-
1
-
-
84856703096
-
Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae
-
1 Madhavan, A., Srivastava, A., Kondo, A., Bisaria, V.S., Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Crit. Rev. Biotechnol. 32 (2012), 22–48.
-
(2012)
Crit. Rev. Biotechnol.
, vol.32
, pp. 22-48
-
-
Madhavan, A.1
Srivastava, A.2
Kondo, A.3
Bisaria, V.S.4
-
2
-
-
84951112599
-
Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects
-
2 Jönsson, L.J., Martín, C., Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199 (2016), 103–112.
-
(2016)
Bioresour. Technol.
, vol.199
, pp. 103-112
-
-
Jönsson, L.J.1
Martín, C.2
-
3
-
-
84984611633
-
Modifying yeast tolerance to inhibitory conditions of ethanol production processes
-
3 Caspeta, L., Castillo, T., Nielsen, J., Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Front. Bioeng. Biotechnol., 3, 2015, 184.
-
(2015)
Front. Bioeng. Biotechnol.
, vol.3
, pp. 184
-
-
Caspeta, L.1
Castillo, T.2
Nielsen, J.3
-
4
-
-
84897953198
-
Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors
-
4 Piotrowski, J.S., Zhang, Y., Bates, D.M., Keating, D.H., Sato, T.K., Ong, I.M., Landick, R., Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors. Front. Microbiol., 5, 2014, 90.
-
(2014)
Front. Microbiol.
, vol.5
, pp. 90
-
-
Piotrowski, J.S.1
Zhang, Y.2
Bates, D.M.3
Keating, D.H.4
Sato, T.K.5
Ong, I.M.6
Landick, R.7
-
5
-
-
76749140881
-
Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae
-
5 Allen, S.A., Clark, W., McCaffery, J.M., Cai, Z., Lanctot, A., Slininger, P.J., Liu, Z.L., Gorsich, S.W., Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol. Biofuels., 3, 2010, 2.
-
(2010)
Biotechnol. Biofuels.
, vol.3
, pp. 2
-
-
Allen, S.A.1
Clark, W.2
McCaffery, J.M.3
Cai, Z.4
Lanctot, A.5
Slininger, P.J.6
Liu, Z.L.7
Gorsich, S.W.8
-
6
-
-
84887607047
-
Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system
-
6 Pérez-Gallardo, R.V., Briones, L.S., Díaz-Pérez, A.L., Gutiérrez, S., Rodríguez-Zavala, J.S., Campos-García, J., Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system. FEMS Yeast Res. 13 (2013), 804–819.
-
(2013)
FEMS Yeast Res.
, vol.13
, pp. 804-819
-
-
Pérez-Gallardo, R.V.1
Briones, L.S.2
Díaz-Pérez, A.L.3
Gutiérrez, S.4
Rodríguez-Zavala, J.S.5
Campos-García, J.6
-
7
-
-
84923102716
-
The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc
-
7 Wan, C., Zhang, M.M., Fang, Q., Xiong, L., Zhao, X.Q., Hasunuma, T., Bai, F.W., Kondo, A., The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc. Metallomics 7 (2015), 322–332.
-
(2015)
Metallomics
, vol.7
, pp. 322-332
-
-
Wan, C.1
Zhang, M.M.2
Fang, Q.3
Xiong, L.4
Zhao, X.Q.5
Hasunuma, T.6
Bai, F.W.7
Kondo, A.8
-
8
-
-
84975270811
-
Towards efficient bioethanol production from agricultural and forestry residues: exploration of unique natural microorganisms in combination with advanced strain engineering
-
8 Zhao, X.Q., Xiong, L., Zhang, M.M., Bai, F.W., Towards efficient bioethanol production from agricultural and forestry residues: exploration of unique natural microorganisms in combination with advanced strain engineering. Bioresour. Technol. 215 (2016), 84–91.
-
(2016)
Bioresour. Technol.
, vol.215
, pp. 84-91
-
-
Zhao, X.Q.1
Xiong, L.2
Zhang, M.M.3
Bai, F.W.4
-
9
-
-
84874338727
-
Enhanced bio-ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJ14
-
9 Shahsavarani, H., Hasegawa, D., Yokota, D., Sugiyama, M., Kaneko, Y., Boonchird, C., Harashima, S., Enhanced bio-ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJ14. J. Biosci. Bioeng. 115 (2013), 20–23.
-
(2013)
J. Biosci. Bioeng.
, vol.115
, pp. 20-23
-
-
Shahsavarani, H.1
Hasegawa, D.2
Yokota, D.3
Sugiyama, M.4
Kaneko, Y.5
Boonchird, C.6
Harashima, S.7
-
10
-
-
84977876620
-
Advances in mechanisms and modifications for rendering yeast thermotolerance
-
10 Gao, L., Liu, Y., Sun, H., Li, C., Zhao, Z., Liu, G., Advances in mechanisms and modifications for rendering yeast thermotolerance. J. Biosci. Bioeng. 121 (2016), 599–606.
-
(2016)
J. Biosci. Bioeng.
, vol.121
, pp. 599-606
-
-
Gao, L.1
Liu, Y.2
Sun, H.3
Li, C.4
Zhao, Z.5
Liu, G.6
-
11
-
-
84933514460
-
Yeast as a cell factory: current state and perspectives
-
11 Kavscek, M., Strazar, M., Curk, T., Natter, K., Petrovic, U., Yeast as a cell factory: current state and perspectives. Microb. Cell Fact., 14, 2015, 94.
-
(2015)
Microb. Cell Fact.
, vol.14
, pp. 94
-
-
Kavscek, M.1
Strazar, M.2
Curk, T.3
Natter, K.4
Petrovic, U.5
-
12
-
-
85006817709
-
Engineering sugar utilization and microbial tolerance toward lignocellulose conversion
-
12 Nieves, L.M., Panyon, L.A., Wang, X., Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front. Bioeng. Biotechnol., 3, 2015, 17.
-
(2015)
Front. Bioeng. Biotechnol.
, vol.3
, pp. 17
-
-
Nieves, L.M.1
Panyon, L.A.2
Wang, X.3
-
13
-
-
70349775063
-
Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production
-
13 Zhao, X.Q., Bai, F.W., Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J. Biotechnol. 144 (2009), 23–30.
-
(2009)
J. Biotechnol.
, vol.144
, pp. 23-30
-
-
Zhao, X.Q.1
Bai, F.W.2
-
14
-
-
34548388010
-
Ethanol tolerance and the variation of plasma membrane composition of yeast floc populations with different size distribution
-
14 Lei, J.J., Zhao, X.Q., Ge, X.M., Bai, F.W., Ethanol tolerance and the variation of plasma membrane composition of yeast floc populations with different size distribution. J. Biotechnol. 131 (2007), 270–275.
-
(2007)
J. Biotechnol.
, vol.131
, pp. 270-275
-
-
Lei, J.J.1
Zhao, X.Q.2
Ge, X.M.3
Bai, F.W.4
-
15
-
-
57349095507
-
Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation
-
15 Zhao, X.Q., Xue, C., Ge, X.M., Yuan, W.J., Wang, J.Y., Bai, F.W., Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation. J. Biotechnol. 139 (2009), 55–60.
-
(2009)
J. Biotechnol.
, vol.139
, pp. 55-60
-
-
Zhao, X.Q.1
Xue, C.2
Ge, X.M.3
Yuan, W.J.4
Wang, J.Y.5
Bai, F.W.6
-
16
-
-
55649083541
-
FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast
-
16 Smukalla, S., Caldara, M., Pochet, N., Beauvais, A., Guadagnini, S., Yan, C., Vinces, M.D., Jansen, A., Prevost, M.C., Latgé, J.P., other 3 authors, FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 14 (2008), 726–737.
-
(2008)
Cell
, vol.14
, pp. 726-737
-
-
Smukalla, S.1
Caldara, M.2
Pochet, N.3
Beauvais, A.4
Guadagnini, S.5
Yan, C.6
Vinces, M.D.7
Jansen, A.8
Prevost, M.C.9
Latgé, J.P.10
other 3 authors11
-
17
-
-
84908299692
-
Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production
-
17 Westman, J.O., Mapelli, V., Taherzadeh, M.J., Franzén, C.J., Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production. Appl. Environ. Microbiol. 80 (2014), 6908–6918.
-
(2014)
Appl. Environ. Microbiol.
, vol.80
, pp. 6908-6918
-
-
Westman, J.O.1
Mapelli, V.2
Taherzadeh, M.J.3
Franzén, C.J.4
-
18
-
-
84926100303
-
Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose
-
18 Ismail, K.S.K., Sakamoto, T., Hasunuma, T., Zhao, X.Q., Kondo, A., Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose. Biotechnol. J. 9 (2014), 1519–1525.
-
(2014)
Biotechnol. J.
, vol.9
, pp. 1519-1525
-
-
Ismail, K.S.K.1
Sakamoto, T.2
Hasunuma, T.3
Zhao, X.Q.4
Kondo, A.5
-
19
-
-
84883819175
-
Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation
-
19 Wang, L., Zhao, X.Q., Xue, C., Bai, F.W., Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation. Biotechnol. Biofuels, 6, 2013, 133.
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 133
-
-
Wang, L.1
Zhao, X.Q.2
Xue, C.3
Bai, F.W.4
-
20
-
-
85030453277
-
Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEX pretreated corn stover
-
20 Jin, M., Sarks, C., Gunawan, C., Bice, B.D., Simonett, S.P., Avanasi Narasimhan, R., Willis, L.B., Dale, B.E., Balan, V., Sato, T.K., Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEX pretreated corn stover. Biotechnol. Biofuels, 6, 2013, 108.
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 108
-
-
Jin, M.1
Sarks, C.2
Gunawan, C.3
Bice, B.D.4
Simonett, S.P.5
Avanasi Narasimhan, R.6
Willis, L.B.7
Dale, B.E.8
Balan, V.9
Sato, T.K.10
-
21
-
-
84961275709
-
Screening of natural yeast isolates under the effects of stresses associated with second-generation biofuel production
-
21 Dubey, R., Jakeer, S., Gaur, N.A., Screening of natural yeast isolates under the effects of stresses associated with second-generation biofuel production. J. Biosci. Bioeng. 121 (2015), 509–516.
-
(2015)
J. Biosci. Bioeng.
, vol.121
, pp. 509-516
-
-
Dubey, R.1
Jakeer, S.2
Gaur, N.A.3
-
22
-
-
84941975746
-
Stress tolerance variations in Saccharomyces cerevisiae strains from diverse ecological sources and geographical locations
-
22 Zheng, Y.L., Wang, S.A., Stress tolerance variations in Saccharomyces cerevisiae strains from diverse ecological sources and geographical locations. PLoS One, 10, 2015, e0133889.
-
(2015)
PLoS One
, vol.10
, pp. e0133889
-
-
Zheng, Y.L.1
Wang, S.A.2
-
23
-
-
84892462175
-
Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass
-
23 Sato, T.K., Liu, T., Parreiras, L.S., Williams, D.L., Wohlbach, D.J., Bice, B.D., Ong, I.M., Breuer, R.J., Qin, L., Busalacchi, D., other 3 authors, Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass. Appl. Environ. Microbiol. 80 (2014), 540–554.
-
(2014)
Appl. Environ. Microbiol.
, vol.80
, pp. 540-554
-
-
Sato, T.K.1
Liu, T.2
Parreiras, L.S.3
Williams, D.L.4
Wohlbach, D.J.5
Bice, B.D.6
Ong, I.M.7
Breuer, R.J.8
Qin, L.9
Busalacchi, D.10
other 3 authors11
-
24
-
-
84922781835
-
Development of industrial yeast strain with improved acid-and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating
-
24 Mitsumasu, K., Liu, Z.S., Tang, Y.Q., Akamatsu, T., Taguchi, H., Kida, K., Development of industrial yeast strain with improved acid-and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating. J. Biosci. Bioeng. 118 (2014), 689–695.
-
(2014)
J. Biosci. Bioeng.
, vol.118
, pp. 689-695
-
-
Mitsumasu, K.1
Liu, Z.S.2
Tang, Y.Q.3
Akamatsu, T.4
Taguchi, H.5
Kida, K.6
-
25
-
-
84940885663
-
Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae
-
25 Ohta, E., Nakayama, Y., Mukai, Y., Bamba, T., Fukusaki, E., Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae. J. Biosci. Bioeng. 121 (2015), 399–405.
-
(2015)
J. Biosci. Bioeng.
, vol.121
, pp. 399-405
-
-
Ohta, E.1
Nakayama, Y.2
Mukai, Y.3
Bamba, T.4
Fukusaki, E.5
-
26
-
-
85010277048
-
Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance
-
26 Snoek, T., Nicolino, M.P., Van den Bremt, S., Mertens, S., Saels, V., Verplaetse, A., Steensels, J., Verstrepen, K.J., Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance. Biotechnol. Biofuels, 26, 2015, 32.
-
(2015)
Biotechnol. Biofuels
, vol.26
, pp. 32
-
-
Snoek, T.1
Nicolino, M.P.2
Van den Bremt, S.3
Mertens, S.4
Saels, V.5
Verplaetse, A.6
Steensels, J.7
Verstrepen, K.J.8
-
27
-
-
84949649785
-
Improved stress resistance and ethanol production by segmental haploidization of the diploid genome in Saccharomyces cerevisiae
-
27 Kaboli, S., Miyamoto, T., Sunada, K., Sasano, Y., Sugiyama, M., Harashima, S., Improved stress resistance and ethanol production by segmental haploidization of the diploid genome in Saccharomyces cerevisiae. J. Biosci. Bioeng. 121 (2016), 638–644.
-
(2016)
J. Biosci. Bioeng.
, vol.121
, pp. 638-644
-
-
Kaboli, S.1
Miyamoto, T.2
Sunada, K.3
Sasano, Y.4
Sugiyama, M.5
Harashima, S.6
-
28
-
-
84937637609
-
Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance
-
28 Lee, Y., Nasution, O., Choi, E., Choi, I., Kim, W., Choi, W., Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance. Appl. Microbiol. Biotechnol. 99 (2015), 6391–6403.
-
(2015)
Appl. Microbiol. Biotechnol.
, vol.99
, pp. 6391-6403
-
-
Lee, Y.1
Nasution, O.2
Choi, E.3
Choi, I.4
Kim, W.5
Choi, W.6
-
29
-
-
84953636982
-
Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids
-
29 Hasunuma, T., Sakamoto, T., Kondo, A., Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids. Appl. Microbiol. Biotechnol. 100 (2016), 1027–1038.
-
(2016)
Appl. Microbiol. Biotechnol.
, vol.100
, pp. 1027-1038
-
-
Hasunuma, T.1
Sakamoto, T.2
Kondo, A.3
-
30
-
-
77958135565
-
Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
-
30 Mira, N.P., Palma, M., Guerreiro, J.F., Sá-Correia, I., Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb. Cell Fact., 9, 2010, 79.
-
(2010)
Microb. Cell Fact.
, vol.9
, pp. 79
-
-
Mira, N.P.1
Palma, M.2
Guerreiro, J.F.3
Sá-Correia, I.4
-
31
-
-
80052614048
-
Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae
-
31 Kim, H.S., Kim, N.R., Yang, J., Choi, W., Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 91 (2011), 1159–1172.
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.91
, pp. 1159-1172
-
-
Kim, H.S.1
Kim, N.R.2
Yang, J.3
Choi, W.4
-
32
-
-
79251587164
-
Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance
-
32 Lewis, J.A., Elkon, I.M., Mcgee, M.A., Higbee, A.J., Gasch, A.P., Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance. Genetics 186 (2010), 1197–1205.
-
(2010)
Genetics
, vol.186
, pp. 1197-1205
-
-
Lewis, J.A.1
Elkon, I.M.2
Mcgee, M.A.3
Higbee, A.J.4
Gasch, A.P.5
-
33
-
-
84954025882
-
Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae
-
33 Meijnen, J.P., Randazzo, P., Foulquié-Moreno, M.R., van den Brink, J., Vandecruys, P., Stojiljkovic, M., Dumortier, F., Zalar, P., Boekhout, T., Gunde-Cimerman, N., other 3 authors, Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae. Biotechnol. Biofuels, 9, 2016, 5.
-
(2016)
Biotechnol. Biofuels
, vol.9
, pp. 5
-
-
Meijnen, J.P.1
Randazzo, P.2
Foulquié-Moreno, M.R.3
van den Brink, J.4
Vandecruys, P.5
Stojiljkovic, M.6
Dumortier, F.7
Zalar, P.8
Boekhout, T.9
Gunde-Cimerman, N.10
other 3 authors11
-
34
-
-
84953776288
-
Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae
-
34 Chen, Y.Y., Sheng, J.Y., Jiang, T., Stevens, J., Feng, X.Y., Wei, N., Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. Biotechnol. Biofuels, 9, 2016, 9.
-
(2016)
Biotechnol. Biofuels
, vol.9
, pp. 9
-
-
Chen, Y.Y.1
Sheng, J.Y.2
Jiang, T.3
Stevens, J.4
Feng, X.Y.5
Wei, N.6
-
35
-
-
84944155176
-
Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance
-
35 Ding, J., Holzwarth, G., Penner, M.H., Patton-Vogt, J., Bakalinsky, A.T., Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance. FEMS Yeast Res. 362 (2015), 1–7.
-
(2015)
FEMS Yeast Res.
, vol.362
, pp. 1-7
-
-
Ding, J.1
Holzwarth, G.2
Penner, M.H.3
Patton-Vogt, J.4
Bakalinsky, A.T.5
-
36
-
-
84925461188
-
Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae
-
36 Takabatake, A., Kawazoe, N., Izawa, S., Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 99 (2015), 2805–2814.
-
(2015)
Appl. Microbiol. Biotechnol.
, vol.99
, pp. 2805-2814
-
-
Takabatake, A.1
Kawazoe, N.2
Izawa, S.3
-
37
-
-
84950152281
-
The Saccharomyces cerevisiae poly (A) binding protein Pab1 as a target for eliciting stress tolerant phenotypes
-
37 Martani, F., Marano, F., Bertacchi, S., Porro, D., Branduardi, P., The Saccharomyces cerevisiae poly (A) binding protein Pab1 as a target for eliciting stress tolerant phenotypes. Sci. Rep., 5, 2015, 18318.
-
(2015)
Sci. Rep.
, vol.5
, pp. 18318
-
-
Martani, F.1
Marano, F.2
Bertacchi, S.3
Porro, D.4
Branduardi, P.5
-
38
-
-
84941995652
-
PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress
-
38 Ding, J., Holzwarth, G., Bradford, C.S., Cooley, B., Yoshinaga, A.S., Patton-Vogt, J., Abeliovich, H., Penner, M.H., Bakalinsky, A.T., PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress. Appl. Microbiol. Biotechnol. 99 (2015), 8667–8880.
-
(2015)
Appl. Microbiol. Biotechnol.
, vol.99
, pp. 8667-8880
-
-
Ding, J.1
Holzwarth, G.2
Bradford, C.S.3
Cooley, B.4
Yoshinaga, A.S.5
Patton-Vogt, J.6
Abeliovich, H.7
Penner, M.H.8
Bakalinsky, A.T.9
-
39
-
-
84951566814
-
Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1
-
39 Zhang, M.M., Zhao, X.Q., Cheng, C., Bai, F.W., Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1. Biotechnol. J. 10 (2015), 1903–1911.
-
(2015)
Biotechnol. J.
, vol.10
, pp. 1903-1911
-
-
Zhang, M.M.1
Zhao, X.Q.2
Cheng, C.3
Bai, F.W.4
-
40
-
-
84925503038
-
Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance
-
40 Ma, C., Wei, X.W., Sun, C., Zhang, F., Xu, J.R., Zhao, X.Q., Bai, F.W., Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance. Appl. Microbiol. Biotechnol. 99 (2015), 2441–2449.
-
(2015)
Appl. Microbiol. Biotechnol.
, vol.99
, pp. 2441-2449
-
-
Ma, C.1
Wei, X.W.2
Sun, C.3
Zhang, F.4
Xu, J.R.5
Zhao, X.Q.6
Bai, F.W.7
-
41
-
-
84962206825
-
Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering
-
41 Chen, Y.Y., Stabryla, L., Wei, N., Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering. Appl. Environ. Microbiol. 82 (2016), 2156–2166.
-
(2016)
Appl. Environ. Microbiol.
, vol.82
, pp. 2156-2166
-
-
Chen, Y.Y.1
Stabryla, L.2
Wei, N.3
-
42
-
-
77955853206
-
Yeast flocculation and its biotechnological relevance
-
42 Bauer, F.F., Govender, P., Bester, M.C., Yeast flocculation and its biotechnological relevance. Appl. Microbiol. Biotechnol. 88 (2010), 31–39.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.88
, pp. 31-39
-
-
Bauer, F.F.1
Govender, P.2
Bester, M.C.3
-
43
-
-
70349781700
-
Yeast flocculation: new story in fuel ethanol production
-
43 Zhao, X.Q., Bai, F.W., Yeast flocculation: new story in fuel ethanol production. Biotechnol. Adv. 27 (2009), 849–856.
-
(2009)
Biotechnol. Adv.
, vol.27
, pp. 849-856
-
-
Zhao, X.Q.1
Bai, F.W.2
-
44
-
-
84870692544
-
Exploration of a natural reservoir of flocculating genes from various Saccharomyces cerevisiae strains and improved ethanol fermentation using stable genetically engineered flocculating yeast strains
-
44 Zhao, X.Q., Li, Q., He, L.Y., Li, F., Que, W.W., Bai, F.W., Exploration of a natural reservoir of flocculating genes from various Saccharomyces cerevisiae strains and improved ethanol fermentation using stable genetically engineered flocculating yeast strains. Process Biochem. 47 (2012), 1612–1619.
-
(2012)
Process Biochem.
, vol.47
, pp. 1612-1619
-
-
Zhao, X.Q.1
Li, Q.2
He, L.Y.3
Li, F.4
Que, W.W.5
Bai, F.W.6
-
45
-
-
84867714718
-
Engineering industrial Saccharomyces cerevisiae strain with the FLO1-derivative gene isolated from the flocculating yeast SPSC01 for constitutive flocculation and fuel ethanol production
-
45 He, L.Y., Zhao, X.Q., Bai, F.W., Engineering industrial Saccharomyces cerevisiae strain with the FLO1-derivative gene isolated from the flocculating yeast SPSC01 for constitutive flocculation and fuel ethanol production. Appl. Energy 100 (2012), 33–40.
-
(2012)
Appl. Energy
, vol.100
, pp. 33-40
-
-
He, L.Y.1
Zhao, X.Q.2
Bai, F.W.3
-
46
-
-
24944573941
-
Continuous ethanol production using self-flocculating yeast in a cascade of fermenters
-
46 Xu, T.J., Zhao, X.Q., Bai, F.W., Continuous ethanol production using self-flocculating yeast in a cascade of fermenters. Enzyme Microb. Technol. 37 (2005), 634–640.
-
(2005)
Enzyme Microb. Technol.
, vol.37
, pp. 634-640
-
-
Xu, T.J.1
Zhao, X.Q.2
Bai, F.W.3
-
47
-
-
84960420971
-
Effects of cell flocculation and zinc sulfate addition on acetic acid stress tolerance of Saccharomyces cerevisiae
-
47 Cheng, C., Zhao, X.Q., Bai, F.W., Effects of cell flocculation and zinc sulfate addition on acetic acid stress tolerance of Saccharomyces cerevisiae. Chin. J. Appl. Environ. 22 (2016), 0116–0119.
-
(2016)
Chin. J. Appl. Environ.
, vol.22
, pp. 0116-0119
-
-
Cheng, C.1
Zhao, X.Q.2
Bai, F.W.3
-
48
-
-
84936083862
-
Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrial Saccharomyces cerevisiae strain to combined heat and hydrolysate stress
-
48 Wallace-Salinas, V., Brink, D.P., Ahrén, D., Gorwa-Grauslund, M.F., Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrial Saccharomyces cerevisiae strain to combined heat and hydrolysate stress. BMC Genomics, 16, 2015, 514.
-
(2015)
BMC Genomics
, vol.16
, pp. 514
-
-
Wallace-Salinas, V.1
Brink, D.P.2
Ahrén, D.3
Gorwa-Grauslund, M.F.4
-
49
-
-
84963596182
-
Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae
-
49 Cheng, C., Zhao, X.Q., Zhang, M.M., Bai, F.W., Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae. FEMS Yeast Res., 16, 2016, fow010.
-
(2016)
FEMS Yeast Res.
, vol.16
, pp. fow010
-
-
Cheng, C.1
Zhao, X.Q.2
Zhang, M.M.3
Bai, F.W.4
-
50
-
-
19544376842
-
Online monitoring and characterization of flocculating yeast cell flocs during continuous ethanol fermentation
-
50 Ge, X.M., Zhao, X.Q., Bai, F.W., Online monitoring and characterization of flocculating yeast cell flocs during continuous ethanol fermentation. Biotechnol. Bioeng. 90 (2005), 523–531.
-
(2005)
Biotechnol. Bioeng.
, vol.90
, pp. 523-531
-
-
Ge, X.M.1
Zhao, X.Q.2
Bai, F.W.3
-
51
-
-
84855463014
-
Ethanol-induced yeast flocculation directed by the promoter of TPS1encoding trehalose-6-phosphate synthase 1 for efficient ethanol production
-
51 Li, Q., Zhao, X.Q., Chang, A.K., Zhang, Q.M., Bai, F.W., Ethanol-induced yeast flocculation directed by the promoter of TPS1encoding trehalose-6-phosphate synthase 1 for efficient ethanol production. Metab. Eng. 14 (2012), 1–8.
-
(2012)
Metab. Eng.
, vol.14
, pp. 1-8
-
-
Li, Q.1
Zhao, X.Q.2
Chang, A.K.3
Zhang, Q.M.4
Bai, F.W.5
-
52
-
-
84859510658
-
Zinc and yeast stress tolerance: micronutrient plays a big role
-
52 Zhao, X.Q., Bai, F.W., Zinc and yeast stress tolerance: micronutrient plays a big role. J. Biotechnol. 158 (2012), 176–183.
-
(2012)
J. Biotechnol.
, vol.158
, pp. 176-183
-
-
Zhao, X.Q.1
Bai, F.W.2
-
53
-
-
0041629125
-
2+ via reduction in plasma membrane permeability
-
2+ via reduction in plasma membrane permeability. Biotechnol. Lett. 25 (2003), 1191–1194.
-
(2003)
Biotechnol. Lett.
, vol.25
, pp. 1191-1194
-
-
Hu, C.K.1
Bai, F.W.2
An, L.J.3
-
54
-
-
0030323039
-
Enhancement of yeast ethanol tolerance by calcium and magnesium
-
54 Ciesarová, Z., Smogrovicová, D., Dömény, Z., Enhancement of yeast ethanol tolerance by calcium and magnesium. Folia Microbiol. (Praha) 41 (1996), 485–488.
-
(1996)
Folia Microbiol. (Praha)
, vol.41
, pp. 485-488
-
-
Ciesarová, Z.1
Smogrovicová, D.2
Dömény, Z.3
-
55
-
-
70350520507
-
Insufficiency of copper ion homeostasis causes freeze–thaw injury of yeast cells as revealed by indirect gene expression analysis
-
55 Takahashi, S., Ando, A., Takagi, H., Shima, J., Insufficiency of copper ion homeostasis causes freeze–thaw injury of yeast cells as revealed by indirect gene expression analysis. Appl. Environ. Microbiol. 21 (2009), 6706–6711.
-
(2009)
Appl. Environ. Microbiol.
, vol.21
, pp. 6706-6711
-
-
Takahashi, S.1
Ando, A.2
Takagi, H.3
Shima, J.4
-
56
-
-
80455163152
-
The oxidative stress of zinc deficiency
-
56 Eide, D.J., The oxidative stress of zinc deficiency. Metallomics 3 (2011), 1124–1129.
-
(2011)
Metallomics
, vol.3
, pp. 1124-1129
-
-
Eide, D.J.1
-
57
-
-
77949410313
-
Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions
-
57 Xue, C., Zhao, X.Q., Bai, F.W., Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions. Biotechnol. Bioeng. 105 (2010), 935–944.
-
(2010)
Biotechnol. Bioeng.
, vol.105
, pp. 935-944
-
-
Xue, C.1
Zhao, X.Q.2
Bai, F.W.3
-
58
-
-
84908344843
-
Yeast alcohol dehydrogenase structure and catalysis
-
58 Raj, S.B., Ramaswamy, S., Plapp, B.V., Yeast alcohol dehydrogenase structure and catalysis. Biochemistry 53 (2014), 5791–5803.
-
(2014)
Biochemistry
, vol.53
, pp. 5791-5803
-
-
Raj, S.B.1
Ramaswamy, S.2
Plapp, B.V.3
-
59
-
-
84875798056
-
Effect of zinc supplementation on acetone–butanol–ethanol fermentation by Clostridium acetobutylicum
-
59 Wu, Y.D., Xue, C., Chen, L.J., Bai, F.W., Effect of zinc supplementation on acetone–butanol–ethanol fermentation by Clostridium acetobutylicum. J. Biotechnol. 165 (2013), 18–21.
-
(2013)
J. Biotechnol.
, vol.165
, pp. 18-21
-
-
Wu, Y.D.1
Xue, C.2
Chen, L.J.3
Bai, F.W.4
-
60
-
-
84947746767
-
Transcriptional analysis of micronutrient zinc-associated response for enhanced carbohydrate utilization and earlier solventogenesis in Clostridium acetobutylicum
-
60 Wu, Y.D., Xue, C., Chen, L.J., Wan, H., Bai, F.W., Transcriptional analysis of micronutrient zinc-associated response for enhanced carbohydrate utilization and earlier solventogenesis in Clostridium acetobutylicum. Sci. Rep., 5, 2015, 16598.
-
(2015)
Sci. Rep.
, vol.5
, pp. 16598
-
-
Wu, Y.D.1
Xue, C.2
Chen, L.J.3
Wan, H.4
Bai, F.W.5
-
61
-
-
77953022341
-
A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation
-
61 Nicolaou, S.A., Gaida, S.M., Papoutsakis, E.T., A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab. Eng. 12 (2010), 307–331.
-
(2010)
Metab. Eng.
, vol.12
, pp. 307-331
-
-
Nicolaou, S.A.1
Gaida, S.M.2
Papoutsakis, E.T.3
-
62
-
-
84886411673
-
Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains
-
62 Bleoanca, I., Silva, A.R.C., Pimentel, C., Rodrigues-Pousada, C., de Andrade Menezes, R., Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains. J. Biosci. Bioeng. 116 (2013), 697–705.
-
(2013)
J. Biosci. Bioeng.
, vol.116
, pp. 697-705
-
-
Bleoanca, I.1
Silva, A.R.C.2
Pimentel, C.3
Rodrigues-Pousada, C.4
de Andrade Menezes, R.5
-
63
-
-
84890116560
-
Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae
-
63 Nguyen, T.T.M., Iwaki, A., Ohya, Y., Izawa, S., Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J. Biosci. Bioeng. 117 (2014), 33–38.
-
(2014)
J. Biosci. Bioeng.
, vol.117
, pp. 33-38
-
-
Nguyen, T.T.M.1
Iwaki, A.2
Ohya, Y.3
Izawa, S.4
-
64
-
-
84947598027
-
Rapid prototyping of microbial cell factories via genome-scale engineering
-
64 Si, T., Xiao, H., Zhao, H., Rapid prototyping of microbial cell factories via genome-scale engineering. Biotechnol. Adv. 33 (2015), 1420–1432.
-
(2015)
Biotechnol. Adv.
, vol.33
, pp. 1420-1432
-
-
Si, T.1
Xiao, H.2
Zhao, H.3
-
65
-
-
84944745976
-
TALENs-assisted multiplex editing for accelerated genome evolution to improve yeast phenotypes
-
65 Zhang, G., Lin, Y., Qi, X., Li, L., Wang, Q., Ma, Y., TALENs-assisted multiplex editing for accelerated genome evolution to improve yeast phenotypes. ACS Synth. Biol. 4 (2015), 1101–1111.
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 1101-1111
-
-
Zhang, G.1
Lin, Y.2
Qi, X.3
Li, L.4
Wang, Q.5
Ma, Y.6
-
66
-
-
84942368560
-
Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR
-
66 Tsai, C.S., Kong, I.I., Lesmana, A., Million, G., Zhang, G.C., Kim, S.R., Jin, Y.S., Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR. Biotechnol. Bioeng. 112 (2015), 2406–2411.
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 2406-2411
-
-
Tsai, C.S.1
Kong, I.I.2
Lesmana, A.3
Million, G.4
Zhang, G.C.5
Kim, S.R.6
Jin, Y.S.7
|