-
1
-
-
33751208021
-
Bio-ethanol - The fuel of tomorrow from the residues of today
-
Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006;24:549-56.
-
(2006)
Trends Biotechnol
, vol.24
, pp. 549-556
-
-
Hahn-Hägerdal, B.1
Galbe, M.2
Gorwa-Grauslund, M.F.3
Lidén, G.4
Zacchi, G.5
-
2
-
-
67650828376
-
Beneficial biofuels - The food, energy, and environment trilemma
-
Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R. Beneficial biofuels-the food, energy, and environment trilemma. Science. 2009;325:270-1.
-
(2009)
Science
, vol.325
, pp. 270-271
-
-
Tilman, D.1
Socolow, R.2
Foley, J.A.3
Hill, J.4
Larson, E.5
Lynd, L.6
Pacala, S.7
Reilly, J.8
Searchinger, T.9
Somerville, C.10
Williams, R.11
-
4
-
-
77955624887
-
Feedstocks for lignocellulosic biofuels
-
Somerville C, Youngs H, Taylor C, Davis SC, Long SP. Feedstocks for lignocellulosic biofuels. Science. 2008;329:790-2.
-
(2008)
Science
, vol.329
, pp. 790-792
-
-
Somerville, C.1
Youngs, H.2
Taylor, C.3
Davis, S.C.4
Long, S.P.5
-
5
-
-
66149164727
-
Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies
-
Lu Y, Warner R, Sedlak M, Ho N, Mosier NS. Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies. Biotechnol Prog. 2009;25:349-56.
-
(2009)
Biotechnol Prog
, vol.25
, pp. 349-356
-
-
Lu, Y.1
Warner, R.2
Sedlak, M.3
Ho, N.4
Mosier, N.S.5
-
6
-
-
0000607694
-
Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates
-
Olsson L, Hähn-Hagerdal B. Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates. Process Biochem. 1993;28:249-57.
-
(1993)
Process Biochem
, vol.28
, pp. 249-257
-
-
Olsson, L.1
Hähn-Hagerdal, B.2
-
7
-
-
12544249147
-
Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
-
Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004;66:10-26.
-
(2004)
Appl Microbiol Biotechnol
, vol.66
, pp. 10-26
-
-
Klinke, H.B.1
Thomsen, A.B.2
Ahring, B.K.3
-
8
-
-
33947286326
-
Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
-
Almeida JRM, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2007;82:340-9.
-
(2007)
J Chem Technol Biotechnol
, vol.82
, pp. 340-349
-
-
Almeida, J.R.M.1
Modig, T.2
Petersson, A.3
Hahn-Hägerdal, B.4
Lidén, G.5
Gorwa-Grauslund, M.F.6
-
10
-
-
0343618697
-
Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition
-
Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74:25.
-
(2000)
Bioresour Technol
, vol.74
, pp. 25
-
-
Palmqvist, E.1
Hahn-Hägerdal, B.2
-
13
-
-
0343183325
-
Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification
-
Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol. 2000;74:17-24.
-
(2000)
Bioresour Technol
, vol.74
, pp. 17-24
-
-
Palmqvist, E.1
Hahn-Hägerdal, B.2
-
14
-
-
79960847606
-
Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis
-
García-Aparicio MP, Ballesteros I, González A, Oliva JM, Ballesteros M, Negro MJ. Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol. 2006;278:129-32.
-
(2006)
Appl Biochem Biotechnol
, vol.278
, pp. 129-132
-
-
García-Aparicio, M.P.1
Ballesteros, I.2
González, A.3
Oliva, J.M.4
Ballesteros, M.5
Negro, M.J.6
-
15
-
-
42149196386
-
Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production
-
Martin C, Alriksson B, Sjöde A, Nilvebrant NO, Jönsson LJ. Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. Appl Biochem Biotechnol. 2007;137:339-52.
-
(2007)
Appl Biochem Biotechnol
, vol.137
, pp. 339-352
-
-
Martin, C.1
Alriksson, B.2
Sjöde, A.3
Nilvebrant, N.O.4
Jönsson, L.J.5
-
16
-
-
0032080111
-
Optimization of wet oxidation pretreatment of wheat straw
-
Schmidt AS, Thomsen AB. Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol. 1998;64:139-51.
-
(1998)
Bioresour Technol
, vol.64
, pp. 139-151
-
-
Schmidt, A.S.1
Thomsen, A.B.2
-
18
-
-
0035821953
-
Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood
-
Tengborg C, Galbe M, Zacchi G. Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme Microb Technol. 2001;28:835-44.
-
(2001)
Enzyme Microb Technol
, vol.28
, pp. 835-844
-
-
Tengborg, C.1
Galbe, M.2
Zacchi, G.3
-
19
-
-
84864186953
-
Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries
-
Hong KK, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci. 2012;69:2671-90.
-
(2012)
Cell Mol Life Sci
, vol.69
, pp. 2671-2690
-
-
Hong, K.K.1
Nielsen, J.2
-
20
-
-
79952123299
-
Opportunities for yeast metabolic engineering: Lessons from synthetic biology
-
Krivoruchko A, Siewers V, Nielsen J. Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnol J. 2011;6:262-76.
-
(2011)
Biotechnol J
, vol.6
, pp. 262-276
-
-
Krivoruchko, A.1
Siewers, V.2
Nielsen, J.3
-
21
-
-
0000525976
-
Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast
-
Pampulha ME, Loureiro-Dias MC. Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl Microbiol Biotechnol. 1989;31:547-50.
-
(1989)
Appl Microbiol Biotechnol
, vol.31
, pp. 547-550
-
-
Pampulha, M.E.1
Loureiro-Dias, M.C.2
-
22
-
-
0034769551
-
Weak acid adaptation: The stress response that confers yeasts with resistance to organic acid food preservatives
-
Piper P, Calderon CO, Hatzixanthis K, Mollapour M. Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology. 2001;147:2635-46.
-
(2001)
Microbiology
, vol.147
, pp. 2635-2646
-
-
Piper, P.1
Calderon, C.O.2
Hatzixanthis, K.3
Mollapour, M.4
-
23
-
-
0026710123
-
Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
-
Verduyn C, Postma E, Scheffers WA, Van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8:501-17.
-
(1992)
Yeast
, vol.8
, pp. 501-517
-
-
Verduyn, C.1
Postma, E.2
Scheffers, W.A.3
Van Dijken, J.P.4
-
24
-
-
0023657967
-
Activation of yeast plasma membrane ATPase by acid pH during growth
-
Eraso P, Gancedo C. Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Lett. 1987;224:187-92.
-
(1987)
FEBS Lett
, vol.224
, pp. 187-192
-
-
Eraso, P.1
Gancedo, C.2
-
25
-
-
0026452057
-
Another explanation for the toxicity of fermentation acids at low pH - Anion accumulation versus uncoupling
-
Russell JB. Another explanation for the toxicity of fermentation acids at low pH - anion accumulation versus uncoupling. J Appl Bacteriol. 1992;73:363-70.
-
(1992)
J Appl Bacteriol
, vol.73
, pp. 363-370
-
-
Russell, J.B.1
-
26
-
-
0030001104
-
Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae
-
Casal M, Cardoso H, Leao C. Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology. 1996;142:1385-95.
-
(1996)
Microbiology
, vol.142
, pp. 1385-1395
-
-
Casal, M.1
Cardoso, H.2
Leao, C.3
-
27
-
-
0036566476
-
Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase
-
Modig T, Liden G, Taherzadeh MJ. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J. 2002;363:769-76.
-
(2002)
Biochem J
, vol.363
, pp. 769-776
-
-
Modig, T.1
Liden, G.2
Taherzadeh, M.J.3
-
28
-
-
0033585830
-
Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture
-
Palmqvist E, Almeida JS, Hahn-Hägerdal B. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng. 1999;62:447-54.
-
(1999)
Biotechnol Bioeng
, vol.62
, pp. 447-454
-
-
Palmqvist, E.1
Almeida, J.S.2
Hahn-Hägerdal, B.3
-
30
-
-
0037623828
-
Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats
-
Horvath IS, Franzen CJ, Taherzadeh MJ, Niklasson C, Lidén G. Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Appl Environ Microbiol. 2003;69:4076-86.
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 4076-4086
-
-
Horvath, I.S.1
Franzen, C.J.2
Taherzadeh, M.J.3
Niklasson, C.4
Lidén, G.5
-
31
-
-
0032956185
-
Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae
-
Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G. Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng. 1999;87:169-74.
-
(1999)
J Biosci Bioeng
, vol.87
, pp. 169-174
-
-
Taherzadeh, M.J.1
Gustafsson, L.2
Niklasson, C.3
Lidén, G.4
-
32
-
-
0026722671
-
Conversion of furfural into furfuryl alcohol by Saccharomyces cervisiae 354
-
Diaz De Villegas ME, Villa P, Guerra M, Rodriguez E, Redondo D, Martinez A, Conversion of furfural into furfuryl alcohol by Saccharomyces cervisiae 354. Acta Biotechnol. 1992;12:351-4.
-
(1992)
Acta Biotechnol
, vol.12
, pp. 351-354
-
-
Diaz De Villegas, M.E.1
Villa, P.2
Guerra, M.3
Rodriguez, E.4
Redondo, D.5
Martinez, A.6
-
33
-
-
1342265594
-
Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review
-
Mussatto SI, Roberto IC. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol. 2004;93:1-10.
-
(2004)
Bioresour Technol
, vol.93
, pp. 1-10
-
-
Mussatto, S.I.1
Roberto, I.C.2
-
34
-
-
84905757148
-
Microbial tolerance engineering toward biochemical production: From lignocellulose to products
-
Ling H, Teo W, Chen B, Leong SSJ, Chang MW. Microbial tolerance engineering toward biochemical production: from lignocellulose to products. Curr Opin Biotechnol. 2014;29:99-106.
-
(2014)
Curr Opin Biotechnol
, vol.29
, pp. 99-106
-
-
Ling, H.1
Teo, W.2
Chen, B.3
Leong, S.S.J.4
Chang, M.W.5
-
35
-
-
33744474816
-
A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance
-
Petersson A, Almeida JRM, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, Lidén G. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast. 2006;23:455-64.
-
(2006)
Yeast
, vol.23
, pp. 455-464
-
-
Petersson, A.1
Almeida, J.R.M.2
Modig, T.3
Karhumaa, K.4
Hahn-Hägerdal, B.5
Gorwa-Grauslund, M.F.6
Lidén, G.7
-
36
-
-
68149163548
-
A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion
-
Liu ZL, Moon J. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene. 2009;446:1-10.
-
(2009)
Gene
, vol.446
, pp. 1-10
-
-
Liu, Z.L.1
Moon, J.2
-
37
-
-
84924412793
-
Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents
-
Kim SK, Jin YS, Choi IG, Park YC, Seo JH. Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. Metab Eng. 2015;29:46-55.
-
(2015)
Metab Eng
, vol.29
, pp. 46-55
-
-
Kim, S.K.1
Jin, Y.S.2
Choi, I.G.3
Park, Y.C.4
Seo, J.H.5
-
38
-
-
33745667335
-
Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
-
Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006;71:339-49.
-
(2006)
Appl Microbiol Biotechnol
, vol.71
, pp. 339-349
-
-
Gorsich, S.W.1
Dien, B.S.2
Nichols, N.N.3
Slininger, P.J.4
Liu, Z.L.5
Skory, C.D.6
-
39
-
-
84892374041
-
Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural
-
Hasunuma T, Ismail KSK, Nambu Y, Kondo A. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. J Biosci Bioeng. 2014;117:165-76.
-
(2014)
J Biosci Bioeng
, vol.117
, pp. 165-176
-
-
Hasunuma, T.1
Ismail, K.S.K.2
Nambu, Y.3
Kondo, A.4
-
40
-
-
84874499132
-
Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
-
Kim SR, Skerker JM, Kang W, Lesmana AL, Wei N, Arkin AP, Jin YS. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One. 2013;8:e57048.
-
(2013)
PLoS One
, vol.8
, pp. e57048
-
-
Kim, S.R.1
Skerker, J.M.2
Kang, W.3
Lesmana, A.L.4
Wei, N.5
Arkin, A.P.6
Jin, Y.S.7
-
41
-
-
67651146479
-
+-ATPase function is an important target of this anticancer drug
-
+-ATPase function is an important target of this anticancer drug. OMICS. 2009;13:185-98.
-
(2009)
OMICS
, vol.13
, pp. 185-198
-
-
Dos Santos, S.1
Sá-Correia, I.2
-
42
-
-
77958135565
-
Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
-
Mira NP, Palma M, Guerreiro JF, Sá-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact. 2010;9:79.
-
(2010)
Microb Cell Fact
, vol.9
, pp. 79
-
-
Mira, N.P.1
Palma, M.2
Guerreiro, J.F.3
Sá-Correia, I.4
-
43
-
-
77958162502
-
Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: A genome-wide view
-
Mira NP, Teixeira MC, Sá-Correia I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS. 2010;14:525-40.
-
(2010)
OMICS
, vol.14
, pp. 525-540
-
-
Mira, N.P.1
Teixeira, M.C.2
Sá-Correia, I.3
-
44
-
-
25844432253
-
Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes
-
Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sá-Correia I. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun. 2005;337:95-103.
-
(2005)
Biochem Biophys Res Commun
, vol.337
, pp. 95-103
-
-
Fernandes, A.R.1
Mira, N.P.2
Vargas, R.C.3
Canelhas, I.4
Sá-Correia, I.5
-
45
-
-
84868611282
-
Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator
-
Tanaka K, Ishii Y, Ogawa J, Shima J. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol. 2012;78:8161-3.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 8161-8163
-
-
Tanaka, K.1
Ishii, Y.2
Ogawa, J.3
Shima, J.4
-
46
-
-
84857689737
-
Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production
-
Sasano Y, Watanabe D, Ukibe K, Inai T, Ohtsu I, Shimoi H, Takagi H. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J Biosci Bioeng. 2012;113:451-5.
-
(2012)
J Biosci Bioeng
, vol.113
, pp. 451-455
-
-
Sasano, Y.1
Watanabe, D.2
Ukibe, K.3
Inai, T.4
Ohtsu, I.5
Shimoi, H.6
Takagi, H.7
-
47
-
-
84925503038
-
Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance
-
Ma C, Wei X, Sun C, Zhang F, Xu J, Zhao X, Bai F. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance. Appl Microbiol Biotechnol. 2015;99:2441-9.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 2441-2449
-
-
Ma, C.1
Wei, X.2
Sun, C.3
Zhang, F.4
Xu, J.5
Zhao, X.6
Bai, F.7
-
48
-
-
84880978562
-
Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress
-
Kim D, Hahn J-S. Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Appl Environ Microbiol. 2013;79:5069-77.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 5069-5077
-
-
Kim, D.1
Hahn, J.-S.2
-
49
-
-
84900839963
-
Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase
-
Smith J, van Rensburg E, Görgens JF. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnol. 2014;14:41-57.
-
(2014)
BMC Biotechnol
, vol.14
, pp. 41-57
-
-
Smith, J.1
Van Rensburg, E.2
Görgens, J.F.3
-
50
-
-
84959858490
-
Adaptation of Scheffersomyces stipitis to hardwood spent sulfite liquor by evolutionary engineering
-
Pereira SR, Nogué VSI, Frazão CJR, Serafim LS, Gorwa-Grauslund MF, Xavier A. Adaptation of Scheffersomyces stipitis to hardwood spent sulfite liquor by evolutionary engineering. Biotechnol Biofuels. 2015;8:50.
-
(2015)
Biotechnol Biofuels
, vol.8
, pp. 50
-
-
Pereira, S.R.1
Nogué, V.S.I.2
Frazão, C.J.R.3
Serafim, L.S.4
Gorwa-Grauslund, M.F.5
Xavier, A.6
-
51
-
-
84896419256
-
Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass
-
Almario MP, Reyes LH, Kao KC. Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng. 2013;110:2616-23.
-
(2013)
Biotechnol Bioeng
, vol.110
, pp. 2616-2623
-
-
Almario, M.P.1
Reyes, L.H.2
Kao, K.C.3
-
52
-
-
84878315786
-
Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: Comparison to acetic acid, furfural and hydroxymethylfurfural
-
Bajwa PK, Ho CY, Chan CK, Martin VJJ, Trevors JT, Lee H. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Anton Leeuw Int J G. 2013;103:1281-95.
-
(2013)
Anton Leeuw Int J G
, vol.103
, pp. 1281-1295
-
-
Bajwa, P.K.1
Ho, C.Y.2
Chan, C.K.3
Martin, V.J.J.4
Trevors, J.T.5
Lee, H.6
-
53
-
-
66249112812
-
Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound
-
Lin FM, Qiao B, Yuan YJ. Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl Environ Microbiol. 2009;75:3765-76.
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 3765-3776
-
-
Lin, F.M.1
Qiao, B.2
Yuan, Y.J.3
-
54
-
-
84896703191
-
Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress
-
Lv YJ, Wang X, Ma Q, Bai X, Li BZ, Zhang W, Yuan YJ. Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress. Appl Microbiol Biotechnol. 2014;98:2207-21.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 2207-2221
-
-
Lv, Y.J.1
Wang, X.2
Ma, Q.3
Bai, X.4
Li, B.Z.5
Zhang, W.6
Yuan, Y.J.7
-
55
-
-
84929941635
-
Genome-wide screening of Saccharomyces cerevisiae genes required to foster tolerance towards industrial wheat straw hydrolysates
-
Pereira FB, Teixeira MC, Mira NP, Sá-Correia I, Domingues L. Genome-wide screening of Saccharomyces cerevisiae genes required to foster tolerance towards industrial wheat straw hydrolysates. J Ind Microbiol Biotechnol. 2014;41:1753-61.
-
(2014)
J Ind Microbiol Biotechnol
, vol.41
, pp. 1753-1761
-
-
Pereira, F.B.1
Teixeira, M.C.2
Mira, N.P.3
Sá-Correia, I.4
Domingues, L.5
-
56
-
-
84929095780
-
Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors
-
Cunha JT, Aguiar TQ, Romani A, Oliveira C, Domingues L. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. Bioresour Technol. 2015;191:7-16.
-
(2015)
Bioresour Technol
, vol.191
, pp. 7-16
-
-
Cunha, J.T.1
Aguiar, T.Q.2
Romani, A.3
Oliveira, C.4
Domingues, L.5
-
57
-
-
84962206825
-
Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering
-
In press
-
Chen Y, Stabryla L, Wei N. Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering. Appl Environ Microbiol. 2016 (In press).
-
(2016)
Appl Environ Microbiol.
-
-
Chen, Y.1
Stabryla, L.2
Wei, N.3
-
59
-
-
79960698975
-
Btrim: A fast, lightweight adapter and quality trimming program for next-generation sequencing technologies
-
Kong Y. Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics. 2011;98:152-3.
-
(2011)
Genomics
, vol.98
, pp. 152-153
-
-
Kong, Y.1
-
60
-
-
84859210032
-
Fast gapped-read alignment with Bowtie 2
-
Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357-9.
-
(2012)
Nat Methods
, vol.9
, pp. 357-359
-
-
Langmead, B.1
Salzberg, S.2
-
61
-
-
84928987900
-
HTSeq - A Python framework to work with high-throughput sequencing data
-
Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166-9.
-
(2015)
Bioinformatics
, vol.31
, pp. 166-169
-
-
Anders, S.1
Pyl, P.T.2
Huber, W.3
-
62
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
-
Love M, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
-
(2014)
Genome Biol
, vol.15
, pp. 550
-
-
Love, M.1
Huber, W.2
Anders, S.3
-
63
-
-
84879830242
-
Investigating host dependence of xylose utilization in recombinant Saccharomyces cerevisiae strains using RNA-seq analysis
-
Feng X, Zhao H. Investigating host dependence of xylose utilization in recombinant Saccharomyces cerevisiae strains using RNA-seq analysis. Biotechnol Biofuels. 2013;6:96-106.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 96-106
-
-
Feng, X.1
Zhao, H.2
-
64
-
-
0022359150
-
Saccharomyces cerevisiae whi2 mutants in stationary phase retain the properties of exponentially growing cells
-
Saul DJ, Walton EF, Sudbery PE, Carter BLA. Saccharomyces cerevisiae whi2 mutants in stationary phase retain the properties of exponentially growing cells. J Gen Microbiol. 1985;131:2245-51.
-
(1985)
J Gen Microbiol
, vol.131
, pp. 2245-2251
-
-
Saul, D.J.1
Walton, E.F.2
Sudbery, P.E.3
Carter, B.L.A.4
-
65
-
-
0019127205
-
Genes which control cell-proliferation in the yeast Saccharomyces cerevisiae
-
Sudbery PE, Goodey AR, Carter BLA. Genes which control cell-proliferation in the yeast Saccharomyces cerevisiae. Nature. 1980;288:401-4.
-
(1980)
Nature
, vol.288
, pp. 401-404
-
-
Sudbery, P.E.1
Goodey, A.R.2
Carter, B.L.A.3
-
66
-
-
77952876202
-
Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
-
Li BZ, Yuan YJ. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2010;86:1915-24.
-
(2010)
Appl Microbiol Biotechnol
, vol.86
, pp. 1915-1924
-
-
Li, B.Z.1
Yuan, Y.J.2
-
67
-
-
0035998264
-
Yeast Whi2 and Psr1-phosphatase form a complex and regulate STRE-mediated gene expression
-
Kaida D, Yashiroda H, Toh-e A, Kikuchi Y. Yeast Whi2 and Psr1-phosphatase form a complex and regulate STRE-mediated gene expression. Genes Cells. 2002;7:543-52.
-
(2002)
Genes Cells
, vol.7
, pp. 543-552
-
-
Kaida, D.1
Yashiroda, H.2
Toh-E, A.3
Kikuchi, Y.4
-
68
-
-
53349117774
-
High-quality binary protein interaction map of the yeast interactome network
-
Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, Hirozane-Kishikawa T, Gebreab F, Li N, Simonis N, Hao T, Rual JF, Dricot A, Vazquez A, Murray RR, Simon C, Tardivo L, Tam S, Svrzikapa N, Fan C, de Smet AS, Motyl A, Hudson ME, Park J, Xin X, Cusick ME, Moore T, Boone C, Snyder M, Roth FP, Barabási AL, Tavernier J, Hill DE, Vidal M. High-quality binary protein interaction map of the yeast interactome network. Science. 2008;322:104-10.
-
(2008)
Science
, vol.322
, pp. 104-110
-
-
Yu, H.1
Braun, P.2
Yildirim, M.A.3
Lemmens, I.4
Venkatesan, K.5
Sahalie, J.6
Hirozane-Kishikawa, T.7
Gebreab, F.8
Li, N.9
Simonis, N.10
Hao, T.11
Rual, J.F.12
Dricot, A.13
Vazquez, A.14
Murray, R.R.15
Simon, C.16
Tardivo, L.17
Tam, S.18
Svrzikapa, N.19
Fan, C.20
De Smet, A.S.21
Motyl, A.22
Hudson, M.E.23
Park, J.24
Xin, X.25
Cusick, M.E.26
Moore, T.27
Boone, C.28
Snyder, M.29
Roth, F.P.30
Barabási, A.L.31
Tavernier, J.32
Hill, D.E.33
Vidal, M.34
more..
-
69
-
-
0031717286
-
Ace2p, a regulator of (chitinase) expression, affects pseudohyphal production in Saccharomyces cerevisiae
-
King L, Butler G. Ace2p, a regulator of (chitinase) expression, affects pseudohyphal production in Saccharomyces cerevisiae. Curr Genet. 1998;34:9.
-
(1998)
Curr Genet
, vol.34
, pp. 9
-
-
King, L.1
Butler, G.2
-
70
-
-
5144229125
-
Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression
-
Marion RM, Regev A, Segal E, Barash Y, Koller D, Friedman N, O'Shea EK. Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci USA. 2004;101:14315-22.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 14315-14322
-
-
Marion, R.M.1
Regev, A.2
Segal, E.3
Barash, Y.4
Koller, D.5
Friedman, N.6
O'Shea, E.K.7
-
71
-
-
29444455715
-
Cell-cycle control of gene expression in budding and fission yeast
-
Bähler J. Cell-cycle control of gene expression in budding and fission yeast. Annu Rev Genet. 2005;39:26.
-
(2005)
Annu Rev Genet
, vol.39
, pp. 26
-
-
Bähler, J.1
-
72
-
-
84890284546
-
Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase
-
Ask M, Bettiga M, Duraiswamy VR, Olsson L. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase. Biotechnol Biofuels. 2013;6:181.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 181
-
-
Ask, M.1
Bettiga, M.2
Duraiswamy, V.R.3
Olsson, L.4
-
73
-
-
84947046745
-
Re-assessment of YAP1 and MCR1 contributions to inhibitor tolerance in robust engineered Saccharomyces cerevisiae fermenting undetoxified lignocellulosic hydrolysate
-
Wallace-Salinas V, Signori L, Li YY, Ask M, Bettiga M, Porro D, Thevelein JM, Branduardi P, Foulquié-Moreno MR, Gorwa-Grauslund M. Re-assessment of YAP1 and MCR1 contributions to inhibitor tolerance in robust engineered Saccharomyces cerevisiae fermenting undetoxified lignocellulosic hydrolysate. Amb Express. 2014;4:56.
-
(2014)
Amb Express
, vol.4
, pp. 56
-
-
Wallace-Salinas, V.1
Signori, L.2
Li, Y.Y.3
Ask, M.4
Bettiga, M.5
Porro, D.6
Thevelein, J.M.7
Branduardi, P.8
Foulquié-Moreno, M.R.9
Gorwa-Grauslund, M.10
-
74
-
-
46349094089
-
Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae
-
Salusjärvi L, Kankainen M, Soliymani R, Pitkänen JP, Penttilä M, Ruohonen L. Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microb Cell Fact. 2008;7:18.
-
(2008)
Microb Cell Fact
, vol.7
, pp. 18
-
-
Salusjärvi, L.1
Kankainen, M.2
Soliymani, R.3
Pitkänen, J.P.4
Penttilä, M.5
Ruohonen, L.6
-
75
-
-
84892934934
-
Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose
-
Matsushika A, Goshima T, Hoshino T. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microb Cell Fact. 2014;13:16.
-
(2014)
Microb Cell Fact
, vol.13
, pp. 16
-
-
Matsushika, A.1
Goshima, T.2
Hoshino, T.3
-
76
-
-
0028953840
-
Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
-
Mumberg D, Müller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995;156:119-22.
-
(1995)
Gene
, vol.156
, pp. 119-122
-
-
Mumberg, D.1
Müller, R.2
Funk, M.3
-
77
-
-
0025848024
-
Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae
-
Nikawa JI, Tsukagoshi Y, Yamashita S, Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. J Biol Chem. 1991;266:11184-91.
-
(1991)
J Biol Chem
, vol.266
, pp. 11184-11191
-
-
Nikawa, J.I.1
Tsukagoshi, Y.2
Yamashita, S.3
|