메뉴 건너뛰기




Volumn 3, Issue 3, 2012, Pages

Factorization machines with libFM

Author keywords

Collaborative filtering; Factorization machine; Factorization model; Matrix factorization; Recommender system; Tensor factorization

Indexed keywords

BAYESIAN INFERENCE; CATEGORICAL VARIABLES; COLLABORATIVE FILTERING; EXPERT KNOWLEDGE; FACTORIZATION APPROACH; FACTORIZATION MODEL; GENERIC APPROACH; LARGE DOMAIN; LEAST SQUARE; MATRIX FACTORIZATIONS; NON-TRIVIAL TASKS; PREDICTION PROBLEM; SOFTWARE IMPLEMENTATION; STOCHASTIC GRADIENT DESCENT; TENSOR FACTORIZATION;

EID: 84863614151     PISSN: 21576904     EISSN: 21576912     Source Type: Journal    
DOI: 10.1145/2168752.2168771     Document Type: Article
Times cited : (1329)

References (45)
  • 1
    • 13844254250 scopus 로고    scopus 로고
    • Incorporating contextual information in recommender systems using a multidimensional approach
    • DOI 10.1145/1055709.1055714
    • ADOMAVICIUS, G., SANKARANARAYANAN, R., SEN, S., AND TUZHILIN, A. 2005. Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Info. Syst. 23, 1, 103-145. (Pubitemid 40245827)
    • (2005) ACM Transactions on Information Systems , vol.23 , Issue.1 , pp. 103-145
    • Adomavicius, G.1    Sankaranarayanan, R.2    Sen, S.3    Tuzhilin, A.4
  • 5
    • 84857341776 scopus 로고    scopus 로고
    • Feature-based matrix factorization
    • Apex Data & Knowledge Management Lab, Shanghai Jiao Tong University
    • CHEN, T., ZHENG, Z., LU, Q., ZHANG, W., AND YU, Y. 2011. Feature-based matrix factorization. Tech. rep. APEX-TR-2011-07-11, Apex Data & Knowledge Management Lab, Shanghai Jiao Tong University.
    • (2011) Tech. Rep. APEX-TR-2011-07-11
    • Chen, T.1    Zheng, Z.2    Lu, Q.3    Zhang, W.4    Yu, Y.5
  • 9
    • 75249088154 scopus 로고    scopus 로고
    • A survey of accuracy evaluation metrics of recommendation tasks
    • GUNAWARDANA, A. AND SHANI, G. 2009. A survey of accuracy evaluation metrics of recommendation tasks. J. Mach. Learn. Res. 10, 2935-2962.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 2935-2962
    • Gunawardana, A.1    Shani, G.2
  • 11
    • 0002740437 scopus 로고
    • Foundations of the parafac procedure: Models and conditions for an 'exploratory' multimodal factor analysis
    • HARSHMAN, R. A. 1970. Foundations of the parafac procedure: Models and conditions for an 'exploratory' multimodal factor analysis. UCLA Working Papers in Phonetics, 1-84.
    • (1970) UCLA Working Papers in Phonetics , pp. 1-84
    • Harshman, R.A.1
  • 18
    • 77955644905 scopus 로고    scopus 로고
    • Factor in the neighbors: Scalable and accurate collaborative filtering
    • KOREN, Y. 2010. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Trans. Knowl. Discov. Data 4, 1:1-1:24.
    • (2010) ACM Trans. Knowl. Discov. Data , vol.4 , pp. 11-124
    • Koren, Y.1
  • 20
    • 0037252945 scopus 로고    scopus 로고
    • Amazon. com recommendations: Item-to-item collaborative filtering
    • LINDEN, G., SMITH, B., AND YORK, J. 2003. Amazon. com recommendations: Item-to-item collaborative filtering. Inter. Comput. IEEE 7, 1, 76-80.
    • (2003) Inter. Comput. IEEE , vol.7 , Issue.1 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 22
    • 80155142204 scopus 로고    scopus 로고
    • Efficient tag recommendation for real-life data
    • LIPCZAK, M. AND MILIOS, E. 2011. Efficient tag recommendation for real-life data. ACM Trans. Intell. Syst. Technol. 3, 1, 2:1-2:21.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.3 , Issue.1 , pp. 21-221
    • Lipczak, M.1    Milios, E.2
  • 24
    • 79955688653 scopus 로고    scopus 로고
    • Learning to recommend with explicit and implicit social relations
    • Article 29
    • MA, H., KING, I., AND LYU, M. R. 2011. Learning to recommend with explicit and implicit social relations. ACM Trans. Intell. Syst. Technol. Article 29.
    • (2011) ACM Trans. Intell. Syst. Technol.
    • Ma, H.1    King, I.2    Lyu, M.R.3
  • 34
    • 0001153986 scopus 로고
    • Simulation of truncated normal variables
    • ROBERT, C. P. 1995. Simulation of truncated normal variables. Stat. Comput. 5, 121-125.
    • (1995) Stat. Comput. , vol.5 , pp. 121-125
    • Robert, C.P.1
  • 41
    • 64149121935 scopus 로고    scopus 로고
    • Scalable collaborative filtering approaches for large recommender systems
    • TAKÁCS, G., PILÁSZY, I., NÉMETH, B., AND TIKK, D. 2009. Scalable collaborative filtering approaches for large recommender systems. J. Mach. Learn. Res. 10, 623-656.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 623-656
    • Takács, G.1    Pilászy, I.2    Németh, B.3    Tikk, D.4
  • 42
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • TUCKER, L. 1966. Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279-311.
    • (1966) Psychometrika , vol.31 , pp. 279-311
    • Tucker, L.1
  • 45
    • 79955148008 scopus 로고    scopus 로고
    • Learning travel recommendations from user-generated gps traces
    • 1-2:29
    • ZHENG, Y. AND XIE, X. 2011. Learning travel recommendations from user-generated gps traces. ACM Trans. Intell. Syst. Technol. 2, 2:1-2:29.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , pp. 2
    • Zheng, Y.1    Xie, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.