메뉴 건너뛰기




Volumn 31, Issue 12, 2015, Pages i221-i229

Improving compound-protein interaction prediction by building up highly credible negative samples

Author keywords

[No Author keywords available]

Indexed keywords

CAENORHABDITIS ELEGANS;

EID: 84931056137     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv256     Document Type: Conference Paper
Times cited : (242)

References (53)
  • 1
    • 84880993729 scopus 로고    scopus 로고
    • Drug-target interaction prediction through domaintuned network-based inference
    • Alaimo S., et al. (2013). Drug-target interaction prediction through domaintuned network-based inference. Bioinformatics, 29, 2004-2008
    • (2013) Bioinformatics , vol.29 , pp. 2004-2008
    • Alaimo, S.1
  • 2
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology
    • Ashburner M., et al. (2013). Gene ontology: tool for the unification of biology. Nat. Genet., 25, 25-29
    • (2013) Nat. Genet , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 3
    • 37649026816 scopus 로고    scopus 로고
    • Donepezil for dementia due to alzheimer's disease
    • Birks J. and Harvey R.J. (2006). Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst. Rev., 1, CD001190
    • (2006) Cochrane Database Syst. Rev , vol.1 , pp. CD001190
    • Birks, J.1    Harvey, R.J.2
  • 4
    • 69849094133 scopus 로고    scopus 로고
    • Supervised prediction of drug-target interactions using bipartite local models
    • Bleakley K. and Yamanishi Y. (2009). Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics, 25, 2397-2403
    • (2009) Bioinformatics , vol.25 , pp. 2397-2403
    • Bleakley, K.1    Yamanishi, Y.2
  • 5
    • 47249146126 scopus 로고    scopus 로고
    • Drug target identification using side-effect similarity
    • Campillos M., et al. (2008). Drug target identification using side-effect similarity. Science, 321, 263-266
    • (2008) Science , vol.321 , pp. 263-266
    • Campillos, M.1
  • 6
    • 84902007424 scopus 로고    scopus 로고
    • Mantra 2.0: An online collaborative resource for drug mode of action and repurposing by network analysis
    • Carrella D., et al. (2014). Mantra 2.0: an online collaborative resource for drug mode of action and repurposing by network analysis. Bioinformatics, 30, 1787-1788
    • (2014) Bioinformatics , vol.30 , pp. 1787-1788
    • Carrella, D.1
  • 7
  • 8
    • 84877131233 scopus 로고    scopus 로고
    • A semi-supervised method for drug-target interaction prediction with consistency in networks
    • Chen H. and Zhang Z. (2013). A semi-supervised method for drug-target interaction prediction with consistency in networks. PLoS One, 8, e62975
    • (2013) Plos One , vol.8 , pp. e62975
    • Chen, H.1    Zhang, Z.2
  • 9
    • 84863695210 scopus 로고    scopus 로고
    • Prediction of drug-target interactions and drug repositioning via network-based inference
    • Cheng F., et al. (2012). Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol., 8, e1002503
    • (2012) Plos Comput. Biol , vol.8 , pp. e1002503
    • Cheng, F.1
  • 10
    • 33847103869 scopus 로고    scopus 로고
    • Measuring semantic similarity between gene ontology terms
    • Coutoa F.M., et al. (2007). Measuring semantic similarity between Gene Ontology terms. Data Knowl. Eng., 61, 137-152
    • (2007) Data Knowl. Eng , vol.61 , pp. 137-152
    • Coutoa, F.M.1
  • 11
    • 80755125575 scopus 로고    scopus 로고
    • Comprehensive analysis of kinase inhibitor selectivity
    • Davis M.I., et al. (2011). Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol., 29, 1046-1051
    • (2011) Nat. Biotechnol , vol.29 , pp. 1046-1051
    • Davis, M.I.1
  • 12
    • 84928196309 scopus 로고    scopus 로고
    • Similarity-based machine learning methods for predicting drug-target interactions: A brief review
    • Ding H., et al. (2014). Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief Bioinform., 15, 734-747
    • (2014) Brief Bioinform , vol.15 , pp. 734-747
    • Ding, H.1
  • 13
    • 50949133669 scopus 로고    scopus 로고
    • Liblinear: A library for large linear classification
    • Fan R.E., et al. (2008). LIBLINEAR: a library for large linear classification. J. Machine Learning Res., 9, 1871-1874
    • (2008) J. Machine Learning Res , vol.9 , pp. 1871-1874
    • Fan, R.E.1
  • 14
    • 84876515907 scopus 로고    scopus 로고
    • String v9.1: Protein-protein interaction networks, with increased coverage and integration
    • Database issue
    • Franceschini A., et al. (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res., 41 (Database issue) , D808-D815
    • (2013) Nucleic Acids Res , vol.41 , pp. D808-D815
    • Franceschini, A.1
  • 15
    • 84866459051 scopus 로고    scopus 로고
    • Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
    • Gonen M. (2012). Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics, 28, 2304-2310
    • (2012) Bioinformatics , vol.28 , pp. 2304-2310
    • Gonen, M.1
  • 16
    • 79958754253 scopus 로고    scopus 로고
    • Predict: A method for inferring novel drug indications with application to personalized medicine
    • Gottlieb A., et al. (2011). PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol., 7, 496
    • (2011) Mol. Syst. Biol , vol.7 , pp. 496
    • Gottlieb, A.1
  • 17
    • 84864231551 scopus 로고    scopus 로고
    • Indi: A computational framework for inferring drug interactions and their associated recommendations
    • Gottlieb A., et al. (2012). INDI: a computational framework for inferring drug interactions and their associated recommendations. Mol. Syst. biol., 8, 592
    • (2012) Mol. Syst. Biol , vol.8 , pp. 592
    • Gottlieb, A.1
  • 18
    • 38549182474 scopus 로고    scopus 로고
    • SuperTarget and Matador: Resources for exploring drug-target relationships
    • Gnther S., et al. (2008). SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids Res., 36, D919-D922
    • (2008) Nucleic Acids Res , vol.36 , pp. D919-D922
    • Gnther, S.1
  • 19
    • 76749092270 scopus 로고    scopus 로고
    • The weka data mining software: An update
    • Hall M., et al. (2009). The WEKA data mining software: an update. SIGKDD Explor. Newsl., 11, 10-18
    • (2009) Sigkdd Explor. Newsl , vol.11 , pp. 10-18
    • Hall, M.1
  • 20
    • 77950448057 scopus 로고    scopus 로고
    • Predicting drug-target interaction networks based on functional groups and biological features
    • He Z., et al. (2010). Predicting drug-target interaction networks based on functional groups and biological features. PloS One, 5, e9603
    • (2010) Plos One , vol.5 , pp. e9603
    • He, Z.1
  • 21
    • 84864240231 scopus 로고    scopus 로고
    • Extending the activity cliff concept: Structural categorization of activity cliffs and systematic identification of different types of cliffs in the chembl database
    • Hu Y. and Bajorath J. (2012). Extending the activity cliff concept: structural categorization of activity cliffs and systematic identification of different types of cliffs in the ChEMBL database. J. Chem. Inf. Model., 52, 1806-1811
    • (2012) J. Chem. Inf. Model , vol.52 , pp. 1806-1811
    • Hu, Y.1    Bajorath, J.2
  • 22
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
    • Huang D.W., et al. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44-57
    • (2009) Nat. Protoc , vol.4 , pp. 44-57
    • Huang, D.W.1
  • 23
    • 77957044703 scopus 로고    scopus 로고
    • Discovery of drug mode of action and drug repositioning from transcriptional responses
    • Iorio F., et al. (2010). Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc. Natl. Acad. Sci. USA, 107, 14621-14626
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 14621-14626
    • Iorio, F.1
  • 24
    • 0000210258 scopus 로고
    • Nouvelles recherches sur la distribution florale
    • Jaccard P. (1908). Nouvelles recherches sur la distribution florale. Bul. Soc. Vaudoise Sci. Nat., 44, 223-270
    • (1908) Bul. Soc. Vaudoise Sci. Nat , vol.44 , pp. 223-270
    • Jaccard, P.1
  • 25
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: An improved chemogenomics approach
    • Jacob L. and Vert J.P. (2008). Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics, 24, 2149-2156
    • (2008) Bioinformatics , vol.24 , pp. 2149-2156
    • Jacob, L.1    Vert, J.P.2
  • 26
    • 84902144066 scopus 로고    scopus 로고
    • Causal network models for predicting compound targets and driving pathways in cancer
    • Jaeger S., et al. (2014). Causal network models for predicting compound targets and driving pathways in cancer. J. Biomol. Screen., 19, 791-802
    • (2014) J. Biomol. Screen , vol.19 , pp. 791-802
    • Jaeger, S.1
  • 28
    • 76149120425 scopus 로고    scopus 로고
    • A side effect resource to capture phenotypic effects of drugs
    • Kuhn M., et al. (2010). A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol, 6, 343
    • (2010) Mol. Syst. Biol , vol.6 , pp. 343
    • Kuhn, M.1
  • 29
    • 84891781052 scopus 로고    scopus 로고
    • Stitch 4: Integration of protein-chemical interactions with user data
    • Kuhn M., et al. (2014). STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res., 42 (D1) , D401-D407
    • (2014) Nucleic Acids Res , vol.42 , Issue.D1 , pp. D401-D407
    • Kuhn, M.1
  • 30
    • 33749335282 scopus 로고    scopus 로고
    • The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease
    • Lamb J., et al. (2006). The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 313, 1929-1935
    • (2006) Science , vol.313 , pp. 1929-1935
    • Lamb, J.1
  • 31
    • 84872509876 scopus 로고    scopus 로고
    • Drug-target interaction prediction by learning from local information and neighbors
    • Mei J.P., et al. (2013). Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics, 29, 238-245
    • (2013) Bioinformatics , vol.29 , pp. 238-245
    • Mei, J.P.1
  • 32
    • 79952921586 scopus 로고    scopus 로고
    • Navigating the kinome
    • Metz J.T., et al. (2011). Navigating the kinome. Nat. Chem. Biol., 7, 200-202
    • (2011) Nat. Chem. Biol , vol.7 , pp. 200-202
    • Metz, J.T.1
  • 33
    • 84866460840 scopus 로고    scopus 로고
    • Relating drug-protein interaction network with drug side effects
    • Mizutani S., et al. (2012). Relating drug-protein interaction network with drug side effects. Bioinformatics, 28, i522-i528
    • (2012) Bioinformatics , vol.28 , pp. i522-i528
    • Mizutani, S.1
  • 34
    • 84925383120 scopus 로고    scopus 로고
    • Toward more realistic drug-target interaction predictions
    • Pahikkala T., et al. (2015). Toward more realistic drug-target interaction predictions. Brief Bioinform., 16, 325-337
    • (2015) Brief Bioinform , vol.16 , pp. 325-337
    • Pahikkala, T.1
  • 35
    • 79955969387 scopus 로고    scopus 로고
    • Predicting drug side-effect profiles: A chemical fragment- based approach
    • Pauwels E., et al. (2011). Predicting drug side-effect profiles: a chemical fragment- based approach. BMC Bioinformatics, 12, 169
    • (2011) BMC Bioinformatics , vol.12 , pp. 169
    • Pauwels, E.1
  • 36
    • 79951729882 scopus 로고    scopus 로고
    • Combining drug and gene similarity measures for drug-target elucidation
    • Perlman L., et al. (2011). Combining drug and gene similarity measures for drug-target elucidation. J. Comput. Biol., 18, 133-145
    • (2011) J. Comput. Biol , vol.18 , pp. 133-145
    • Perlman, L.1
  • 37
    • 84858077472 scopus 로고    scopus 로고
    • The Pfam protein families database
    • Database issue
    • Punta M., et al. (2012). The Pfam protein families database. Nucleic Acids Res., 40 (Database issue) , D290-D301
    • (2012) Nucleic Acids Res , vol.40 , pp. D290-D301
    • Punta, M.1
  • 38
    • 0019887799 scopus 로고
    • Identification of common molecular subsequences
    • Smith T.F. and Waterman M. (1981). Identification of common molecular subsequences. J. Mol. Biol., 147, 195-197
    • (1981) J. Mol. Biol , vol.147 , pp. 195-197
    • Smith, T.F.1    Waterman, M.2
  • 39
    • 84859270118 scopus 로고    scopus 로고
    • Classification of scaffold-hopping approaches
    • Sun H., et al. (2012). Classification of scaffold-hopping approaches. Drug. Discov. Today, 17, 44-57
    • (2012) Drug. Discov. Today , vol.17 , pp. 44-57
    • Sun, H.1
  • 40
    • 84906053301 scopus 로고    scopus 로고
    • Scalable prediction of compound-protein interactions using minwise hashing
    • Tabei Y. and Yamanishi Y. (2013). Scalable prediction of compound-protein interactions using minwise hashing. BMC Syst. Biol., 7, S3
    • (2013) BMC Syst. Biol , vol.7 , pp. S3
    • Tabei, Y.1    Yamanishi, Y.2
  • 41
    • 84879466418 scopus 로고    scopus 로고
    • Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile
    • van Laarhoven T. and Marchiori E. (2013). Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS One, 8, e66952
    • (2013) Plos One , vol.8 , pp. e66952
    • Van Laarhoven, T.1    Marchiori, E.2
  • 42
    • 80054881553 scopus 로고    scopus 로고
    • Gaussian interaction profile kernels for predicting drug-target interaction
    • van Laarhoven T., et al. (2011). Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics, 27, 3036-3043
    • (2011) Bioinformatics , vol.27 , pp. 3036-3043
    • Van Laarhoven, T.1
  • 43
    • 84879970943 scopus 로고    scopus 로고
    • Predicting drug-target interactions using restricted Boltzmann machines
    • Wang Y. and Zeng J. (2013). Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics, 29, i126-i134
    • (2013) Bioinformatics , vol.29 , pp. i126-i134
    • Wang, Y.1    Zeng, J.2
  • 44
    • 80155156908 scopus 로고    scopus 로고
    • Kernel-based data fusion improves the drug-protein interaction prediction
    • Wang Y.C., et al. (2011). Kernel-based data fusion improves the drug-protein interaction prediction. Comput. Biol Chem., 35, 353-362
    • (2011) Comput. Biol Chem , vol.35 , pp. 353-362
    • Wang, Y.C.1
  • 45
    • 33644876253 scopus 로고    scopus 로고
    • Database resources of the national center for biotechnology information
    • Wheeler D.L., et al. (2006). Database resources of the national center for biotechnology information. Nucleic Acids Res., 34, D173-D180
    • (2006) Nucleic Acids Res , vol.34 , pp. D173-D180
    • Wheeler, D.L.1
  • 46
    • 38549151817 scopus 로고    scopus 로고
    • DrugBank: A knowledgebase for drugs, drug actions and drug targets
    • Wishart D.S., et al. (2008). DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res., 36, D901-D906
    • (2008) Nucleic Acids Res , vol.36 , pp. D901-D906
    • Wishart, D.S.1
  • 47
    • 80053638991 scopus 로고    scopus 로고
    • Modulatory profiling identifies mechanisms of small molecule-induced cell death
    • Wolpaw A.J., et al. (2011). Modulatory profiling identifies mechanisms of small molecule-induced cell death. Proc. Natl. Acad. Sci. USA, 108, E771-E780
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. E771-E780
    • Wolpaw, A.J.1
  • 48
    • 77956953029 scopus 로고    scopus 로고
    • Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
    • Xia Z., et al. (2010). Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol., 4 (Suppl 2) , S6
    • (2010) BMC Syst. Biol , vol.4 , pp. S6
    • Xia, Z.1
  • 49
    • 79952345084 scopus 로고    scopus 로고
    • Analysis of multiple compound-protein interactions reveals novel bioactive molecules
    • Yabuuchi H., et al. (2011). Analysis of multiple compound-protein interactions reveals novel bioactive molecules. Mol. Syst. Biol., 7, 472
    • (2011) Mol. Syst. Biol , vol.7 , pp. 472
    • Yabuuchi, H.1
  • 50
    • 46249090791 scopus 로고    scopus 로고
    • Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
    • Yamanishi Y., et al. (2008). Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24, i232-i240
    • (2008) Bioinformatics , vol.24 , pp. i232-i240
    • Yamanishi, Y.1
  • 51
    • 77954230951 scopus 로고    scopus 로고
    • Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
    • Yamanishi Y., et al. (2010). Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics, 26, i246-i254
    • (2010) Bioinformatics , vol.26 , pp. i246-i254
    • Yamanishi, Y.1
  • 52
    • 84904805614 scopus 로고    scopus 로고
    • Dinies: Drug-target interaction network inference engine based on supervised analysis
    • Yamanishi Y., et al. (2014). DINIES: drug-target interaction network inference engine based on supervised analysis. Nucleic Acids Res., 42, W39-W45
    • (2014) Nucleic Acids Res , vol.42 , pp. W39-W45
    • Yamanishi, Y.1
  • 53
    • 35648957764 scopus 로고    scopus 로고
    • Bipartite network projection and personal recommendation
    • Zhou T., et al. (2010). Bipartite network projection and personal recommendation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 76, 046115
    • (2010) Phys. Rev. e Stat. Nonlin. Soft Matter Phys , vol.76 , pp. 046115
    • Zhou, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.