메뉴 건너뛰기




Volumn 123, Issue 2, 2017, Pages 141-146

Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation

Author keywords

Biofuels production; Cell flocculation; Metabolic engineering; Saccharomyces cerevisiae; Yeast stress tolerance; Zinc supplementation

Indexed keywords

ACETIC ACID; BIOFUELS; CELLS; CYTOLOGY; ELASTICITY; ETHANOL; FLOCCULATION; METABOLIC ENGINEERING; METABOLISM; ORGANIC ACIDS; PH; YEAST; ZINC;

EID: 84994187941     PISSN: 13891723     EISSN: 13474421     Source Type: Journal    
DOI: 10.1016/j.jbiosc.2016.07.021     Document Type: Review
Times cited : (29)

References (66)
  • 1
    • 84856703096 scopus 로고    scopus 로고
    • Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae
    • 1 Madhavan, A., Srivastava, A., Kondo, A., Bisaria, V.S., Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Crit. Rev. Biotechnol. 32 (2012), 22–48.
    • (2012) Crit. Rev. Biotechnol. , vol.32 , pp. 22-48
    • Madhavan, A.1    Srivastava, A.2    Kondo, A.3    Bisaria, V.S.4
  • 2
    • 84951112599 scopus 로고    scopus 로고
    • Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects
    • 2 Jönsson, L.J., Martín, C., Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199 (2016), 103–112.
    • (2016) Bioresour. Technol. , vol.199 , pp. 103-112
    • Jönsson, L.J.1    Martín, C.2
  • 3
    • 84984611633 scopus 로고    scopus 로고
    • Modifying yeast tolerance to inhibitory conditions of ethanol production processes
    • 3 Caspeta, L., Castillo, T., Nielsen, J., Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Front. Bioeng. Biotechnol., 3, 2015, 184.
    • (2015) Front. Bioeng. Biotechnol. , vol.3 , pp. 184
    • Caspeta, L.1    Castillo, T.2    Nielsen, J.3
  • 6
    • 84887607047 scopus 로고    scopus 로고
    • Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system
    • 6 Pérez-Gallardo, R.V., Briones, L.S., Díaz-Pérez, A.L., Gutiérrez, S., Rodríguez-Zavala, J.S., Campos-García, J., Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system. FEMS Yeast Res. 13 (2013), 804–819.
    • (2013) FEMS Yeast Res. , vol.13 , pp. 804-819
    • Pérez-Gallardo, R.V.1    Briones, L.S.2    Díaz-Pérez, A.L.3    Gutiérrez, S.4    Rodríguez-Zavala, J.S.5    Campos-García, J.6
  • 7
    • 84923102716 scopus 로고    scopus 로고
    • The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc
    • 7 Wan, C., Zhang, M.M., Fang, Q., Xiong, L., Zhao, X.Q., Hasunuma, T., Bai, F.W., Kondo, A., The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc. Metallomics 7 (2015), 322–332.
    • (2015) Metallomics , vol.7 , pp. 322-332
    • Wan, C.1    Zhang, M.M.2    Fang, Q.3    Xiong, L.4    Zhao, X.Q.5    Hasunuma, T.6    Bai, F.W.7    Kondo, A.8
  • 8
    • 84975270811 scopus 로고    scopus 로고
    • Towards efficient bioethanol production from agricultural and forestry residues: exploration of unique natural microorganisms in combination with advanced strain engineering
    • 8 Zhao, X.Q., Xiong, L., Zhang, M.M., Bai, F.W., Towards efficient bioethanol production from agricultural and forestry residues: exploration of unique natural microorganisms in combination with advanced strain engineering. Bioresour. Technol. 215 (2016), 84–91.
    • (2016) Bioresour. Technol. , vol.215 , pp. 84-91
    • Zhao, X.Q.1    Xiong, L.2    Zhang, M.M.3    Bai, F.W.4
  • 9
    • 84874338727 scopus 로고    scopus 로고
    • Enhanced bio-ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJ14
    • 9 Shahsavarani, H., Hasegawa, D., Yokota, D., Sugiyama, M., Kaneko, Y., Boonchird, C., Harashima, S., Enhanced bio-ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJ14. J. Biosci. Bioeng. 115 (2013), 20–23.
    • (2013) J. Biosci. Bioeng. , vol.115 , pp. 20-23
    • Shahsavarani, H.1    Hasegawa, D.2    Yokota, D.3    Sugiyama, M.4    Kaneko, Y.5    Boonchird, C.6    Harashima, S.7
  • 10
    • 84977876620 scopus 로고    scopus 로고
    • Advances in mechanisms and modifications for rendering yeast thermotolerance
    • 10 Gao, L., Liu, Y., Sun, H., Li, C., Zhao, Z., Liu, G., Advances in mechanisms and modifications for rendering yeast thermotolerance. J. Biosci. Bioeng. 121 (2016), 599–606.
    • (2016) J. Biosci. Bioeng. , vol.121 , pp. 599-606
    • Gao, L.1    Liu, Y.2    Sun, H.3    Li, C.4    Zhao, Z.5    Liu, G.6
  • 12
    • 85006817709 scopus 로고    scopus 로고
    • Engineering sugar utilization and microbial tolerance toward lignocellulose conversion
    • 12 Nieves, L.M., Panyon, L.A., Wang, X., Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front. Bioeng. Biotechnol., 3, 2015, 17.
    • (2015) Front. Bioeng. Biotechnol. , vol.3 , pp. 17
    • Nieves, L.M.1    Panyon, L.A.2    Wang, X.3
  • 13
    • 70349775063 scopus 로고    scopus 로고
    • Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production
    • 13 Zhao, X.Q., Bai, F.W., Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J. Biotechnol. 144 (2009), 23–30.
    • (2009) J. Biotechnol. , vol.144 , pp. 23-30
    • Zhao, X.Q.1    Bai, F.W.2
  • 14
    • 34548388010 scopus 로고    scopus 로고
    • Ethanol tolerance and the variation of plasma membrane composition of yeast floc populations with different size distribution
    • 14 Lei, J.J., Zhao, X.Q., Ge, X.M., Bai, F.W., Ethanol tolerance and the variation of plasma membrane composition of yeast floc populations with different size distribution. J. Biotechnol. 131 (2007), 270–275.
    • (2007) J. Biotechnol. , vol.131 , pp. 270-275
    • Lei, J.J.1    Zhao, X.Q.2    Ge, X.M.3    Bai, F.W.4
  • 15
    • 57349095507 scopus 로고    scopus 로고
    • Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation
    • 15 Zhao, X.Q., Xue, C., Ge, X.M., Yuan, W.J., Wang, J.Y., Bai, F.W., Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation. J. Biotechnol. 139 (2009), 55–60.
    • (2009) J. Biotechnol. , vol.139 , pp. 55-60
    • Zhao, X.Q.1    Xue, C.2    Ge, X.M.3    Yuan, W.J.4    Wang, J.Y.5    Bai, F.W.6
  • 17
    • 84908299692 scopus 로고    scopus 로고
    • Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production
    • 17 Westman, J.O., Mapelli, V., Taherzadeh, M.J., Franzén, C.J., Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production. Appl. Environ. Microbiol. 80 (2014), 6908–6918.
    • (2014) Appl. Environ. Microbiol. , vol.80 , pp. 6908-6918
    • Westman, J.O.1    Mapelli, V.2    Taherzadeh, M.J.3    Franzén, C.J.4
  • 18
    • 84926100303 scopus 로고    scopus 로고
    • Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose
    • 18 Ismail, K.S.K., Sakamoto, T., Hasunuma, T., Zhao, X.Q., Kondo, A., Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose. Biotechnol. J. 9 (2014), 1519–1525.
    • (2014) Biotechnol. J. , vol.9 , pp. 1519-1525
    • Ismail, K.S.K.1    Sakamoto, T.2    Hasunuma, T.3    Zhao, X.Q.4    Kondo, A.5
  • 19
    • 84883819175 scopus 로고    scopus 로고
    • Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation
    • 19 Wang, L., Zhao, X.Q., Xue, C., Bai, F.W., Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation. Biotechnol. Biofuels, 6, 2013, 133.
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 133
    • Wang, L.1    Zhao, X.Q.2    Xue, C.3    Bai, F.W.4
  • 21
    • 84961275709 scopus 로고    scopus 로고
    • Screening of natural yeast isolates under the effects of stresses associated with second-generation biofuel production
    • 21 Dubey, R., Jakeer, S., Gaur, N.A., Screening of natural yeast isolates under the effects of stresses associated with second-generation biofuel production. J. Biosci. Bioeng. 121 (2015), 509–516.
    • (2015) J. Biosci. Bioeng. , vol.121 , pp. 509-516
    • Dubey, R.1    Jakeer, S.2    Gaur, N.A.3
  • 22
    • 84941975746 scopus 로고    scopus 로고
    • Stress tolerance variations in Saccharomyces cerevisiae strains from diverse ecological sources and geographical locations
    • 22 Zheng, Y.L., Wang, S.A., Stress tolerance variations in Saccharomyces cerevisiae strains from diverse ecological sources and geographical locations. PLoS One, 10, 2015, e0133889.
    • (2015) PLoS One , vol.10 , pp. e0133889
    • Zheng, Y.L.1    Wang, S.A.2
  • 24
    • 84922781835 scopus 로고    scopus 로고
    • Development of industrial yeast strain with improved acid-and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating
    • 24 Mitsumasu, K., Liu, Z.S., Tang, Y.Q., Akamatsu, T., Taguchi, H., Kida, K., Development of industrial yeast strain with improved acid-and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating. J. Biosci. Bioeng. 118 (2014), 689–695.
    • (2014) J. Biosci. Bioeng. , vol.118 , pp. 689-695
    • Mitsumasu, K.1    Liu, Z.S.2    Tang, Y.Q.3    Akamatsu, T.4    Taguchi, H.5    Kida, K.6
  • 25
    • 84940885663 scopus 로고    scopus 로고
    • Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae
    • 25 Ohta, E., Nakayama, Y., Mukai, Y., Bamba, T., Fukusaki, E., Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae. J. Biosci. Bioeng. 121 (2015), 399–405.
    • (2015) J. Biosci. Bioeng. , vol.121 , pp. 399-405
    • Ohta, E.1    Nakayama, Y.2    Mukai, Y.3    Bamba, T.4    Fukusaki, E.5
  • 27
    • 84949649785 scopus 로고    scopus 로고
    • Improved stress resistance and ethanol production by segmental haploidization of the diploid genome in Saccharomyces cerevisiae
    • 27 Kaboli, S., Miyamoto, T., Sunada, K., Sasano, Y., Sugiyama, M., Harashima, S., Improved stress resistance and ethanol production by segmental haploidization of the diploid genome in Saccharomyces cerevisiae. J. Biosci. Bioeng. 121 (2016), 638–644.
    • (2016) J. Biosci. Bioeng. , vol.121 , pp. 638-644
    • Kaboli, S.1    Miyamoto, T.2    Sunada, K.3    Sasano, Y.4    Sugiyama, M.5    Harashima, S.6
  • 28
    • 84937637609 scopus 로고    scopus 로고
    • Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance
    • 28 Lee, Y., Nasution, O., Choi, E., Choi, I., Kim, W., Choi, W., Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance. Appl. Microbiol. Biotechnol. 99 (2015), 6391–6403.
    • (2015) Appl. Microbiol. Biotechnol. , vol.99 , pp. 6391-6403
    • Lee, Y.1    Nasution, O.2    Choi, E.3    Choi, I.4    Kim, W.5    Choi, W.6
  • 29
    • 84953636982 scopus 로고    scopus 로고
    • Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids
    • 29 Hasunuma, T., Sakamoto, T., Kondo, A., Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids. Appl. Microbiol. Biotechnol. 100 (2016), 1027–1038.
    • (2016) Appl. Microbiol. Biotechnol. , vol.100 , pp. 1027-1038
    • Hasunuma, T.1    Sakamoto, T.2    Kondo, A.3
  • 30
    • 77958135565 scopus 로고    scopus 로고
    • Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
    • 30 Mira, N.P., Palma, M., Guerreiro, J.F., Sá-Correia, I., Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb. Cell Fact., 9, 2010, 79.
    • (2010) Microb. Cell Fact. , vol.9 , pp. 79
    • Mira, N.P.1    Palma, M.2    Guerreiro, J.F.3    Sá-Correia, I.4
  • 31
    • 80052614048 scopus 로고    scopus 로고
    • Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae
    • 31 Kim, H.S., Kim, N.R., Yang, J., Choi, W., Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 91 (2011), 1159–1172.
    • (2011) Appl. Microbiol. Biotechnol. , vol.91 , pp. 1159-1172
    • Kim, H.S.1    Kim, N.R.2    Yang, J.3    Choi, W.4
  • 32
    • 79251587164 scopus 로고    scopus 로고
    • Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance
    • 32 Lewis, J.A., Elkon, I.M., Mcgee, M.A., Higbee, A.J., Gasch, A.P., Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance. Genetics 186 (2010), 1197–1205.
    • (2010) Genetics , vol.186 , pp. 1197-1205
    • Lewis, J.A.1    Elkon, I.M.2    Mcgee, M.A.3    Higbee, A.J.4    Gasch, A.P.5
  • 34
    • 84953776288 scopus 로고    scopus 로고
    • Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae
    • 34 Chen, Y.Y., Sheng, J.Y., Jiang, T., Stevens, J., Feng, X.Y., Wei, N., Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. Biotechnol. Biofuels, 9, 2016, 9.
    • (2016) Biotechnol. Biofuels , vol.9 , pp. 9
    • Chen, Y.Y.1    Sheng, J.Y.2    Jiang, T.3    Stevens, J.4    Feng, X.Y.5    Wei, N.6
  • 35
    • 84944155176 scopus 로고    scopus 로고
    • Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance
    • 35 Ding, J., Holzwarth, G., Penner, M.H., Patton-Vogt, J., Bakalinsky, A.T., Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance. FEMS Yeast Res. 362 (2015), 1–7.
    • (2015) FEMS Yeast Res. , vol.362 , pp. 1-7
    • Ding, J.1    Holzwarth, G.2    Penner, M.H.3    Patton-Vogt, J.4    Bakalinsky, A.T.5
  • 36
    • 84925461188 scopus 로고    scopus 로고
    • Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae
    • 36 Takabatake, A., Kawazoe, N., Izawa, S., Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 99 (2015), 2805–2814.
    • (2015) Appl. Microbiol. Biotechnol. , vol.99 , pp. 2805-2814
    • Takabatake, A.1    Kawazoe, N.2    Izawa, S.3
  • 37
    • 84950152281 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae poly (A) binding protein Pab1 as a target for eliciting stress tolerant phenotypes
    • 37 Martani, F., Marano, F., Bertacchi, S., Porro, D., Branduardi, P., The Saccharomyces cerevisiae poly (A) binding protein Pab1 as a target for eliciting stress tolerant phenotypes. Sci. Rep., 5, 2015, 18318.
    • (2015) Sci. Rep. , vol.5 , pp. 18318
    • Martani, F.1    Marano, F.2    Bertacchi, S.3    Porro, D.4    Branduardi, P.5
  • 39
    • 84951566814 scopus 로고    scopus 로고
    • Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1
    • 39 Zhang, M.M., Zhao, X.Q., Cheng, C., Bai, F.W., Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1. Biotechnol. J. 10 (2015), 1903–1911.
    • (2015) Biotechnol. J. , vol.10 , pp. 1903-1911
    • Zhang, M.M.1    Zhao, X.Q.2    Cheng, C.3    Bai, F.W.4
  • 40
    • 84925503038 scopus 로고    scopus 로고
    • Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance
    • 40 Ma, C., Wei, X.W., Sun, C., Zhang, F., Xu, J.R., Zhao, X.Q., Bai, F.W., Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance. Appl. Microbiol. Biotechnol. 99 (2015), 2441–2449.
    • (2015) Appl. Microbiol. Biotechnol. , vol.99 , pp. 2441-2449
    • Ma, C.1    Wei, X.W.2    Sun, C.3    Zhang, F.4    Xu, J.R.5    Zhao, X.Q.6    Bai, F.W.7
  • 41
    • 84962206825 scopus 로고    scopus 로고
    • Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering
    • 41 Chen, Y.Y., Stabryla, L., Wei, N., Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering. Appl. Environ. Microbiol. 82 (2016), 2156–2166.
    • (2016) Appl. Environ. Microbiol. , vol.82 , pp. 2156-2166
    • Chen, Y.Y.1    Stabryla, L.2    Wei, N.3
  • 43
    • 70349781700 scopus 로고    scopus 로고
    • Yeast flocculation: new story in fuel ethanol production
    • 43 Zhao, X.Q., Bai, F.W., Yeast flocculation: new story in fuel ethanol production. Biotechnol. Adv. 27 (2009), 849–856.
    • (2009) Biotechnol. Adv. , vol.27 , pp. 849-856
    • Zhao, X.Q.1    Bai, F.W.2
  • 44
    • 84870692544 scopus 로고    scopus 로고
    • Exploration of a natural reservoir of flocculating genes from various Saccharomyces cerevisiae strains and improved ethanol fermentation using stable genetically engineered flocculating yeast strains
    • 44 Zhao, X.Q., Li, Q., He, L.Y., Li, F., Que, W.W., Bai, F.W., Exploration of a natural reservoir of flocculating genes from various Saccharomyces cerevisiae strains and improved ethanol fermentation using stable genetically engineered flocculating yeast strains. Process Biochem. 47 (2012), 1612–1619.
    • (2012) Process Biochem. , vol.47 , pp. 1612-1619
    • Zhao, X.Q.1    Li, Q.2    He, L.Y.3    Li, F.4    Que, W.W.5    Bai, F.W.6
  • 45
    • 84867714718 scopus 로고    scopus 로고
    • Engineering industrial Saccharomyces cerevisiae strain with the FLO1-derivative gene isolated from the flocculating yeast SPSC01 for constitutive flocculation and fuel ethanol production
    • 45 He, L.Y., Zhao, X.Q., Bai, F.W., Engineering industrial Saccharomyces cerevisiae strain with the FLO1-derivative gene isolated from the flocculating yeast SPSC01 for constitutive flocculation and fuel ethanol production. Appl. Energy 100 (2012), 33–40.
    • (2012) Appl. Energy , vol.100 , pp. 33-40
    • He, L.Y.1    Zhao, X.Q.2    Bai, F.W.3
  • 46
    • 24944573941 scopus 로고    scopus 로고
    • Continuous ethanol production using self-flocculating yeast in a cascade of fermenters
    • 46 Xu, T.J., Zhao, X.Q., Bai, F.W., Continuous ethanol production using self-flocculating yeast in a cascade of fermenters. Enzyme Microb. Technol. 37 (2005), 634–640.
    • (2005) Enzyme Microb. Technol. , vol.37 , pp. 634-640
    • Xu, T.J.1    Zhao, X.Q.2    Bai, F.W.3
  • 47
    • 84960420971 scopus 로고    scopus 로고
    • Effects of cell flocculation and zinc sulfate addition on acetic acid stress tolerance of Saccharomyces cerevisiae
    • 47 Cheng, C., Zhao, X.Q., Bai, F.W., Effects of cell flocculation and zinc sulfate addition on acetic acid stress tolerance of Saccharomyces cerevisiae. Chin. J. Appl. Environ. 22 (2016), 0116–0119.
    • (2016) Chin. J. Appl. Environ. , vol.22 , pp. 0116-0119
    • Cheng, C.1    Zhao, X.Q.2    Bai, F.W.3
  • 48
    • 84936083862 scopus 로고    scopus 로고
    • Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrial Saccharomyces cerevisiae strain to combined heat and hydrolysate stress
    • 48 Wallace-Salinas, V., Brink, D.P., Ahrén, D., Gorwa-Grauslund, M.F., Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrial Saccharomyces cerevisiae strain to combined heat and hydrolysate stress. BMC Genomics, 16, 2015, 514.
    • (2015) BMC Genomics , vol.16 , pp. 514
    • Wallace-Salinas, V.1    Brink, D.P.2    Ahrén, D.3    Gorwa-Grauslund, M.F.4
  • 49
    • 84963596182 scopus 로고    scopus 로고
    • Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae
    • 49 Cheng, C., Zhao, X.Q., Zhang, M.M., Bai, F.W., Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae. FEMS Yeast Res., 16, 2016, fow010.
    • (2016) FEMS Yeast Res. , vol.16 , pp. fow010
    • Cheng, C.1    Zhao, X.Q.2    Zhang, M.M.3    Bai, F.W.4
  • 50
    • 19544376842 scopus 로고    scopus 로고
    • Online monitoring and characterization of flocculating yeast cell flocs during continuous ethanol fermentation
    • 50 Ge, X.M., Zhao, X.Q., Bai, F.W., Online monitoring and characterization of flocculating yeast cell flocs during continuous ethanol fermentation. Biotechnol. Bioeng. 90 (2005), 523–531.
    • (2005) Biotechnol. Bioeng. , vol.90 , pp. 523-531
    • Ge, X.M.1    Zhao, X.Q.2    Bai, F.W.3
  • 51
    • 84855463014 scopus 로고    scopus 로고
    • Ethanol-induced yeast flocculation directed by the promoter of TPS1encoding trehalose-6-phosphate synthase 1 for efficient ethanol production
    • 51 Li, Q., Zhao, X.Q., Chang, A.K., Zhang, Q.M., Bai, F.W., Ethanol-induced yeast flocculation directed by the promoter of TPS1encoding trehalose-6-phosphate synthase 1 for efficient ethanol production. Metab. Eng. 14 (2012), 1–8.
    • (2012) Metab. Eng. , vol.14 , pp. 1-8
    • Li, Q.1    Zhao, X.Q.2    Chang, A.K.3    Zhang, Q.M.4    Bai, F.W.5
  • 52
    • 84859510658 scopus 로고    scopus 로고
    • Zinc and yeast stress tolerance: micronutrient plays a big role
    • 52 Zhao, X.Q., Bai, F.W., Zinc and yeast stress tolerance: micronutrient plays a big role. J. Biotechnol. 158 (2012), 176–183.
    • (2012) J. Biotechnol. , vol.158 , pp. 176-183
    • Zhao, X.Q.1    Bai, F.W.2
  • 53
    • 0041629125 scopus 로고    scopus 로고
    • 2+ via reduction in plasma membrane permeability
    • 2+ via reduction in plasma membrane permeability. Biotechnol. Lett. 25 (2003), 1191–1194.
    • (2003) Biotechnol. Lett. , vol.25 , pp. 1191-1194
    • Hu, C.K.1    Bai, F.W.2    An, L.J.3
  • 54
    • 0030323039 scopus 로고    scopus 로고
    • Enhancement of yeast ethanol tolerance by calcium and magnesium
    • 54 Ciesarová, Z., Smogrovicová, D., Dömény, Z., Enhancement of yeast ethanol tolerance by calcium and magnesium. Folia Microbiol. (Praha) 41 (1996), 485–488.
    • (1996) Folia Microbiol. (Praha) , vol.41 , pp. 485-488
    • Ciesarová, Z.1    Smogrovicová, D.2    Dömény, Z.3
  • 55
    • 70350520507 scopus 로고    scopus 로고
    • Insufficiency of copper ion homeostasis causes freeze–thaw injury of yeast cells as revealed by indirect gene expression analysis
    • 55 Takahashi, S., Ando, A., Takagi, H., Shima, J., Insufficiency of copper ion homeostasis causes freeze–thaw injury of yeast cells as revealed by indirect gene expression analysis. Appl. Environ. Microbiol. 21 (2009), 6706–6711.
    • (2009) Appl. Environ. Microbiol. , vol.21 , pp. 6706-6711
    • Takahashi, S.1    Ando, A.2    Takagi, H.3    Shima, J.4
  • 56
    • 80455163152 scopus 로고    scopus 로고
    • The oxidative stress of zinc deficiency
    • 56 Eide, D.J., The oxidative stress of zinc deficiency. Metallomics 3 (2011), 1124–1129.
    • (2011) Metallomics , vol.3 , pp. 1124-1129
    • Eide, D.J.1
  • 57
    • 77949410313 scopus 로고    scopus 로고
    • Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions
    • 57 Xue, C., Zhao, X.Q., Bai, F.W., Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions. Biotechnol. Bioeng. 105 (2010), 935–944.
    • (2010) Biotechnol. Bioeng. , vol.105 , pp. 935-944
    • Xue, C.1    Zhao, X.Q.2    Bai, F.W.3
  • 58
    • 84908344843 scopus 로고    scopus 로고
    • Yeast alcohol dehydrogenase structure and catalysis
    • 58 Raj, S.B., Ramaswamy, S., Plapp, B.V., Yeast alcohol dehydrogenase structure and catalysis. Biochemistry 53 (2014), 5791–5803.
    • (2014) Biochemistry , vol.53 , pp. 5791-5803
    • Raj, S.B.1    Ramaswamy, S.2    Plapp, B.V.3
  • 59
    • 84875798056 scopus 로고    scopus 로고
    • Effect of zinc supplementation on acetone–butanol–ethanol fermentation by Clostridium acetobutylicum
    • 59 Wu, Y.D., Xue, C., Chen, L.J., Bai, F.W., Effect of zinc supplementation on acetone–butanol–ethanol fermentation by Clostridium acetobutylicum. J. Biotechnol. 165 (2013), 18–21.
    • (2013) J. Biotechnol. , vol.165 , pp. 18-21
    • Wu, Y.D.1    Xue, C.2    Chen, L.J.3    Bai, F.W.4
  • 60
    • 84947746767 scopus 로고    scopus 로고
    • Transcriptional analysis of micronutrient zinc-associated response for enhanced carbohydrate utilization and earlier solventogenesis in Clostridium acetobutylicum
    • 60 Wu, Y.D., Xue, C., Chen, L.J., Wan, H., Bai, F.W., Transcriptional analysis of micronutrient zinc-associated response for enhanced carbohydrate utilization and earlier solventogenesis in Clostridium acetobutylicum. Sci. Rep., 5, 2015, 16598.
    • (2015) Sci. Rep. , vol.5 , pp. 16598
    • Wu, Y.D.1    Xue, C.2    Chen, L.J.3    Wan, H.4    Bai, F.W.5
  • 61
    • 77953022341 scopus 로고    scopus 로고
    • A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation
    • 61 Nicolaou, S.A., Gaida, S.M., Papoutsakis, E.T., A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab. Eng. 12 (2010), 307–331.
    • (2010) Metab. Eng. , vol.12 , pp. 307-331
    • Nicolaou, S.A.1    Gaida, S.M.2    Papoutsakis, E.T.3
  • 63
    • 84890116560 scopus 로고    scopus 로고
    • Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae
    • 63 Nguyen, T.T.M., Iwaki, A., Ohya, Y., Izawa, S., Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J. Biosci. Bioeng. 117 (2014), 33–38.
    • (2014) J. Biosci. Bioeng. , vol.117 , pp. 33-38
    • Nguyen, T.T.M.1    Iwaki, A.2    Ohya, Y.3    Izawa, S.4
  • 64
    • 84947598027 scopus 로고    scopus 로고
    • Rapid prototyping of microbial cell factories via genome-scale engineering
    • 64 Si, T., Xiao, H., Zhao, H., Rapid prototyping of microbial cell factories via genome-scale engineering. Biotechnol. Adv. 33 (2015), 1420–1432.
    • (2015) Biotechnol. Adv. , vol.33 , pp. 1420-1432
    • Si, T.1    Xiao, H.2    Zhao, H.3
  • 65
    • 84944745976 scopus 로고    scopus 로고
    • TALENs-assisted multiplex editing for accelerated genome evolution to improve yeast phenotypes
    • 65 Zhang, G., Lin, Y., Qi, X., Li, L., Wang, Q., Ma, Y., TALENs-assisted multiplex editing for accelerated genome evolution to improve yeast phenotypes. ACS Synth. Biol. 4 (2015), 1101–1111.
    • (2015) ACS Synth. Biol. , vol.4 , pp. 1101-1111
    • Zhang, G.1    Lin, Y.2    Qi, X.3    Li, L.4    Wang, Q.5    Ma, Y.6
  • 66


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.