로고    scopus 로고
    • Molecule kernels: a descriptor- and alignment-free quantitative Structure-Activity relationship approach
    • Mohr, J. A., Jain, B. J., and Obermayer, K. (2008). Molecule kernels: a descriptor- and alignment-free quantitative Structure-Activity relationship approach. J. Chem. Inf. Model. 48, 1868-1881. doi: 10.1021/ci800144y
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1868-1881
    • Mohr, J.A.1    Jain, B.J.2    Obermayer, K.3
  • 47
    • 77958554525 scopus 로고    scopus 로고
    • A maximum common subgraph kernel method for predicting the chromosome aberration test
    • Mohr, J. A., Jain, B. J., Sutter, A., Laak, A. T., Steger-Hartmann, T., Heinrich, N., et al. (2010). A maximum common subgraph kernel method for predicting the chromosome aberration test. J. Chem. Inf. Model. 50, 1821-1838. doi: 10.1021/ci900367j
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1821-1838
    • Mohr, J.A.1    Jain, B.J.2    Sutter, A.3    Laak, A.T.4    Steger-Hartmann, T.5    Heinrich, N.6
  • 50
    • 34347372642 scopus 로고    scopus 로고
    • Support vector machine for SAR/QSAR of phenethyl-amines1
    • Niu, B., Lu, W.-C., Yang, S.-S., Cai, Y.-D., and Li, G.-Z. (2007). Support vector machine for SAR/QSAR of phenethyl-amines1. Acta Pharma. Sinica. 28, 1075-1086. doi: 10.1111/j.1745-7254.2007.00573.x
    • (2007) Acta Pharma. Sinica. , vol.28 , pp. 1075-1086
    • Niu, B.1    Lu, W.-C.2    Yang, S.-S.3    Cai, Y.-D.4    Li, G.-Z.5
  • 51
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • eds A. J. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans (Cambridge, MA: MIT Press)
    • Platt, J. C. (1999). "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," in Advances in Large Margin Classifiers, eds A. J. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans (Cambridge, MA: MIT Press), 61-74.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 53
    • 70049092228 scopus 로고    scopus 로고
    • Large-scale deep unsupervised learning using graphics processors
    • eds A. P. Danyluk, L. Bottou, and M. L. Littman (Montreal, QC)
    • Raina, R., Madhavan, A., and Ng, A. Y. (2009). "Large-scale deep unsupervised learning using graphics processors," in Proceedings of the 26th International Conference on Machine Learning (ICML 2009), eds A. P. Danyluk, L. Bottou, and M. L. Littman (Montreal, QC), 873-880. doi: 10.1145/1553374.1553486
    • (2009) Proceedings of the 26th International Conference on Machine Learning (ICML 2009) , pp. 873-880
    • Raina, R.1    Madhavan, A.2    Ng, A.Y.3
  • 54
    • 23844480138 scopus 로고    scopus 로고
    • Graph kernels for chemical informatics
    • Ralaivola, L., Swamidass, S. J., Saigo, H., and Baldi, P. (2005). Graph kernels for chemical informatics. Neural Netw. 18, 1093-1110. doi: 10.1016/j.neunet.2005.07.009
    • (2005) Neural Netw. , vol.18 , pp. 1093-1110
    • Ralaivola, L.1    Swamidass, S.J.2    Saigo, H.3    Baldi, P.4
  • 55
    • 85161966246 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • eds D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (Vancouver, BC)
    • Ranzato, M., Boureau, Y.-I., and LeCun, Y. (2008). "Sparse feature learning for deep belief networks," in Advances in Neural Information Processing Systems 21 (NIPS 2008), eds D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (Vancouver, BC), 1185-1192.
    • (2008) Advances in Neural Information Processing Systems 21 (NIPS 2008) , pp. 1185-1192
    • Ranzato, M.1    Boureau, Y.-I.2    LeCun, Y.3
  • 56
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • Rogers, D., and Hahn, M. (2010). Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742-754. doi: 10.1021/ci100050t
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 57
    • 84857624995 scopus 로고    scopus 로고
    • Interpreting linear support vector machine models with heat map molecule coloring
    • Rosenbaum, L., Hinselmann, G., Jahn, A., and Zell, A. (2011). Interpreting linear support vector machine models with heat map molecule coloring. J. Cheminform. 3:11. doi: 10.1186/1758-2946-3-11
    • (2011) J. Cheminform , vol.3 , pp. 11
    • Rosenbaum, L.1    Hinselmann, G.2    Jahn, A.3    Zell, A.4
  • 58
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating errors. Nature 323, 533-536. doi: 10.1038/323533a0
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 59
    • 77956066358 scopus 로고    scopus 로고
    • Computational toxicology: realizing the promise of the toxicity testing in the 21st century
    • Rusyn, I., and Daston, G. P. (2010). Computational toxicology: realizing the promise of the toxicity testing in the 21st century. Environ. Health Perspect. 118, 1047-1050. doi: 10.1289/ehp.1001925
    • (2010) Environ. Health Perspect. , vol.118 , pp. 1047-1050
    • Rusyn, I.1    Daston, G.P.2
  • 60
    • 84867894628 scopus 로고    scopus 로고
    • A new QSAR model, for angiotensin I-converting enzyme inhibitory oligopeptides
    • Sagardia, I., Roa-Ureta, R. H., and Bald, C. (2013). A new QSAR model, for angiotensin I-converting enzyme inhibitory oligopeptides. Food Chem. 136, 1370-1376. doi: 10.1016/j.foodchem.2012.09.092
    • (2013) Food Chem. , vol.136 , pp. 1370-1376
    • Sagardia, I.1    Roa-Ureta, R.H.2    Bald, C.3
  • 61
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural Netw. 61, 85-117. doi: 10.1016/j.neunet.2014.09.003
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 62
    • 78649630186 scopus 로고    scopus 로고
    • The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform
    • Shukla, S. J., Huang, R., Austin, C. P., and Xia, M. (2010). The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform. Drug Discov. Today 15, 997-1007. doi: 10.1016/j.drudis.2010.07.007
    • (2010) Drug Discov. Today , vol.15 , pp. 997-1007
    • Shukla, S.J.1    Huang, R.2    Austin, C.P.3    Xia, M.4
  • 63
    • 79952934063 scopus 로고    scopus 로고
    • Regularization paths for Cox's proportional hazards model via coordinate descent
    • Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011). Regularization paths for Cox's proportional hazards model via coordinate descent. J. Stat. Softw. 39, 1-13. doi: 10.18637/jss.v039.i05
    • (2011) J. Stat. Softw. , vol.39 , pp. 1-13
    • Simon, N.1    Friedman, J.2    Hastie, T.3    Tibshirani, R.4
  • 66
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • eds Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger (Montreal, QC)
    • Sutskever, I., Vinyals, O., and Le, Q. V. (2014). "Sequence to sequence learning with neural networks," in Advances in Neural Information Processing Systems 27 (NIPS 2014), eds Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger (Montreal, QC), 3104-3112.
    • (2014) Advances in Neural Information Processing Systems 27 (NIPS 2014) , pp. 3104-3112
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 67
    • 0345548657 scopus 로고    scopus 로고
    • Random forest: a classification and regression tool for compound classification and QSAR modeling
    • Svetnik, V., Liaw, A., Tong, C., Culberson, J., Sheridan, R. P., and Feuston, B. P. (2003). Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 43, 1947-1958.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1947-1958
    • Svetnik, V.1    Liaw, A.2    Tong, C.3    Culberson, J.4    Sheridan, R.P.5    Feuston, B.P.6
  • 68
    • 78049428484 scopus 로고    scopus 로고
    • Tautomer identification and tautomer structure generation based on the InChI code
    • Thalheim, T., Vollmer, A., Ebert, R.-U., Kuhne, R., and Schurmann, G. (2010). Tautomer identification and tautomer structure generation based on the InChI code. J. Chem. Inf. Model. 50, 1223-1232. doi: 10.1021/ci1001179
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1223-1232
    • Thalheim, T.1    Vollmer, A.2    Ebert, R.-U.3    Kuhne, R.4    Schurmann, G.5
  • 71
    • 84939942187 scopus 로고    scopus 로고
    • Using transcriptomics to guide lead optimization in drug discovery projects
    • Verbist, B., Klambauer, G., Vervoort, L., Talloen, W., The QSTAR Consortium, Shkedy, Z., Thas, O., et al. (2015). Using transcriptomics to guide lead optimization in drug discovery projects. Drug Discov. Today 20, 505-513. doi: 10.1016/j.drudis.2014.12.014
    • (2015) Drug Discov. Today , vol.20 , pp. 505-513
    • Verbist, B.1    Klambauer, G.2    Vervoort, L.3    Talloen, W.4    Shkedy, Z.5    Thas, O.6
  • 74
    • 4143122120 scopus 로고    scopus 로고
    • Classification of kinase inhibitors using a bayesian model
    • Xia, X., Maliski, E. G., Gallant, P., and Rogers, D. (2004). Classification of kinase inhibitors using a bayesian model. J. Med. Chem. 47, 4463-4470. doi: 10.1021/jm0303195
    • (2004) J. Med. Chem. , vol.47 , pp. 4463-4470
    • Xia, X.1    Maliski, E.G.2    Gallant, P.3    Rogers, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.