메뉴 건너뛰기




Volumn 13, Issue 7, 2016, Pages 2524-2530

Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data

Author keywords

confusion matrix; deep learning; deep neural networks; DNN; drug discovery; drug repurposing; predictor

Indexed keywords

ANTIINFECTIVE AGENT; ANTIINFLAMMATORY AGENT; ANTILIPEMIC AGENT; ANTINEOPLASTIC AGENT; CARDIOVASCULAR AGENT; CENTRAL NERVOUS SYSTEM AGENTS; CONTRACEPTIVE AGENT; DERMATOLOGICAL AGENT; GASTROINTESTINAL AGENT; HEMATOLOGIC AGENT; RESPIRATORY TRACT AGENT; URINARY TRACT AGENT; TRANSCRIPTOME;

EID: 84979019529     PISSN: 15438384     EISSN: 15438392     Source Type: Journal    
DOI: 10.1021/acs.molpharmaceut.6b00248     Document Type: Article
Times cited : (448)

References (40)
  • 1
    • 33847401924 scopus 로고    scopus 로고
    • High-Throughput Electronic Biology: Mining Information for Drug Discovery
    • Loging, W.; Harland, L.; Williams-Jones, B. High-Throughput Electronic Biology: Mining Information for Drug Discovery Nat. Rev. Drug Discovery 2007, 10.1038/nrd2345
    • (2007) Nat. Rev. Drug Discovery
    • Loging, W.1    Harland, L.2    Williams-Jones, B.3
  • 3
    • 84960199094 scopus 로고    scopus 로고
    • Identifying Compound Efficacy Targets in Phenotypic Drug Discovery
    • Schirle, M.; Jenkins, J. L. Identifying Compound Efficacy Targets in Phenotypic Drug Discovery Drug Discovery Today 2016, 21, 82 10.1016/j.drudis.2015.08.001
    • (2016) Drug Discovery Today , vol.21 , pp. 82
    • Schirle, M.1    Jenkins, J.L.2
  • 4
    • 84930630277 scopus 로고    scopus 로고
    • Deep Learning
    • LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning Nature 2015, 521 (7553) 436-444 10.1038/nature14539
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 5
    • 84903779279 scopus 로고    scopus 로고
    • Searching for Exotic Particles in High-Energy Physics with Deep Learning
    • Baldi, P.; Sadowski, P.; Whiteson, D. Searching for Exotic Particles in High-Energy Physics with Deep Learning Nat. Commun. 2014, 5, 4308 10.1038/ncomms5308
    • (2014) Nat. Commun. , vol.5 , pp. 4308
    • Baldi, P.1    Sadowski, P.2    Whiteson, D.3
  • 6
    • 84910651844 scopus 로고    scopus 로고
    • Deep Learning in Neural Networks: An Overview
    • Schmidhuber, J. Deep Learning in Neural Networks: An Overview Neural Networks 2015, 61, 85-117 10.1016/j.neunet.2014.09.003
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 7
    • 84968861400 scopus 로고    scopus 로고
    • Applications of Deep Learning in Biomedicine
    • Mamoshina, P.; Vieira, A.; Putin, E.; Zhavoronkov, A. Applications of Deep Learning in Biomedicine Mol. Pharmaceutics 2016, 13 (5) 1445-1454 10.1021/acs.molpharmaceut.5b00982
    • (2016) Mol. Pharmaceutics , vol.13 , Issue.5 , pp. 1445-1454
    • Mamoshina, P.1    Vieira, A.2    Putin, E.3    Zhavoronkov, A.4
  • 8
    • 84932642625 scopus 로고    scopus 로고
    • A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data
    • Hira, Z. M.; Gillies, D. F. A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data Adv. Bioinf. 2015, 2015, 198363 10.1155/2015/198363
    • (2015) Adv. Bioinf. , vol.2015 , pp. 198363
    • Hira, Z.M.1    Gillies, D.F.2
  • 11
    • 84902462761 scopus 로고    scopus 로고
    • Deep Learning of the Tissue-Regulated Splicing Code
    • Leung, M. K. K.; Xiong, H. Y.; Lee, L. J.; Frey, B. J. Deep Learning of the Tissue-Regulated Splicing Code Bioinformatics 2014, 30 (12) i121-i129 10.1093/bioinformatics/btu277
    • (2014) Bioinformatics , vol.30 , Issue.12 , pp. i121-i129
    • Leung, M.K.K.1    Xiong, H.Y.2    Lee, L.J.3    Frey, B.J.4
  • 12
    • 84927770389 scopus 로고    scopus 로고
    • Predicting Backbone Cα Angles and Dihedrals from Protein Sequences by Stacked Sparse Auto-Encoder Deep Neural Network
    • Lyons, J.; Dehzangi, A.; Heffernan, R.; Sharma, A.; Paliwal, K.; Sattar, A.; Zhou, Y.; Yang, Y. Predicting Backbone Cα Angles and Dihedrals from Protein Sequences by Stacked Sparse Auto-Encoder Deep Neural Network J. Comput. Chem. 2014, 35 (28) 2040-2046 10.1002/jcc.23718
    • (2014) J. Comput. Chem. , vol.35 , Issue.28 , pp. 2040-2046
    • Lyons, J.1    Dehzangi, A.2    Heffernan, R.3    Sharma, A.4    Paliwal, K.5    Sattar, A.6    Zhou, Y.7    Yang, Y.8
  • 13
    • 84938318602 scopus 로고    scopus 로고
    • DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields
    • Wang, S.; Weng, S.; Ma, J.; Tang, Q. DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields Int. J. Mol. Sci. 2015, 16 (8) 17315-17330 10.3390/ijms160817315
    • (2015) Int. J. Mol. Sci. , vol.16 , Issue.8 , pp. 17315-17330
    • Wang, S.1    Weng, S.2    Ma, J.3    Tang, Q.4
  • 14
    • 84880542260 scopus 로고    scopus 로고
    • Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-like Molecules
    • Lusci, A.; Pollastri, G.; Baldi, P. Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-like Molecules J. Chem. Inf. Model. 2013, 53 (7) 1563-1575 10.1021/ci400187y
    • (2013) J. Chem. Inf. Model. , vol.53 , Issue.7 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 16
    • 84945573112 scopus 로고    scopus 로고
    • Modeling Epoxidation of Drug-like Molecules with a Deep Machine Learning Network
    • Hughes, T. B.; Miller, G. P.; Swamidass, S. J. Modeling Epoxidation of Drug-like Molecules with a Deep Machine Learning Network ACS Cent. Sci. 2015, 1 (4) 168-180 10.1021/acscentsci.5b00131
    • (2015) ACS Cent. Sci. , vol.1 , Issue.4 , pp. 168-180
    • Hughes, T.B.1    Miller, G.P.2    Swamidass, S.J.3
  • 17
    • 84945557463 scopus 로고    scopus 로고
    • Deep Learning for Drug-Induced Liver Injury
    • Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pei, J.; Lai, L. Deep Learning for Drug-Induced Liver Injury J. Chem. Inf. Model. 2015, 55 (10) 2085-2093 10.1021/acs.jcim.5b00238
    • (2015) J. Chem. Inf. Model. , vol.55 , Issue.10 , pp. 2085-2093
    • Xu, Y.1    Dai, Z.2    Chen, F.3    Gao, S.4    Pei, J.5    Lai, L.6
  • 19
    • 84920283809 scopus 로고    scopus 로고
    • Comparing Multilabel Classification Methods for Provisional Biopharmaceutics Class Prediction
    • Newby, D.; Freitas, A. A.; Ghafourian, T. Comparing Multilabel Classification Methods for Provisional Biopharmaceutics Class Prediction Mol. Pharmaceutics 2015, 12 (1) 87-102 10.1021/mp500457t
    • (2015) Mol. Pharmaceutics , vol.12 , Issue.1 , pp. 87-102
    • Newby, D.1    Freitas, A.A.2    Ghafourian, T.3
  • 20
    • 84875790754 scopus 로고    scopus 로고
    • In Silico Physicochemical Parameter Predictions
    • Wenlock, M. C.; Barton, P. In Silico Physicochemical Parameter Predictions Mol. Pharmaceutics 2013, 10 (4) 1224-1235 10.1021/mp300537k
    • (2013) Mol. Pharmaceutics , vol.10 , Issue.4 , pp. 1224-1235
    • Wenlock, M.C.1    Barton, P.2
  • 21
  • 24
    • 43449088832 scopus 로고    scopus 로고
    • A Modular Approach for Integrative Analysis of Large-Scale Gene-Expression and Drug-Response Data
    • Kutalik, Z.; Beckmann, J. S.; Bergmann, S. A Modular Approach for Integrative Analysis of Large-Scale Gene-Expression and Drug-Response Data Nat. Biotechnol. 2008, 26 (5) 531-539 10.1038/nbt1397
    • (2008) Nat. Biotechnol. , vol.26 , Issue.5 , pp. 531-539
    • Kutalik, Z.1    Beckmann, J.S.2    Bergmann, S.3
  • 26
    • 84943400336 scopus 로고    scopus 로고
    • Pathway Activation Strength Is a Novel Independent Prognostic Biomarker for Cetuximab Sensitivity in Colorectal Cancer Patients
    • Zhu, Q.; Izumchenko, E.; Aliper, A. M.; Makarev, E.; Paz, K.; Buzdin, A. A.; Zhavoronkov, A. A.; Sidransky, D. Pathway Activation Strength Is a Novel Independent Prognostic Biomarker for Cetuximab Sensitivity in Colorectal Cancer Patients Hum. Genome Var. 2015, 2, 15009 10.1038/hgv.2015.9
    • (2015) Hum. Genome Var. , vol.2 , pp. 15009
    • Zhu, Q.1    Izumchenko, E.2    Aliper, A.M.3    Makarev, E.4    Paz, K.5    Buzdin, A.A.6    Zhavoronkov, A.A.7    Sidransky, D.8
  • 27
    • 84898016427 scopus 로고    scopus 로고
    • Oncofinder, a new method for the analysis of intracellular signaling pathway activation using transcriptomic data
    • Buzdin, A. A.; Zhavoronkov, A. A.; Korzinkin, M. B.; Venkova, L. S.; Zenin, A. A.; Smirnov, P. Y.; Borisov, N. M. Oncofinder, a new method for the analysis of intracellular signaling pathway activation using transcriptomic data Front. Genet. 2014, 5, 55 10.3389/fgene.2014.00055
    • (2014) Front. Genet. , vol.5 , pp. 55
    • Buzdin, A.A.1    Zhavoronkov, A.A.2    Korzinkin, M.B.3    Venkova, L.S.4    Zenin, A.A.5    Smirnov, P.Y.6    Borisov, N.M.7
  • 29
    • 84944462918 scopus 로고    scopus 로고
    • Combinatorial High-Throughput Experimental and Bioinformatic Approach Identifies Molecular Pathways Linked with the Sensitivity to Anticancer Target Drugs
    • Venkova, L.; Aliper, A.; Suntsova, M.; Kholodenko, R.; Shepelin, D.; Borisov, N.; Malakhova, G.; Vasilov, R.; Roumiantsev, S.; Zhavoronkov, A.; Buzdin, A. Combinatorial High-Throughput Experimental and Bioinformatic Approach Identifies Molecular Pathways Linked with the Sensitivity to Anticancer Target Drugs Oncotarget 2015, 6 (29) 27227-27238 10.18632/oncotarget.4507
    • (2015) Oncotarget , vol.6 , Issue.29 , pp. 27227-27238
    • Venkova, L.1    Aliper, A.2    Suntsova, M.3    Kholodenko, R.4    Shepelin, D.5    Borisov, N.6    Malakhova, G.7    Vasilov, R.8    Roumiantsev, S.9    Zhavoronkov, A.10    Buzdin, A.11
  • 30
    • 84920935309 scopus 로고    scopus 로고
    • Pathway Activation Profiling Reveals New Insights into Age-Related Macular Degeneration and Provides Avenues for Therapeutic Interventions
    • Makarev, E.; Cantor, C.; Zhavoronkov, A.; Buzdin, A.; Aliper, A.; Csoka, A. B. Pathway Activation Profiling Reveals New Insights into Age-Related Macular Degeneration and Provides Avenues for Therapeutic Interventions Aging 2014, 6 (12) 1064-1075 10.18632/aging.100711
    • (2014) Aging , vol.6 , Issue.12 , pp. 1064-1075
    • Makarev, E.1    Cantor, C.2    Zhavoronkov, A.3    Buzdin, A.4    Aliper, A.5    Csoka, A.B.6
  • 31
    • 84937974697 scopus 로고    scopus 로고
    • Exceeding Chance Level by Chance: The Caveat of Theoretical Chance Levels in Brain Signal Classification and Statistical Assessment of Decoding Accuracy
    • Combrisson, E.; Jerbi, K. Exceeding Chance Level by Chance: The Caveat of Theoretical Chance Levels in Brain Signal Classification and Statistical Assessment of Decoding Accuracy J. Neurosci. Methods 2015, 250, 126-136 10.1016/j.jneumeth.2015.01.010
    • (2015) J. Neurosci. Methods , vol.250 , pp. 126-136
    • Combrisson, E.1    Jerbi, K.2
  • 32
    • 38349193123 scopus 로고    scopus 로고
    • Muscarinic Acetylcholine Receptors as CNS Drug Targets
    • Langmead, C. J.; Watson, J.; Reavill, C. Muscarinic Acetylcholine Receptors as CNS Drug Targets Pharmacol. Ther. 2008, 117 (2) 232-243 10.1016/j.pharmthera.2007.09.009
    • (2008) Pharmacol. Ther. , vol.117 , Issue.2 , pp. 232-243
    • Langmead, C.J.1    Watson, J.2    Reavill, C.3
  • 33
    • 0345304274 scopus 로고    scopus 로고
    • Muscarinic Acetylcholine Receptor Subtypes in Cerebral Cortex and Hippocampus
    • Volpicelli, L. A.; Levey, A. I. Muscarinic Acetylcholine Receptor Subtypes in Cerebral Cortex and Hippocampus Prog. Brain Res. 2004, 145, 59-66 10.1016/S0079-6123(03)45003-6
    • (2004) Prog. Brain Res. , vol.145 , pp. 59-66
    • Volpicelli, L.A.1    Levey, A.I.2
  • 34
    • 84921381426 scopus 로고    scopus 로고
    • Subcellular Localization of K+ Channels in Mammalian Brain Neurons: Remarkable Precision in the Midst of Extraordinary Complexity
    • Trimmer, J. S. Subcellular Localization of K+ Channels in Mammalian Brain Neurons: Remarkable Precision in the Midst of Extraordinary Complexity Neuron 2015, 85 (2) 238-256 10.1016/j.neuron.2014.12.042
    • (2015) Neuron , vol.85 , Issue.2 , pp. 238-256
    • Trimmer, J.S.1
  • 37
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • Cortes, C.; Vapnik, V. Support-Vector Networks Mach. Learn. 1995, 20 (3) 273-297 10.1007/BF00994018
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 38
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the Dimensionality of Data with Neural Networks
    • Hinton, G. E.; Salakhutdinov, R. R. Reducing the Dimensionality of Data with Neural Networks Science 2006, 313 (5786) 504-507 10.1126/science.1127647
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 39
    • 84905272120 scopus 로고    scopus 로고
    • ADADELTA: An Adaptive Learning Rate Method
    • Zeiler, M. D. ADADELTA: An Adaptive Learning Rate Method arXiv 2012, 6.
    • (2012) ArXiv , vol.6
    • Zeiler, M.D.1
  • 40
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks Int. Conf. Artif. Intell. Stat. 2010, 249-256
    • (2010) Int. Conf. Artif. Intell. Stat. , pp. 249-256
    • Glorot, X.1    Bengio, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.