-
2
-
-
84930378039
-
Predicting Drug Metabolism: Experiment and/or Computation?
-
Kirchmair, J.; Göller, A. H.; Lang, D.; Kunze, J.; Testa, B.; Wilson, I. D.; Glen, R. C.; Schneider, G. Predicting Drug Metabolism: Experiment and/or Computation? Nat. Rev. Drug Discovery 2015, 14, 387 10.1038/nrd4581
-
(2015)
Nat. Rev. Drug Discovery
, vol.14
, pp. 387
-
-
Kirchmair, J.1
Göller, A.H.2
Lang, D.3
Kunze, J.4
Testa, B.5
Wilson, I.D.6
Glen, R.C.7
Schneider, G.8
-
3
-
-
84960199094
-
Identifying Compound Efficacy Targets in Phenotypic Drug Discovery
-
Schirle, M.; Jenkins, J. L. Identifying Compound Efficacy Targets in Phenotypic Drug Discovery Drug Discovery Today 2016, 21, 82 10.1016/j.drudis.2015.08.001
-
(2016)
Drug Discovery Today
, vol.21
, pp. 82
-
-
Schirle, M.1
Jenkins, J.L.2
-
4
-
-
84930630277
-
Deep Learning
-
LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning Nature 2015, 521 (7553) 436-444 10.1038/nature14539
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
5
-
-
84903779279
-
Searching for Exotic Particles in High-Energy Physics with Deep Learning
-
Baldi, P.; Sadowski, P.; Whiteson, D. Searching for Exotic Particles in High-Energy Physics with Deep Learning Nat. Commun. 2014, 5, 4308 10.1038/ncomms5308
-
(2014)
Nat. Commun.
, vol.5
, pp. 4308
-
-
Baldi, P.1
Sadowski, P.2
Whiteson, D.3
-
6
-
-
84910651844
-
Deep Learning in Neural Networks: An Overview
-
Schmidhuber, J. Deep Learning in Neural Networks: An Overview Neural Networks 2015, 61, 85-117 10.1016/j.neunet.2014.09.003
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
7
-
-
84968861400
-
Applications of Deep Learning in Biomedicine
-
Mamoshina, P.; Vieira, A.; Putin, E.; Zhavoronkov, A. Applications of Deep Learning in Biomedicine Mol. Pharmaceutics 2016, 13 (5) 1445-1454 10.1021/acs.molpharmaceut.5b00982
-
(2016)
Mol. Pharmaceutics
, vol.13
, Issue.5
, pp. 1445-1454
-
-
Mamoshina, P.1
Vieira, A.2
Putin, E.3
Zhavoronkov, A.4
-
8
-
-
84932642625
-
A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data
-
Hira, Z. M.; Gillies, D. F. A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data Adv. Bioinf. 2015, 2015, 198363 10.1155/2015/198363
-
(2015)
Adv. Bioinf.
, vol.2015
, pp. 198363
-
-
Hira, Z.M.1
Gillies, D.F.2
-
9
-
-
84929492596
-
Multi-Level gene/MiRNA Feature Selection Using Deep Belief Nets and Active Learning
-
In
-
Ibrahim, R.; Rania, I.; Yousri, N. A.; Ismail, M. A.; El-Makky, N. M. Multi-Level gene/MiRNA Feature Selection Using Deep Belief Nets and Active Learning. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2014.
-
(2014)
2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
-
-
Ibrahim, R.1
Rania, I.2
Yousri, N.A.3
Ismail, M.A.4
El-Makky, N.M.5
-
11
-
-
84902462761
-
Deep Learning of the Tissue-Regulated Splicing Code
-
Leung, M. K. K.; Xiong, H. Y.; Lee, L. J.; Frey, B. J. Deep Learning of the Tissue-Regulated Splicing Code Bioinformatics 2014, 30 (12) i121-i129 10.1093/bioinformatics/btu277
-
(2014)
Bioinformatics
, vol.30
, Issue.12
, pp. i121-i129
-
-
Leung, M.K.K.1
Xiong, H.Y.2
Lee, L.J.3
Frey, B.J.4
-
12
-
-
84927770389
-
Predicting Backbone Cα Angles and Dihedrals from Protein Sequences by Stacked Sparse Auto-Encoder Deep Neural Network
-
Lyons, J.; Dehzangi, A.; Heffernan, R.; Sharma, A.; Paliwal, K.; Sattar, A.; Zhou, Y.; Yang, Y. Predicting Backbone Cα Angles and Dihedrals from Protein Sequences by Stacked Sparse Auto-Encoder Deep Neural Network J. Comput. Chem. 2014, 35 (28) 2040-2046 10.1002/jcc.23718
-
(2014)
J. Comput. Chem.
, vol.35
, Issue.28
, pp. 2040-2046
-
-
Lyons, J.1
Dehzangi, A.2
Heffernan, R.3
Sharma, A.4
Paliwal, K.5
Sattar, A.6
Zhou, Y.7
Yang, Y.8
-
13
-
-
84938318602
-
DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields
-
Wang, S.; Weng, S.; Ma, J.; Tang, Q. DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields Int. J. Mol. Sci. 2015, 16 (8) 17315-17330 10.3390/ijms160817315
-
(2015)
Int. J. Mol. Sci.
, vol.16
, Issue.8
, pp. 17315-17330
-
-
Wang, S.1
Weng, S.2
Ma, J.3
Tang, Q.4
-
14
-
-
84880542260
-
Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-like Molecules
-
Lusci, A.; Pollastri, G.; Baldi, P. Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-like Molecules J. Chem. Inf. Model. 2013, 53 (7) 1563-1575 10.1021/ci400187y
-
(2013)
J. Chem. Inf. Model.
, vol.53
, Issue.7
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
15
-
-
84922788059
-
-
In 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
-
Wang, C.; Caihua, W.; Juan, L.; Fei, L.; Yafang, T.; Zixin, D.; Qian-Nan, H. Pairwise Input Neural Network for Target-Ligand Interaction Prediction. In 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2014.
-
(2014)
Pairwise Input Neural Network for Target-Ligand Interaction Prediction
-
-
Wang, C.1
Caihua, W.2
Juan, L.3
Fei, L.4
Yafang, T.5
Zixin, D.6
Qian-Nan, H.7
-
16
-
-
84945573112
-
Modeling Epoxidation of Drug-like Molecules with a Deep Machine Learning Network
-
Hughes, T. B.; Miller, G. P.; Swamidass, S. J. Modeling Epoxidation of Drug-like Molecules with a Deep Machine Learning Network ACS Cent. Sci. 2015, 1 (4) 168-180 10.1021/acscentsci.5b00131
-
(2015)
ACS Cent. Sci.
, vol.1
, Issue.4
, pp. 168-180
-
-
Hughes, T.B.1
Miller, G.P.2
Swamidass, S.J.3
-
17
-
-
84945557463
-
Deep Learning for Drug-Induced Liver Injury
-
Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pei, J.; Lai, L. Deep Learning for Drug-Induced Liver Injury J. Chem. Inf. Model. 2015, 55 (10) 2085-2093 10.1021/acs.jcim.5b00238
-
(2015)
J. Chem. Inf. Model.
, vol.55
, Issue.10
, pp. 2085-2093
-
-
Xu, Y.1
Dai, Z.2
Chen, F.3
Gao, S.4
Pei, J.5
Lai, L.6
-
19
-
-
84920283809
-
Comparing Multilabel Classification Methods for Provisional Biopharmaceutics Class Prediction
-
Newby, D.; Freitas, A. A.; Ghafourian, T. Comparing Multilabel Classification Methods for Provisional Biopharmaceutics Class Prediction Mol. Pharmaceutics 2015, 12 (1) 87-102 10.1021/mp500457t
-
(2015)
Mol. Pharmaceutics
, vol.12
, Issue.1
, pp. 87-102
-
-
Newby, D.1
Freitas, A.A.2
Ghafourian, T.3
-
20
-
-
84875790754
-
In Silico Physicochemical Parameter Predictions
-
Wenlock, M. C.; Barton, P. In Silico Physicochemical Parameter Predictions Mol. Pharmaceutics 2013, 10 (4) 1224-1235 10.1021/mp300537k
-
(2013)
Mol. Pharmaceutics
, vol.10
, Issue.4
, pp. 1224-1235
-
-
Wenlock, M.C.1
Barton, P.2
-
21
-
-
84858039726
-
BDDCS Class Prediction for New Molecular Entities
-
Broccatelli, F.; Cruciani, G.; Benet, L. Z.; Oprea, T. I. BDDCS Class Prediction for New Molecular Entities Mol. Pharmaceutics 2012, 9 (3) 570-580 10.1021/mp2004302
-
(2012)
Mol. Pharmaceutics
, vol.9
, Issue.3
, pp. 570-580
-
-
Broccatelli, F.1
Cruciani, G.2
Benet, L.Z.3
Oprea, T.I.4
-
22
-
-
21344434292
-
A Novel hPepT1 Stably Transfected Cell Line: Establishing a Correlation between Expression and Function
-
Herrera-Ruiz, D.; Faria, T. N.; Bhardwaj, R. K.; Timoszyk, J.; Gudmundsson, O. S.; Moench, P.; Wall, D. A.; Smith, R. L.; Knipp, G. T. A Novel hPepT1 Stably Transfected Cell Line: Establishing a Correlation between Expression and Function Mol. Pharmaceutics 2004, 1 (2) 136-144 10.1021/mp034011l
-
(2004)
Mol. Pharmaceutics
, vol.1
, Issue.2
, pp. 136-144
-
-
Herrera-Ruiz, D.1
Faria, T.N.2
Bhardwaj, R.K.3
Timoszyk, J.4
Gudmundsson, O.S.5
Moench, P.6
Wall, D.A.7
Smith, R.L.8
Knipp, G.T.9
-
23
-
-
84884200376
-
Characterization of Drug-Induced Transcriptional Modules: Towards Drug Repositioning and Functional Understanding
-
Iskar, M.; Zeller, G.; Blattmann, P.; Campillos, M.; Kuhn, M.; Kaminska, K. H.; Runz, H.; Gavin, A.-C.; Pepperkok, R.; van Noort, V.; Bork, P. Characterization of Drug-Induced Transcriptional Modules: Towards Drug Repositioning and Functional Understanding Mol. Syst. Biol. 2013, 9, 662 10.1038/msb.2013.20
-
(2013)
Mol. Syst. Biol.
, vol.9
, pp. 662
-
-
Iskar, M.1
Zeller, G.2
Blattmann, P.3
Campillos, M.4
Kuhn, M.5
Kaminska, K.H.6
Runz, H.7
Gavin, A.-C.8
Pepperkok, R.9
Van Noort, V.10
Bork, P.11
-
24
-
-
43449088832
-
A Modular Approach for Integrative Analysis of Large-Scale Gene-Expression and Drug-Response Data
-
Kutalik, Z.; Beckmann, J. S.; Bergmann, S. A Modular Approach for Integrative Analysis of Large-Scale Gene-Expression and Drug-Response Data Nat. Biotechnol. 2008, 26 (5) 531-539 10.1038/nbt1397
-
(2008)
Nat. Biotechnol.
, vol.26
, Issue.5
, pp. 531-539
-
-
Kutalik, Z.1
Beckmann, J.S.2
Bergmann, S.3
-
25
-
-
84922290532
-
Silencing AML1-ETO Gene Expression Leads to Simultaneous Activation of Both pro-Apoptotic and Proliferation Signaling
-
Spirin, P. V.; Lebedev, T. D.; Orlova, N. N.; Gornostaeva, A. S.; Prokofjeva, M. M.; Nikitenko, N. A.; Dmitriev, S. E.; Buzdin, A. A.; Borisov, N. M.; Aliper, A. M.; Garazha, A. V.; Rubtsov, P. M.; Stocking, C.; Prassolov, V. S. Silencing AML1-ETO Gene Expression Leads to Simultaneous Activation of Both pro-Apoptotic and Proliferation Signaling Leukemia 2014, 28 (11) 2222-2228 10.1038/leu.2014.130
-
(2014)
Leukemia
, vol.28
, Issue.11
, pp. 2222-2228
-
-
Spirin, P.V.1
Lebedev, T.D.2
Orlova, N.N.3
Gornostaeva, A.S.4
Prokofjeva, M.M.5
Nikitenko, N.A.6
Dmitriev, S.E.7
Buzdin, A.A.8
Borisov, N.M.9
Aliper, A.M.10
Garazha, A.V.11
Rubtsov, P.M.12
Stocking, C.13
Prassolov, V.S.14
-
26
-
-
84943400336
-
Pathway Activation Strength Is a Novel Independent Prognostic Biomarker for Cetuximab Sensitivity in Colorectal Cancer Patients
-
Zhu, Q.; Izumchenko, E.; Aliper, A. M.; Makarev, E.; Paz, K.; Buzdin, A. A.; Zhavoronkov, A. A.; Sidransky, D. Pathway Activation Strength Is a Novel Independent Prognostic Biomarker for Cetuximab Sensitivity in Colorectal Cancer Patients Hum. Genome Var. 2015, 2, 15009 10.1038/hgv.2015.9
-
(2015)
Hum. Genome Var.
, vol.2
, pp. 15009
-
-
Zhu, Q.1
Izumchenko, E.2
Aliper, A.M.3
Makarev, E.4
Paz, K.5
Buzdin, A.A.6
Zhavoronkov, A.A.7
Sidransky, D.8
-
27
-
-
84898016427
-
Oncofinder, a new method for the analysis of intracellular signaling pathway activation using transcriptomic data
-
Buzdin, A. A.; Zhavoronkov, A. A.; Korzinkin, M. B.; Venkova, L. S.; Zenin, A. A.; Smirnov, P. Y.; Borisov, N. M. Oncofinder, a new method for the analysis of intracellular signaling pathway activation using transcriptomic data Front. Genet. 2014, 5, 55 10.3389/fgene.2014.00055
-
(2014)
Front. Genet.
, vol.5
, pp. 55
-
-
Buzdin, A.A.1
Zhavoronkov, A.A.2
Korzinkin, M.B.3
Venkova, L.S.4
Zenin, A.A.5
Smirnov, P.Y.6
Borisov, N.M.7
-
28
-
-
84945144277
-
A Method for Predicting Target Drug Efficiency in Cancer Based on the Analysis of Signaling Pathway Activation
-
Artemov, A.; Aliper, A.; Korzinkin, M.; Lezhnina, K.; Jellen, L.; Zhukov, N.; Roumiantsev, S.; Gaifullin, N.; Zhavoronkov, A.; Borisov, N.; Buzdin, A. A Method for Predicting Target Drug Efficiency in Cancer Based on the Analysis of Signaling Pathway Activation Oncotarget 2015, 6 (30) 29347-29356 10.18632/oncotarget.5119
-
(2015)
Oncotarget
, vol.6
, Issue.30
, pp. 29347-29356
-
-
Artemov, A.1
Aliper, A.2
Korzinkin, M.3
Lezhnina, K.4
Jellen, L.5
Zhukov, N.6
Roumiantsev, S.7
Gaifullin, N.8
Zhavoronkov, A.9
Borisov, N.10
Buzdin, A.11
-
29
-
-
84944462918
-
Combinatorial High-Throughput Experimental and Bioinformatic Approach Identifies Molecular Pathways Linked with the Sensitivity to Anticancer Target Drugs
-
Venkova, L.; Aliper, A.; Suntsova, M.; Kholodenko, R.; Shepelin, D.; Borisov, N.; Malakhova, G.; Vasilov, R.; Roumiantsev, S.; Zhavoronkov, A.; Buzdin, A. Combinatorial High-Throughput Experimental and Bioinformatic Approach Identifies Molecular Pathways Linked with the Sensitivity to Anticancer Target Drugs Oncotarget 2015, 6 (29) 27227-27238 10.18632/oncotarget.4507
-
(2015)
Oncotarget
, vol.6
, Issue.29
, pp. 27227-27238
-
-
Venkova, L.1
Aliper, A.2
Suntsova, M.3
Kholodenko, R.4
Shepelin, D.5
Borisov, N.6
Malakhova, G.7
Vasilov, R.8
Roumiantsev, S.9
Zhavoronkov, A.10
Buzdin, A.11
-
30
-
-
84920935309
-
Pathway Activation Profiling Reveals New Insights into Age-Related Macular Degeneration and Provides Avenues for Therapeutic Interventions
-
Makarev, E.; Cantor, C.; Zhavoronkov, A.; Buzdin, A.; Aliper, A.; Csoka, A. B. Pathway Activation Profiling Reveals New Insights into Age-Related Macular Degeneration and Provides Avenues for Therapeutic Interventions Aging 2014, 6 (12) 1064-1075 10.18632/aging.100711
-
(2014)
Aging
, vol.6
, Issue.12
, pp. 1064-1075
-
-
Makarev, E.1
Cantor, C.2
Zhavoronkov, A.3
Buzdin, A.4
Aliper, A.5
Csoka, A.B.6
-
31
-
-
84937974697
-
Exceeding Chance Level by Chance: The Caveat of Theoretical Chance Levels in Brain Signal Classification and Statistical Assessment of Decoding Accuracy
-
Combrisson, E.; Jerbi, K. Exceeding Chance Level by Chance: The Caveat of Theoretical Chance Levels in Brain Signal Classification and Statistical Assessment of Decoding Accuracy J. Neurosci. Methods 2015, 250, 126-136 10.1016/j.jneumeth.2015.01.010
-
(2015)
J. Neurosci. Methods
, vol.250
, pp. 126-136
-
-
Combrisson, E.1
Jerbi, K.2
-
32
-
-
38349193123
-
Muscarinic Acetylcholine Receptors as CNS Drug Targets
-
Langmead, C. J.; Watson, J.; Reavill, C. Muscarinic Acetylcholine Receptors as CNS Drug Targets Pharmacol. Ther. 2008, 117 (2) 232-243 10.1016/j.pharmthera.2007.09.009
-
(2008)
Pharmacol. Ther.
, vol.117
, Issue.2
, pp. 232-243
-
-
Langmead, C.J.1
Watson, J.2
Reavill, C.3
-
33
-
-
0345304274
-
Muscarinic Acetylcholine Receptor Subtypes in Cerebral Cortex and Hippocampus
-
Volpicelli, L. A.; Levey, A. I. Muscarinic Acetylcholine Receptor Subtypes in Cerebral Cortex and Hippocampus Prog. Brain Res. 2004, 145, 59-66 10.1016/S0079-6123(03)45003-6
-
(2004)
Prog. Brain Res.
, vol.145
, pp. 59-66
-
-
Volpicelli, L.A.1
Levey, A.I.2
-
34
-
-
84921381426
-
Subcellular Localization of K+ Channels in Mammalian Brain Neurons: Remarkable Precision in the Midst of Extraordinary Complexity
-
Trimmer, J. S. Subcellular Localization of K+ Channels in Mammalian Brain Neurons: Remarkable Precision in the Midst of Extraordinary Complexity Neuron 2015, 85 (2) 238-256 10.1016/j.neuron.2014.12.042
-
(2015)
Neuron
, vol.85
, Issue.2
, pp. 238-256
-
-
Trimmer, J.S.1
-
35
-
-
84941044607
-
Genenames.org: The HGNC Resources in 2015
-
Gray, K. A.; Yates, B.; Seal, R. L.; Wright, M. W.; Bruford, E. A. Genenames.org: The HGNC Resources in 2015 Nucleic Acids Res. 2015, 43 (D1) D1079-D1085 10.1093/nar/gku1071
-
(2015)
Nucleic Acids Res.
, vol.43
, Issue.D1
, pp. D1079-D1085
-
-
Gray, K.A.1
Yates, B.2
Seal, R.L.3
Wright, M.W.4
Bruford, E.A.5
-
37
-
-
34249753618
-
Support-Vector Networks
-
Cortes, C.; Vapnik, V. Support-Vector Networks Mach. Learn. 1995, 20 (3) 273-297 10.1007/BF00994018
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
38
-
-
33746600649
-
Reducing the Dimensionality of Data with Neural Networks
-
Hinton, G. E.; Salakhutdinov, R. R. Reducing the Dimensionality of Data with Neural Networks Science 2006, 313 (5786) 504-507 10.1126/science.1127647
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
39
-
-
84905272120
-
ADADELTA: An Adaptive Learning Rate Method
-
Zeiler, M. D. ADADELTA: An Adaptive Learning Rate Method arXiv 2012, 6.
-
(2012)
ArXiv
, vol.6
-
-
Zeiler, M.D.1
-
40
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks Int. Conf. Artif. Intell. Stat. 2010, 249-256
-
(2010)
Int. Conf. Artif. Intell. Stat.
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
|