-
1
-
-
84880993729
-
Drug-target interaction prediction through domaintuned network-based inference
-
Alaimo S., et al. (2013). Drug-target interaction prediction through domaintuned network-based inference. Bioinformatics, 29, 2004-2008
-
(2013)
Bioinformatics
, vol.29
, pp. 2004-2008
-
-
Alaimo, S.1
-
2
-
-
0034069495
-
Gene ontology: Tool for the unification of biology
-
Ashburner M., et al. (2013). Gene ontology: tool for the unification of biology. Nat. Genet., 25, 25-29
-
(2013)
Nat. Genet
, vol.25
, pp. 25-29
-
-
Ashburner, M.1
-
3
-
-
37649026816
-
Donepezil for dementia due to alzheimer's disease
-
Birks J. and Harvey R.J. (2006). Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst. Rev., 1, CD001190
-
(2006)
Cochrane Database Syst. Rev
, vol.1
, pp. CD001190
-
-
Birks, J.1
Harvey, R.J.2
-
4
-
-
69849094133
-
Supervised prediction of drug-target interactions using bipartite local models
-
Bleakley K. and Yamanishi Y. (2009). Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics, 25, 2397-2403
-
(2009)
Bioinformatics
, vol.25
, pp. 2397-2403
-
-
Bleakley, K.1
Yamanishi, Y.2
-
5
-
-
47249146126
-
Drug target identification using side-effect similarity
-
Campillos M., et al. (2008). Drug target identification using side-effect similarity. Science, 321, 263-266
-
(2008)
Science
, vol.321
, pp. 263-266
-
-
Campillos, M.1
-
6
-
-
84902007424
-
Mantra 2.0: An online collaborative resource for drug mode of action and repurposing by network analysis
-
Carrella D., et al. (2014). Mantra 2.0: an online collaborative resource for drug mode of action and repurposing by network analysis. Bioinformatics, 30, 1787-1788
-
(2014)
Bioinformatics
, vol.30
, pp. 1787-1788
-
-
Carrella, D.1
-
8
-
-
84877131233
-
A semi-supervised method for drug-target interaction prediction with consistency in networks
-
Chen H. and Zhang Z. (2013). A semi-supervised method for drug-target interaction prediction with consistency in networks. PLoS One, 8, e62975
-
(2013)
Plos One
, vol.8
, pp. e62975
-
-
Chen, H.1
Zhang, Z.2
-
9
-
-
84863695210
-
Prediction of drug-target interactions and drug repositioning via network-based inference
-
Cheng F., et al. (2012). Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol., 8, e1002503
-
(2012)
Plos Comput. Biol
, vol.8
, pp. e1002503
-
-
Cheng, F.1
-
10
-
-
33847103869
-
Measuring semantic similarity between gene ontology terms
-
Coutoa F.M., et al. (2007). Measuring semantic similarity between Gene Ontology terms. Data Knowl. Eng., 61, 137-152
-
(2007)
Data Knowl. Eng
, vol.61
, pp. 137-152
-
-
Coutoa, F.M.1
-
11
-
-
80755125575
-
Comprehensive analysis of kinase inhibitor selectivity
-
Davis M.I., et al. (2011). Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol., 29, 1046-1051
-
(2011)
Nat. Biotechnol
, vol.29
, pp. 1046-1051
-
-
Davis, M.I.1
-
12
-
-
84928196309
-
Similarity-based machine learning methods for predicting drug-target interactions: A brief review
-
Ding H., et al. (2014). Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief Bioinform., 15, 734-747
-
(2014)
Brief Bioinform
, vol.15
, pp. 734-747
-
-
Ding, H.1
-
13
-
-
50949133669
-
Liblinear: A library for large linear classification
-
Fan R.E., et al. (2008). LIBLINEAR: a library for large linear classification. J. Machine Learning Res., 9, 1871-1874
-
(2008)
J. Machine Learning Res
, vol.9
, pp. 1871-1874
-
-
Fan, R.E.1
-
14
-
-
84876515907
-
String v9.1: Protein-protein interaction networks, with increased coverage and integration
-
Database issue
-
Franceschini A., et al. (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res., 41 (Database issue) , D808-D815
-
(2013)
Nucleic Acids Res
, vol.41
, pp. D808-D815
-
-
Franceschini, A.1
-
15
-
-
84866459051
-
Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
-
Gonen M. (2012). Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics, 28, 2304-2310
-
(2012)
Bioinformatics
, vol.28
, pp. 2304-2310
-
-
Gonen, M.1
-
16
-
-
79958754253
-
Predict: A method for inferring novel drug indications with application to personalized medicine
-
Gottlieb A., et al. (2011). PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol., 7, 496
-
(2011)
Mol. Syst. Biol
, vol.7
, pp. 496
-
-
Gottlieb, A.1
-
17
-
-
84864231551
-
Indi: A computational framework for inferring drug interactions and their associated recommendations
-
Gottlieb A., et al. (2012). INDI: a computational framework for inferring drug interactions and their associated recommendations. Mol. Syst. biol., 8, 592
-
(2012)
Mol. Syst. Biol
, vol.8
, pp. 592
-
-
Gottlieb, A.1
-
18
-
-
38549182474
-
SuperTarget and Matador: Resources for exploring drug-target relationships
-
Gnther S., et al. (2008). SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids Res., 36, D919-D922
-
(2008)
Nucleic Acids Res
, vol.36
, pp. D919-D922
-
-
Gnther, S.1
-
19
-
-
76749092270
-
The weka data mining software: An update
-
Hall M., et al. (2009). The WEKA data mining software: an update. SIGKDD Explor. Newsl., 11, 10-18
-
(2009)
Sigkdd Explor. Newsl
, vol.11
, pp. 10-18
-
-
Hall, M.1
-
20
-
-
77950448057
-
Predicting drug-target interaction networks based on functional groups and biological features
-
He Z., et al. (2010). Predicting drug-target interaction networks based on functional groups and biological features. PloS One, 5, e9603
-
(2010)
Plos One
, vol.5
, pp. e9603
-
-
He, Z.1
-
21
-
-
84864240231
-
Extending the activity cliff concept: Structural categorization of activity cliffs and systematic identification of different types of cliffs in the chembl database
-
Hu Y. and Bajorath J. (2012). Extending the activity cliff concept: structural categorization of activity cliffs and systematic identification of different types of cliffs in the ChEMBL database. J. Chem. Inf. Model., 52, 1806-1811
-
(2012)
J. Chem. Inf. Model
, vol.52
, pp. 1806-1811
-
-
Hu, Y.1
Bajorath, J.2
-
22
-
-
61449172037
-
Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
-
Huang D.W., et al. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44-57
-
(2009)
Nat. Protoc
, vol.4
, pp. 44-57
-
-
Huang, D.W.1
-
23
-
-
77957044703
-
Discovery of drug mode of action and drug repositioning from transcriptional responses
-
Iorio F., et al. (2010). Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc. Natl. Acad. Sci. USA, 107, 14621-14626
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 14621-14626
-
-
Iorio, F.1
-
24
-
-
0000210258
-
Nouvelles recherches sur la distribution florale
-
Jaccard P. (1908). Nouvelles recherches sur la distribution florale. Bul. Soc. Vaudoise Sci. Nat., 44, 223-270
-
(1908)
Bul. Soc. Vaudoise Sci. Nat
, vol.44
, pp. 223-270
-
-
Jaccard, P.1
-
25
-
-
52749085437
-
Protein-ligand interaction prediction: An improved chemogenomics approach
-
Jacob L. and Vert J.P. (2008). Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics, 24, 2149-2156
-
(2008)
Bioinformatics
, vol.24
, pp. 2149-2156
-
-
Jacob, L.1
Vert, J.P.2
-
26
-
-
84902144066
-
Causal network models for predicting compound targets and driving pathways in cancer
-
Jaeger S., et al. (2014). Causal network models for predicting compound targets and driving pathways in cancer. J. Biomol. Screen., 19, 791-802
-
(2014)
J. Biomol. Screen
, vol.19
, pp. 791-802
-
-
Jaeger, S.1
-
28
-
-
76149120425
-
A side effect resource to capture phenotypic effects of drugs
-
Kuhn M., et al. (2010). A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol, 6, 343
-
(2010)
Mol. Syst. Biol
, vol.6
, pp. 343
-
-
Kuhn, M.1
-
29
-
-
84891781052
-
Stitch 4: Integration of protein-chemical interactions with user data
-
Kuhn M., et al. (2014). STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res., 42 (D1) , D401-D407
-
(2014)
Nucleic Acids Res
, vol.42
, Issue.D1
, pp. D401-D407
-
-
Kuhn, M.1
-
30
-
-
33749335282
-
The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease
-
Lamb J., et al. (2006). The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 313, 1929-1935
-
(2006)
Science
, vol.313
, pp. 1929-1935
-
-
Lamb, J.1
-
31
-
-
84872509876
-
Drug-target interaction prediction by learning from local information and neighbors
-
Mei J.P., et al. (2013). Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics, 29, 238-245
-
(2013)
Bioinformatics
, vol.29
, pp. 238-245
-
-
Mei, J.P.1
-
32
-
-
79952921586
-
Navigating the kinome
-
Metz J.T., et al. (2011). Navigating the kinome. Nat. Chem. Biol., 7, 200-202
-
(2011)
Nat. Chem. Biol
, vol.7
, pp. 200-202
-
-
Metz, J.T.1
-
33
-
-
84866460840
-
Relating drug-protein interaction network with drug side effects
-
Mizutani S., et al. (2012). Relating drug-protein interaction network with drug side effects. Bioinformatics, 28, i522-i528
-
(2012)
Bioinformatics
, vol.28
, pp. i522-i528
-
-
Mizutani, S.1
-
34
-
-
84925383120
-
Toward more realistic drug-target interaction predictions
-
Pahikkala T., et al. (2015). Toward more realistic drug-target interaction predictions. Brief Bioinform., 16, 325-337
-
(2015)
Brief Bioinform
, vol.16
, pp. 325-337
-
-
Pahikkala, T.1
-
35
-
-
79955969387
-
Predicting drug side-effect profiles: A chemical fragment- based approach
-
Pauwels E., et al. (2011). Predicting drug side-effect profiles: a chemical fragment- based approach. BMC Bioinformatics, 12, 169
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 169
-
-
Pauwels, E.1
-
36
-
-
79951729882
-
Combining drug and gene similarity measures for drug-target elucidation
-
Perlman L., et al. (2011). Combining drug and gene similarity measures for drug-target elucidation. J. Comput. Biol., 18, 133-145
-
(2011)
J. Comput. Biol
, vol.18
, pp. 133-145
-
-
Perlman, L.1
-
37
-
-
84858077472
-
The Pfam protein families database
-
Database issue
-
Punta M., et al. (2012). The Pfam protein families database. Nucleic Acids Res., 40 (Database issue) , D290-D301
-
(2012)
Nucleic Acids Res
, vol.40
, pp. D290-D301
-
-
Punta, M.1
-
38
-
-
0019887799
-
Identification of common molecular subsequences
-
Smith T.F. and Waterman M. (1981). Identification of common molecular subsequences. J. Mol. Biol., 147, 195-197
-
(1981)
J. Mol. Biol
, vol.147
, pp. 195-197
-
-
Smith, T.F.1
Waterman, M.2
-
39
-
-
84859270118
-
Classification of scaffold-hopping approaches
-
Sun H., et al. (2012). Classification of scaffold-hopping approaches. Drug. Discov. Today, 17, 44-57
-
(2012)
Drug. Discov. Today
, vol.17
, pp. 44-57
-
-
Sun, H.1
-
40
-
-
84906053301
-
Scalable prediction of compound-protein interactions using minwise hashing
-
Tabei Y. and Yamanishi Y. (2013). Scalable prediction of compound-protein interactions using minwise hashing. BMC Syst. Biol., 7, S3
-
(2013)
BMC Syst. Biol
, vol.7
, pp. S3
-
-
Tabei, Y.1
Yamanishi, Y.2
-
41
-
-
84879466418
-
Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile
-
van Laarhoven T. and Marchiori E. (2013). Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS One, 8, e66952
-
(2013)
Plos One
, vol.8
, pp. e66952
-
-
Van Laarhoven, T.1
Marchiori, E.2
-
42
-
-
80054881553
-
Gaussian interaction profile kernels for predicting drug-target interaction
-
van Laarhoven T., et al. (2011). Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics, 27, 3036-3043
-
(2011)
Bioinformatics
, vol.27
, pp. 3036-3043
-
-
Van Laarhoven, T.1
-
43
-
-
84879970943
-
Predicting drug-target interactions using restricted Boltzmann machines
-
Wang Y. and Zeng J. (2013). Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics, 29, i126-i134
-
(2013)
Bioinformatics
, vol.29
, pp. i126-i134
-
-
Wang, Y.1
Zeng, J.2
-
44
-
-
80155156908
-
Kernel-based data fusion improves the drug-protein interaction prediction
-
Wang Y.C., et al. (2011). Kernel-based data fusion improves the drug-protein interaction prediction. Comput. Biol Chem., 35, 353-362
-
(2011)
Comput. Biol Chem
, vol.35
, pp. 353-362
-
-
Wang, Y.C.1
-
45
-
-
33644876253
-
Database resources of the national center for biotechnology information
-
Wheeler D.L., et al. (2006). Database resources of the national center for biotechnology information. Nucleic Acids Res., 34, D173-D180
-
(2006)
Nucleic Acids Res
, vol.34
, pp. D173-D180
-
-
Wheeler, D.L.1
-
46
-
-
38549151817
-
DrugBank: A knowledgebase for drugs, drug actions and drug targets
-
Wishart D.S., et al. (2008). DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res., 36, D901-D906
-
(2008)
Nucleic Acids Res
, vol.36
, pp. D901-D906
-
-
Wishart, D.S.1
-
47
-
-
80053638991
-
Modulatory profiling identifies mechanisms of small molecule-induced cell death
-
Wolpaw A.J., et al. (2011). Modulatory profiling identifies mechanisms of small molecule-induced cell death. Proc. Natl. Acad. Sci. USA, 108, E771-E780
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. E771-E780
-
-
Wolpaw, A.J.1
-
48
-
-
77956953029
-
Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
-
Xia Z., et al. (2010). Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol., 4 (Suppl 2) , S6
-
(2010)
BMC Syst. Biol
, vol.4
, pp. S6
-
-
Xia, Z.1
-
49
-
-
79952345084
-
Analysis of multiple compound-protein interactions reveals novel bioactive molecules
-
Yabuuchi H., et al. (2011). Analysis of multiple compound-protein interactions reveals novel bioactive molecules. Mol. Syst. Biol., 7, 472
-
(2011)
Mol. Syst. Biol
, vol.7
, pp. 472
-
-
Yabuuchi, H.1
-
50
-
-
46249090791
-
Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
-
Yamanishi Y., et al. (2008). Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24, i232-i240
-
(2008)
Bioinformatics
, vol.24
, pp. i232-i240
-
-
Yamanishi, Y.1
-
51
-
-
77954230951
-
Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
-
Yamanishi Y., et al. (2010). Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics, 26, i246-i254
-
(2010)
Bioinformatics
, vol.26
, pp. i246-i254
-
-
Yamanishi, Y.1
-
52
-
-
84904805614
-
Dinies: Drug-target interaction network inference engine based on supervised analysis
-
Yamanishi Y., et al. (2014). DINIES: drug-target interaction network inference engine based on supervised analysis. Nucleic Acids Res., 42, W39-W45
-
(2014)
Nucleic Acids Res
, vol.42
, pp. W39-W45
-
-
Yamanishi, Y.1
-
53
-
-
35648957764
-
Bipartite network projection and personal recommendation
-
Zhou T., et al. (2010). Bipartite network projection and personal recommendation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 76, 046115
-
(2010)
Phys. Rev. e Stat. Nonlin. Soft Matter Phys
, vol.76
, pp. 046115
-
-
Zhou, T.1
|