메뉴 건너뛰기




Volumn 55, Issue 10, 2015, Pages 2085-2093

Deep Learning for Drug-Induced Liver Injury

Author keywords

[No Author keywords available]

Indexed keywords

DISEASES; FORECASTING; PREDICTIVE ANALYTICS;

EID: 84945557463     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/acs.jcim.5b00238     Document Type: Article
Times cited : (292)

References (65)
  • 2
    • 84874493748 scopus 로고    scopus 로고
    • Livertox: A Website on Drug-Induced Liver Injury
    • Hoofnagle, J. H.; Serrano, J.; Knoben, J. E.; Navarro, V. J. Livertox: A Website on Drug-Induced Liver Injury Hepatology 2013, 57, 873-874 10.1002/hep.26175
    • (2013) Hepatology , vol.57 , pp. 873-874
    • Hoofnagle, J.H.1    Serrano, J.2    Knoben, J.E.3    Navarro, V.J.4
  • 3
    • 67649383640 scopus 로고    scopus 로고
    • Human Drug Hepatotoxicity: A Contemporary Clinical Perspective
    • Assis, D. N.; Navarro, V. J. Human Drug Hepatotoxicity: A Contemporary Clinical Perspective Expert Opin. Drug Metab. Toxicol. 2009, 5, 463-473 10.1517/17425250902927386
    • (2009) Expert Opin. Drug Metab. Toxicol. , vol.5 , pp. 463-473
    • Assis, D.N.1    Navarro, V.J.2
  • 4
    • 84887907555 scopus 로고    scopus 로고
    • Quantitative Structure-Activity Relationship Models for Predicting Drug-Induced Liver Injury Based on FDA-Approved Drug Labeling Annotation and Using a Large Collection of Drugs
    • Chen, M.; Hong, H.; Fang, H.; Kelly, R.; Zhou, G.; Borlak, J.; Tong, W. Quantitative Structure-Activity Relationship Models for Predicting Drug-Induced Liver Injury Based on FDA-Approved Drug Labeling Annotation and Using a Large Collection of Drugs Toxicol. Sci. 2013, 136, 242 10.1093/toxsci/kft189
    • (2013) Toxicol. Sci. , vol.136 , pp. 242
    • Chen, M.1    Hong, H.2    Fang, H.3    Kelly, R.4    Zhou, G.5    Borlak, J.6    Tong, W.7
  • 5
    • 39049167553 scopus 로고    scopus 로고
    • Computational Chemistry Approach for the Early Detection of Drug-Induced Idiosyncratic Liver Toxicity
    • Cruz-Monteagudo, M.; Cordeiro, M.; Borges, F. Computational Chemistry Approach for the Early Detection of Drug-Induced Idiosyncratic Liver Toxicity J. Comput. Chem. 2008, 29, 533-549 10.1002/jcc.20812
    • (2008) J. Comput. Chem. , vol.29 , pp. 533-549
    • Cruz-Monteagudo, M.1    Cordeiro, M.2    Borges, F.3
  • 6
    • 77951213013 scopus 로고    scopus 로고
    • Modeling Liver-Related Adverse Effects of Drugs Using K Nearest Neighbor Quantitative Structure- Activity Relationship Method
    • Rodgers, A. D.; Zhu, H.; Fourches, D.; Rusyn, I.; Tropsha, A. Modeling Liver-Related Adverse Effects of Drugs Using K Nearest Neighbor Quantitative Structure- Activity Relationship Method Chem. Res. Toxicol. 2010, 23, 724-732 10.1021/tx900451r
    • (2010) Chem. Res. Toxicol. , vol.23 , pp. 724-732
    • Rodgers, A.D.1    Zhu, H.2    Fourches, D.3    Rusyn, I.4    Tropsha, A.5
  • 7
    • 78649621062 scopus 로고    scopus 로고
    • A Predictive Ligand-Based Bayesian Model for Human Drug-Induced Liver Injury
    • Ekins, S.; Williams, A. J.; Xu, J. J. A Predictive Ligand-Based Bayesian Model for Human Drug-Induced Liver Injury Drug. Metab. Dispos. 2010, 38, 2302-2308 10.1124/dmd.110.035113
    • (2010) Drug. Metab. Dispos. , vol.38 , pp. 2302-2308
    • Ekins, S.1    Williams, A.J.2    Xu, J.J.3
  • 8
    • 80054917638 scopus 로고    scopus 로고
    • Mixed Learning Algorithms and Features Ensemble in Hepatotoxicity Prediction
    • Liew, C. Y.; Lim, Y. C.; Yap, C. W. Mixed Learning Algorithms and Features Ensemble in Hepatotoxicity Prediction J. Comput.-Aided Mol. Des. 2011, 25, 855-871 10.1007/s10822-011-9468-3
    • (2011) J. Comput.-Aided Mol. Des. , vol.25 , pp. 855-871
    • Liew, C.Y.1    Lim, Y.C.2    Yap, C.W.3
  • 9
    • 0037365123 scopus 로고    scopus 로고
    • Decision Forest: Combining the Predictions of Multiple Independent Decision Tree Models
    • Tong, W.; Hong, H.; Fang, H.; Xie, Q.; Perkins, R. Decision Forest: Combining the Predictions of Multiple Independent Decision Tree Models J. Chem. Inf. Model. 2003, 43, 525-531 10.1021/ci020058s
    • (2003) J. Chem. Inf. Model. , vol.43 , pp. 525-531
    • Tong, W.1    Hong, H.2    Fang, H.3    Xie, Q.4    Perkins, R.5
  • 10
    • 49449098592 scopus 로고    scopus 로고
    • Mold2, Molecular Descriptors from 2d Structures for Chemoinformatics and Toxicoinformatics
    • Hong, H.; Xie, Q.; Ge, W.; Qian, F.; Fang, H.; Shi, L.; Su, Z.; Perkins, R.; Tong, W. Mold2, Molecular Descriptors from 2d Structures for Chemoinformatics and Toxicoinformatics J. Chem. Inf. Model. 2008, 48, 1337-1344 10.1021/ci800038f
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1337-1344
    • Hong, H.1    Xie, Q.2    Ge, W.3    Qian, F.4    Fang, H.5    Shi, L.6    Su, Z.7    Perkins, R.8    Tong, W.9
  • 12
    • 33745805403 scopus 로고    scopus 로고
    • A Fast Learning Algorithm for Deep Belief Nets
    • Hinton, G. E.; Osindero, S.; Teh, Y.-W. A Fast Learning Algorithm for Deep Belief Nets Neural. Comput. 2006, 18, 1527-1554 10.1162/neco.2006.18.7.1527
    • (2006) Neural. Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 13
    • 69349090197 scopus 로고    scopus 로고
    • Learning Deep Architectures for AI
    • Bengio, Y. Learning Deep Architectures for AI J. Found. Trends. Mach. Learn. 2009, 2, 1-127 10.1561/2200000006
    • (2009) J. Found. Trends. Mach. Learn. , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 16
    • 84890478042 scopus 로고    scopus 로고
    • Building High-Level Features Using Large Scale Unsupervised Learning. in Acoustics, Speech and Signal Processing (ICASSP)
    • Le, Q. V. Building High-Level Features Using Large Scale Unsupervised Learning. In Acoustics, Speech and Signal Processing (ICASSP) IEEE International Conference on 2013, 8595-8598 10.1109/ICASSP.2013.6639343
    • (2013) IEEE International Conference on , pp. 8595-8598
    • Le, Q.V.1
  • 18
    • 84878539964 scopus 로고    scopus 로고
    • Application of Pretrained Deep Neural Networks to Large Vocabulary Speech Recognition
    • International Speech Communication Association: Baixas, France
    • Jaitly, N.; Nguyen, P.; Senior, A. W.; Vanhoucke, V. Application of Pretrained Deep Neural Networks to Large Vocabulary Speech Recognition. In INTERSPEECH; International Speech Communication Association: Baixas, France, 2012.
    • (2012) INTERSPEECH
    • Jaitly, N.1    Nguyen, P.2    Senior, A.W.3    Vanhoucke, V.4
  • 19
    • 84055222005 scopus 로고    scopus 로고
    • Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition. Audio, Speech, and Language Processing
    • Dahl, G. E.; Yu, D.; Deng, L.; Acero, A. Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition. Audio, Speech, and Language Processing IEEE Trans. Audio Speech Lang. Process. 2012, 20, 30-42 10.1109/TASL.2011.2134090
    • (2012) IEEE Trans. Audio Speech Lang. Process. , vol.20 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 21
    • 84890543083 scopus 로고    scopus 로고
    • Speech Recognition with Deep Recurrent Neural Networks. in Acoustics, Speech and Signal Processing (ICASSP)
    • Graves, A.; Mohamed, A.-r.; Hinton, G. Speech Recognition with Deep Recurrent Neural Networks. In Acoustics, Speech and Signal Processing (ICASSP) IEEE International Conference on, IEEE 2013, 6645-6649 10.1109/ICASSP.2013.6638947
    • (2013) IEEE International Conference On, IEEE , pp. 6645-6649
    • Graves, A.1    Mohamed, A.-R.2    Hinton, G.3
  • 25
    • 85032782045 scopus 로고    scopus 로고
    • Deep Learning and Its Applications to Signal and Information Processing [Exploratory Dsp]
    • Yu, D.; Deng, L. Deep Learning and Its Applications to Signal and Information Processing [Exploratory Dsp] Signal Processing Magazine, IEEE 2011, 28, 145-154 10.1109/MSP.2010.939038
    • (2011) Signal Processing Magazine, IEEE , vol.28 , pp. 145-154
    • Yu, D.1    Deng, L.2
  • 29
    • 84945571039 scopus 로고    scopus 로고
    • Deep Learning for Web Search and Natural Language Processing
    • Microsoft Corporation: Redmond, WA, MSR-TR-2015-7
    • Gao, J.; He, X.; Deng, L. Deep Learning for Web Search and Natural Language Processing. Microsoft Research Technical Report; Microsoft Corporation: Redmond, WA, 2015; MSR-TR-2015-7.
    • (2015) Microsoft Research Technical Report
    • Gao, J.1    He, X.2    Deng, L.3
  • 30
    • 0025957717 scopus 로고
    • Intelligence without Representation
    • Brooks, R. A. Intelligence without Representation Artificial intelligence 1991, 47, 139-159 10.1016/0004-3702(91)90053-M
    • (1991) Artificial Intelligence , vol.47 , pp. 139-159
    • Brooks, R.A.1
  • 32
    • 0002263996 scopus 로고
    • Convolutional Networks for Images, Speech, and Time Series
    • MIT Press: Cambridge, MA
    • LeCun, Y.; Bengio, Y. Convolutional Networks for Images, Speech, and Time Series. Handbook of Brain Theory and Neural Networks; MIT Press: Cambridge, MA, 1995; p 3361.
    • (1995) Handbook of Brain Theory and Neural Networks , pp. 3361
    • LeCun, Y.1    Bengio, Y.2
  • 33
    • 0030737097 scopus 로고    scopus 로고
    • Face Recognition: A Convolutional Neural-Network Approach
    • Lawrence, S.; Giles, C. L.; Tsoi, A. C.; Back, A. D. Face Recognition: A Convolutional Neural-Network Approach IEEE Trans. Neural Netw. 1997, 8, 98-113 10.1109/72.554195
    • (1997) IEEE Trans. Neural Netw. , vol.8 , pp. 98-113
    • Lawrence, S.1    Giles, C.L.2    Tsoi, A.C.3    Back, A.D.4
  • 35
    • 84930634156 scopus 로고    scopus 로고
    • Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation
    • MIT Press: Cambridge, MA
    • Tompson, J. J.; Jain, A.; LeCun, Y.; Bregler, C. Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, 2014; pp 1799-1807.
    • (2014) Advances in Neural Information Processing Systems , pp. 1799-1807
    • Tompson, J.J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 36
    • 0000442791 scopus 로고
    • Generalization of Back-Propagation to Recurrent Neural Networks
    • Pineda, F. J. Generalization of Back-Propagation to Recurrent Neural Networks Phys. Rev. Lett. 1987, 59, 2229-2232 10.1103/PhysRevLett.59.2229
    • (1987) Phys. Rev. Lett. , vol.59 , pp. 2229-2232
    • Pineda, F.J.1
  • 38
    • 84910651844 scopus 로고    scopus 로고
    • Deep Learning in Neural Networks: An Overview
    • Schmidhuber, J. Deep Learning in Neural Networks: An Overview Neural Networks 2015, 61, 85-117 10.1016/j.neunet.2014.09.003
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 39
    • 77956497661 scopus 로고    scopus 로고
    • Semi-Supervised Multi-Task Learning for Predicting Interactions between HIV-1 and Human Proteins
    • Qi, Y.; Tastan, O.; Carbonell, J. G.; Klein-Seetharaman, J.; Weston, J. Semi-Supervised Multi-Task Learning for Predicting Interactions between Hiv-1 and Human Proteins Bioinformatics 2010, 26, i645-i652 10.1093/bioinformatics/btq394
    • (2010) Bioinformatics , vol.26 , pp. i645-i652
    • Qi, Y.1    Tastan, O.2    Carbonell, J.G.3    Klein-Seetharaman, J.4    Weston, J.5
  • 41
    • 84867316765 scopus 로고    scopus 로고
    • Deep Architectures for Protein Contact Map Prediction
    • Di Lena, P.; Nagata, K.; Baldi, P. Deep Architectures for Protein Contact Map Prediction Bioinformatics 2012, 28, 2449-2457 10.1093/bioinformatics/bts475
    • (2012) Bioinformatics , vol.28 , pp. 2449-2457
    • Di Lena, P.1    Nagata, K.2    Baldi, P.3
  • 42
    • 84870415234 scopus 로고    scopus 로고
    • Predicting Protein Residue-Residue Contacts Using Deep Networks and Boosting
    • Eickholt, J.; Cheng, J. Predicting Protein Residue-Residue Contacts Using Deep Networks and Boosting Bioinformatics 2012, 28, 3066-3072 10.1093/bioinformatics/bts598
    • (2012) Bioinformatics , vol.28 , pp. 3066-3072
    • Eickholt, J.1    Cheng, J.2
  • 43
    • 84874545393 scopus 로고    scopus 로고
    • Dndisorder: Predicting Protein Disorder Using Boosting and Deep Networks
    • Eickholt, J.; Cheng, J. Dndisorder: Predicting Protein Disorder Using Boosting and Deep Networks BMC Bioinf. 2013, 14, 88 10.1186/1471-2105-14-88
    • (2013) BMC Bioinf. , vol.14 , pp. 88
    • Eickholt, J.1    Cheng, J.2
  • 44
    • 84880542260 scopus 로고    scopus 로고
    • Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules
    • Lusci, A.; Pollastri, G.; Baldi, P. Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules J. Chem. Inf. Model. 2013, 53, 1563-1575 10.1021/ci400187y
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 45
    • 84902462761 scopus 로고    scopus 로고
    • Deep Learning of the Tissue-Regulated Splicing Code
    • Leung, M. K.; Xiong, H. Y.; Lee, L. J.; Frey, B. J. Deep Learning of the Tissue-Regulated Splicing Code Bioinformatics 2014, 30, i121-i129 10.1093/bioinformatics/btu277
    • (2014) Bioinformatics , vol.30 , pp. i121-i129
    • Leung, M.K.1    Xiong, H.Y.2    Lee, L.J.3    Frey, B.J.4
  • 47
    • 84945573112 scopus 로고    scopus 로고
    • Modeling Epoxidation of Drug-Like Molecules with a Deep Machine Learning Network
    • Hughes, T. B.; Miller, G. P.; Swamidass, S. J. Modeling Epoxidation of Drug-Like Molecules with a Deep Machine Learning Network ACS Cent. Sci. 2015, 1, 168-180 10.1021/acscentsci.5b00131
    • (2015) ACS Cent. Sci. , vol.1 , pp. 168-180
    • Hughes, T.B.1    Miller, G.P.2    Swamidass, S.J.3
  • 48
    • 84923367417 scopus 로고    scopus 로고
    • Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships
    • Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships J. Chem. Inf. Model. 2015, 55, 263-274 10.1021/ci500747n
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3    Dahl, G.E.4    Svetnik, V.5
  • 49
    • 84938856283 scopus 로고    scopus 로고
    • Deep Learning for Regulatory Genomics
    • Park, Y.; Kellis, M. Deep Learning for Regulatory Genomics Nat. Biotechnol. 2015, 33, 825-826 10.1038/nbt.3313
    • (2015) Nat. Biotechnol. , vol.33 , pp. 825-826
    • Park, Y.1    Kellis, M.2
  • 50
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the Sequence Specificities of DNA-and RNA-Binding Proteins by Deep Learning
    • Alipanahi, B.; Delong, A.; Weirauch, M. T.; Frey, B. J. Predicting the Sequence Specificities of DNA-and Rna-Binding Proteins by Deep Learning Nat. Biotechnol. 2015, 33, 831-838 10.1038/nbt.3300
    • (2015) Nat. Biotechnol. , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 51
    • 84863863720 scopus 로고    scopus 로고
    • Online Learning and Generalization of Parts-Based Image Representations by Non-Negative Sparse Autoencoders
    • Lemme, A.; Reinhart, R. F.; Steil, J. J. Online Learning and Generalization of Parts-Based Image Representations by Non-Negative Sparse Autoencoders Neural Networks 2012, 33, 194-203 10.1016/j.neunet.2012.05.003
    • (2012) Neural Networks , vol.33 , pp. 194-203
    • Lemme, A.1    Reinhart, R.F.2    Steil, J.J.3
  • 53
    • 43449125882 scopus 로고    scopus 로고
    • How to Get More out of Molecular Fingerprints: Practical Tools for Microbial Ecology
    • Marzorati, M.; Wittebolle, L.; Boon, N.; Daffonchio, D.; Verstraete, W. How to Get More out of Molecular Fingerprints: Practical Tools for Microbial Ecology Environ. Microbiol. 2008, 10, 1571-1581 10.1111/j.1462-2920.2008.01572.x
    • (2008) Environ. Microbiol. , vol.10 , pp. 1571-1581
    • Marzorati, M.1    Wittebolle, L.2    Boon, N.3    Daffonchio, D.4    Verstraete, W.5
  • 54
    • 0000984584 scopus 로고
    • Novel Molecular Descriptor for Structure-Property Studies
    • Randid, M. Novel Molecular Descriptor for Structure-Property Studies Chem. Phys. Lett. 1993, 211, 478-483 10.1016/0009-2614(93)87094-J
    • (1993) Chem. Phys. Lett. , vol.211 , pp. 478-483
    • Randid, M.1
  • 56
    • 0018875681 scopus 로고
    • Line Bisection and Unilateral Visual Neglect in Patients with Neurologic Impairment
    • Schenkenberg, T.; Bradford, D.; Ajax, E. Line Bisection and Unilateral Visual Neglect in Patients with Neurologic Impairment Neurology 1980, 30, 509-509 10.1212/WNL.30.5.509
    • (1980) Neurology , vol.30 , pp. 509-509
    • Schenkenberg, T.1    Bradford, D.2    Ajax, E.3
  • 57
    • 80051665573 scopus 로고    scopus 로고
    • FDA-Approved Drug Labeling for the Study of Drug-Induced Liver Injury
    • Chen, M.; Vijay, V.; Shi, Q.; Liu, Z.; Fang, H.; Tong, W. FDA-Approved Drug Labeling for the Study of Drug-Induced Liver Injury Drug Discovery Today 2011, 16, 697-703 10.1016/j.drudis.2011.05.007
    • (2011) Drug Discovery Today , vol.16 , pp. 697-703
    • Chen, M.1    Vijay, V.2    Shi, Q.3    Liu, Z.4    Fang, H.5    Tong, W.6
  • 58
    • 77955362472 scopus 로고    scopus 로고
    • Developing Structure- Activity Relationships for the Prediction of Hepatotoxicity
    • Greene, N.; Fisk, L.; Naven, R. T.; Note, R. R.; Patel, M. L.; Pelletier, D. J. Developing Structure- Activity Relationships for the Prediction of Hepatotoxicity Chem. Res. Toxicol. 2010, 23, 1215-1222 10.1021/tx1000865
    • (2010) Chem. Res. Toxicol. , vol.23 , pp. 1215-1222
    • Greene, N.1    Fisk, L.2    Naven, R.T.3    Note, R.R.4    Patel, M.L.5    Pelletier, D.J.6
  • 59
  • 60
    • 0024640140 scopus 로고
    • An Algorithm for Drawing General Undirected Graphs. Inform
    • Kamada, T.; Kawai, S. An Algorithm for Drawing General Undirected Graphs. Inform Process. Lett. 1989, 31, 7-15 10.1016/0020-0190(89)90102-6
    • (1989) Process. Lett. , vol.31 , pp. 7-15
    • Kamada, T.1    Kawai, S.2
  • 62
    • 79953005609 scopus 로고    scopus 로고
    • Padel-Descriptor: An Open Source Software to Calculate Molecular Descriptors and Fingerprints
    • Yap, C. W. Padel-Descriptor: An Open Source Software to Calculate Molecular Descriptors and Fingerprints J. Comput. Chem. 2011, 32, 1466-1474 10.1002/jcc.21707
    • (2011) J. Comput. Chem. , vol.32 , pp. 1466-1474
    • Yap, C.W.1
  • 63
    • 84879605416 scopus 로고    scopus 로고
    • High Lipophilicity and High Daily Dose of Oral Medications Are Associated with Significant Risk for Drug-Induced Liver Injury
    • Chen, M.; Borlak, J.; Tong, W. High Lipophilicity and High Daily Dose of Oral Medications Are Associated with Significant Risk for Drug-Induced Liver Injury Hepatology 2013, 58, 388-396 10.1002/hep.26208
    • (2013) Hepatology , vol.58 , pp. 388-396
    • Chen, M.1    Borlak, J.2    Tong, W.3
  • 64
    • 84945560566 scopus 로고    scopus 로고
    • Daim: Diagnostic Accuracy of Classification Models
    • version 1.0.0
    • Potapov, S.; Adler, W.; Lausen, B. Daim: Diagnostic Accuracy of Classification Models. R Package, version 1.0.0; 2011.
    • (2011) R Package
    • Potapov, S.1    Adler, W.2    Lausen, B.3
  • 65
    • 0016772212 scopus 로고
    • Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme
    • Matthews, B. W. Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme Biochim. Biophys. Acta, Protein Struct. 1975, 405, 442-451 10.1016/0005-2795(75)90109-9
    • (1975) Biochim. Biophys. Acta, Protein Struct. , vol.405 , pp. 442-451
    • Matthews, B.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.