메뉴 건너뛰기




Volumn 9, Issue 1, 2016, Pages

Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae

Author keywords

Acetic acid; Furfural; Metabolic engineering; RNA seq; Transcription factors; Yeast

Indexed keywords

ACETIC ACID; ALDEHYDES; BIOFUELS; BIOINFORMATICS; BIOMASS; ETHANOL; FERMENTATION; FURFURAL; GENES; METABOLIC ENGINEERING; METABOLISM; MICROORGANISMS; MIXTURES; ORGANIC ACIDS; PH; PRODUCTIVITY; RNA; TRANSCRIPTION; TRANSCRIPTION FACTORS; YEAST;

EID: 84953776288     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-015-0418-5     Document Type: Article
Times cited : (87)

References (77)
  • 5
    • 66149164727 scopus 로고    scopus 로고
    • Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies
    • Lu Y, Warner R, Sedlak M, Ho N, Mosier NS. Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies. Biotechnol Prog. 2009;25:349-56.
    • (2009) Biotechnol Prog , vol.25 , pp. 349-356
    • Lu, Y.1    Warner, R.2    Sedlak, M.3    Ho, N.4    Mosier, N.S.5
  • 6
    • 0000607694 scopus 로고
    • Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates
    • Olsson L, Hähn-Hagerdal B. Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates. Process Biochem. 1993;28:249-57.
    • (1993) Process Biochem , vol.28 , pp. 249-257
    • Olsson, L.1    Hähn-Hagerdal, B.2
  • 7
    • 12544249147 scopus 로고    scopus 로고
    • Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
    • Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004;66:10-26.
    • (2004) Appl Microbiol Biotechnol , vol.66 , pp. 10-26
    • Klinke, H.B.1    Thomsen, A.B.2    Ahring, B.K.3
  • 10
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition
    • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74:25.
    • (2000) Bioresour Technol , vol.74 , pp. 25
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 13
    • 0343183325 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification
    • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol. 2000;74:17-24.
    • (2000) Bioresour Technol , vol.74 , pp. 17-24
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 15
    • 42149196386 scopus 로고    scopus 로고
    • Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production
    • Martin C, Alriksson B, Sjöde A, Nilvebrant NO, Jönsson LJ. Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. Appl Biochem Biotechnol. 2007;137:339-52.
    • (2007) Appl Biochem Biotechnol , vol.137 , pp. 339-352
    • Martin, C.1    Alriksson, B.2    Sjöde, A.3    Nilvebrant, N.O.4    Jönsson, L.J.5
  • 16
    • 0032080111 scopus 로고    scopus 로고
    • Optimization of wet oxidation pretreatment of wheat straw
    • Schmidt AS, Thomsen AB. Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol. 1998;64:139-51.
    • (1998) Bioresour Technol , vol.64 , pp. 139-151
    • Schmidt, A.S.1    Thomsen, A.B.2
  • 18
    • 0035821953 scopus 로고    scopus 로고
    • Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood
    • Tengborg C, Galbe M, Zacchi G. Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme Microb Technol. 2001;28:835-44.
    • (2001) Enzyme Microb Technol , vol.28 , pp. 835-844
    • Tengborg, C.1    Galbe, M.2    Zacchi, G.3
  • 19
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries
    • Hong KK, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci. 2012;69:2671-90.
    • (2012) Cell Mol Life Sci , vol.69 , pp. 2671-2690
    • Hong, K.K.1    Nielsen, J.2
  • 20
    • 79952123299 scopus 로고    scopus 로고
    • Opportunities for yeast metabolic engineering: Lessons from synthetic biology
    • Krivoruchko A, Siewers V, Nielsen J. Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnol J. 2011;6:262-76.
    • (2011) Biotechnol J , vol.6 , pp. 262-276
    • Krivoruchko, A.1    Siewers, V.2    Nielsen, J.3
  • 21
    • 0000525976 scopus 로고
    • Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast
    • Pampulha ME, Loureiro-Dias MC. Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl Microbiol Biotechnol. 1989;31:547-50.
    • (1989) Appl Microbiol Biotechnol , vol.31 , pp. 547-550
    • Pampulha, M.E.1    Loureiro-Dias, M.C.2
  • 22
    • 0034769551 scopus 로고    scopus 로고
    • Weak acid adaptation: The stress response that confers yeasts with resistance to organic acid food preservatives
    • Piper P, Calderon CO, Hatzixanthis K, Mollapour M. Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology. 2001;147:2635-46.
    • (2001) Microbiology , vol.147 , pp. 2635-2646
    • Piper, P.1    Calderon, C.O.2    Hatzixanthis, K.3    Mollapour, M.4
  • 23
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn C, Postma E, Scheffers WA, Van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8:501-17.
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 24
    • 0023657967 scopus 로고
    • Activation of yeast plasma membrane ATPase by acid pH during growth
    • Eraso P, Gancedo C. Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Lett. 1987;224:187-92.
    • (1987) FEBS Lett , vol.224 , pp. 187-192
    • Eraso, P.1    Gancedo, C.2
  • 25
    • 0026452057 scopus 로고
    • Another explanation for the toxicity of fermentation acids at low pH - Anion accumulation versus uncoupling
    • Russell JB. Another explanation for the toxicity of fermentation acids at low pH - anion accumulation versus uncoupling. J Appl Bacteriol. 1992;73:363-70.
    • (1992) J Appl Bacteriol , vol.73 , pp. 363-370
    • Russell, J.B.1
  • 26
    • 0030001104 scopus 로고    scopus 로고
    • Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae
    • Casal M, Cardoso H, Leao C. Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology. 1996;142:1385-95.
    • (1996) Microbiology , vol.142 , pp. 1385-1395
    • Casal, M.1    Cardoso, H.2    Leao, C.3
  • 27
    • 0036566476 scopus 로고    scopus 로고
    • Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase
    • Modig T, Liden G, Taherzadeh MJ. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J. 2002;363:769-76.
    • (2002) Biochem J , vol.363 , pp. 769-776
    • Modig, T.1    Liden, G.2    Taherzadeh, M.J.3
  • 28
    • 0033585830 scopus 로고    scopus 로고
    • Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture
    • Palmqvist E, Almeida JS, Hahn-Hägerdal B. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng. 1999;62:447-54.
    • (1999) Biotechnol Bioeng , vol.62 , pp. 447-454
    • Palmqvist, E.1    Almeida, J.S.2    Hahn-Hägerdal, B.3
  • 30
    • 0037623828 scopus 로고    scopus 로고
    • Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats
    • Horvath IS, Franzen CJ, Taherzadeh MJ, Niklasson C, Lidén G. Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Appl Environ Microbiol. 2003;69:4076-86.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 4076-4086
    • Horvath, I.S.1    Franzen, C.J.2    Taherzadeh, M.J.3    Niklasson, C.4    Lidén, G.5
  • 31
    • 0032956185 scopus 로고    scopus 로고
    • Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae
    • Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G. Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng. 1999;87:169-74.
    • (1999) J Biosci Bioeng , vol.87 , pp. 169-174
    • Taherzadeh, M.J.1    Gustafsson, L.2    Niklasson, C.3    Lidén, G.4
  • 33
    • 1342265594 scopus 로고    scopus 로고
    • Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review
    • Mussatto SI, Roberto IC. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol. 2004;93:1-10.
    • (2004) Bioresour Technol , vol.93 , pp. 1-10
    • Mussatto, S.I.1    Roberto, I.C.2
  • 34
    • 84905757148 scopus 로고    scopus 로고
    • Microbial tolerance engineering toward biochemical production: From lignocellulose to products
    • Ling H, Teo W, Chen B, Leong SSJ, Chang MW. Microbial tolerance engineering toward biochemical production: from lignocellulose to products. Curr Opin Biotechnol. 2014;29:99-106.
    • (2014) Curr Opin Biotechnol , vol.29 , pp. 99-106
    • Ling, H.1    Teo, W.2    Chen, B.3    Leong, S.S.J.4    Chang, M.W.5
  • 36
    • 68149163548 scopus 로고    scopus 로고
    • A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion
    • Liu ZL, Moon J. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene. 2009;446:1-10.
    • (2009) Gene , vol.446 , pp. 1-10
    • Liu, Z.L.1    Moon, J.2
  • 37
    • 84924412793 scopus 로고    scopus 로고
    • Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents
    • Kim SK, Jin YS, Choi IG, Park YC, Seo JH. Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. Metab Eng. 2015;29:46-55.
    • (2015) Metab Eng , vol.29 , pp. 46-55
    • Kim, S.K.1    Jin, Y.S.2    Choi, I.G.3    Park, Y.C.4    Seo, J.H.5
  • 38
    • 33745667335 scopus 로고    scopus 로고
    • Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
    • Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006;71:339-49.
    • (2006) Appl Microbiol Biotechnol , vol.71 , pp. 339-349
    • Gorsich, S.W.1    Dien, B.S.2    Nichols, N.N.3    Slininger, P.J.4    Liu, Z.L.5    Skory, C.D.6
  • 39
    • 84892374041 scopus 로고    scopus 로고
    • Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural
    • Hasunuma T, Ismail KSK, Nambu Y, Kondo A. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. J Biosci Bioeng. 2014;117:165-76.
    • (2014) J Biosci Bioeng , vol.117 , pp. 165-176
    • Hasunuma, T.1    Ismail, K.S.K.2    Nambu, Y.3    Kondo, A.4
  • 40
    • 84874499132 scopus 로고    scopus 로고
    • Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
    • Kim SR, Skerker JM, Kang W, Lesmana AL, Wei N, Arkin AP, Jin YS. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One. 2013;8:e57048.
    • (2013) PLoS One , vol.8 , pp. e57048
    • Kim, S.R.1    Skerker, J.M.2    Kang, W.3    Lesmana, A.L.4    Wei, N.5    Arkin, A.P.6    Jin, Y.S.7
  • 41
    • 67651146479 scopus 로고    scopus 로고
    • +-ATPase function is an important target of this anticancer drug
    • +-ATPase function is an important target of this anticancer drug. OMICS. 2009;13:185-98.
    • (2009) OMICS , vol.13 , pp. 185-198
    • Dos Santos, S.1    Sá-Correia, I.2
  • 42
    • 77958135565 scopus 로고    scopus 로고
    • Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
    • Mira NP, Palma M, Guerreiro JF, Sá-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact. 2010;9:79.
    • (2010) Microb Cell Fact , vol.9 , pp. 79
    • Mira, N.P.1    Palma, M.2    Guerreiro, J.F.3    Sá-Correia, I.4
  • 43
    • 77958162502 scopus 로고    scopus 로고
    • Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: A genome-wide view
    • Mira NP, Teixeira MC, Sá-Correia I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS. 2010;14:525-40.
    • (2010) OMICS , vol.14 , pp. 525-540
    • Mira, N.P.1    Teixeira, M.C.2    Sá-Correia, I.3
  • 44
    • 25844432253 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes
    • Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sá-Correia I. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun. 2005;337:95-103.
    • (2005) Biochem Biophys Res Commun , vol.337 , pp. 95-103
    • Fernandes, A.R.1    Mira, N.P.2    Vargas, R.C.3    Canelhas, I.4    Sá-Correia, I.5
  • 45
    • 84868611282 scopus 로고    scopus 로고
    • Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator
    • Tanaka K, Ishii Y, Ogawa J, Shima J. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol. 2012;78:8161-3.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 8161-8163
    • Tanaka, K.1    Ishii, Y.2    Ogawa, J.3    Shima, J.4
  • 46
    • 84857689737 scopus 로고    scopus 로고
    • Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production
    • Sasano Y, Watanabe D, Ukibe K, Inai T, Ohtsu I, Shimoi H, Takagi H. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J Biosci Bioeng. 2012;113:451-5.
    • (2012) J Biosci Bioeng , vol.113 , pp. 451-455
    • Sasano, Y.1    Watanabe, D.2    Ukibe, K.3    Inai, T.4    Ohtsu, I.5    Shimoi, H.6    Takagi, H.7
  • 47
    • 84925503038 scopus 로고    scopus 로고
    • Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance
    • Ma C, Wei X, Sun C, Zhang F, Xu J, Zhao X, Bai F. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance. Appl Microbiol Biotechnol. 2015;99:2441-9.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 2441-2449
    • Ma, C.1    Wei, X.2    Sun, C.3    Zhang, F.4    Xu, J.5    Zhao, X.6    Bai, F.7
  • 48
    • 84880978562 scopus 로고    scopus 로고
    • Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress
    • Kim D, Hahn J-S. Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Appl Environ Microbiol. 2013;79:5069-77.
    • (2013) Appl Environ Microbiol , vol.79 , pp. 5069-5077
    • Kim, D.1    Hahn, J.-S.2
  • 49
    • 84900839963 scopus 로고    scopus 로고
    • Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase
    • Smith J, van Rensburg E, Görgens JF. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnol. 2014;14:41-57.
    • (2014) BMC Biotechnol , vol.14 , pp. 41-57
    • Smith, J.1    Van Rensburg, E.2    Görgens, J.F.3
  • 51
    • 84896419256 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass
    • Almario MP, Reyes LH, Kao KC. Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng. 2013;110:2616-23.
    • (2013) Biotechnol Bioeng , vol.110 , pp. 2616-2623
    • Almario, M.P.1    Reyes, L.H.2    Kao, K.C.3
  • 52
    • 84878315786 scopus 로고    scopus 로고
    • Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: Comparison to acetic acid, furfural and hydroxymethylfurfural
    • Bajwa PK, Ho CY, Chan CK, Martin VJJ, Trevors JT, Lee H. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Anton Leeuw Int J G. 2013;103:1281-95.
    • (2013) Anton Leeuw Int J G , vol.103 , pp. 1281-1295
    • Bajwa, P.K.1    Ho, C.Y.2    Chan, C.K.3    Martin, V.J.J.4    Trevors, J.T.5    Lee, H.6
  • 53
    • 66249112812 scopus 로고    scopus 로고
    • Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound
    • Lin FM, Qiao B, Yuan YJ. Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl Environ Microbiol. 2009;75:3765-76.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 3765-3776
    • Lin, F.M.1    Qiao, B.2    Yuan, Y.J.3
  • 54
    • 84896703191 scopus 로고    scopus 로고
    • Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress
    • Lv YJ, Wang X, Ma Q, Bai X, Li BZ, Zhang W, Yuan YJ. Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress. Appl Microbiol Biotechnol. 2014;98:2207-21.
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 2207-2221
    • Lv, Y.J.1    Wang, X.2    Ma, Q.3    Bai, X.4    Li, B.Z.5    Zhang, W.6    Yuan, Y.J.7
  • 55
    • 84929941635 scopus 로고    scopus 로고
    • Genome-wide screening of Saccharomyces cerevisiae genes required to foster tolerance towards industrial wheat straw hydrolysates
    • Pereira FB, Teixeira MC, Mira NP, Sá-Correia I, Domingues L. Genome-wide screening of Saccharomyces cerevisiae genes required to foster tolerance towards industrial wheat straw hydrolysates. J Ind Microbiol Biotechnol. 2014;41:1753-61.
    • (2014) J Ind Microbiol Biotechnol , vol.41 , pp. 1753-1761
    • Pereira, F.B.1    Teixeira, M.C.2    Mira, N.P.3    Sá-Correia, I.4    Domingues, L.5
  • 56
    • 84929095780 scopus 로고    scopus 로고
    • Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors
    • Cunha JT, Aguiar TQ, Romani A, Oliveira C, Domingues L. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. Bioresour Technol. 2015;191:7-16.
    • (2015) Bioresour Technol , vol.191 , pp. 7-16
    • Cunha, J.T.1    Aguiar, T.Q.2    Romani, A.3    Oliveira, C.4    Domingues, L.5
  • 57
    • 84962206825 scopus 로고    scopus 로고
    • Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering
    • In press
    • Chen Y, Stabryla L, Wei N. Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering. Appl Environ Microbiol. 2016 (In press).
    • (2016) Appl Environ Microbiol.
    • Chen, Y.1    Stabryla, L.2    Wei, N.3
  • 59
    • 79960698975 scopus 로고    scopus 로고
    • Btrim: A fast, lightweight adapter and quality trimming program for next-generation sequencing technologies
    • Kong Y. Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics. 2011;98:152-3.
    • (2011) Genomics , vol.98 , pp. 152-153
    • Kong, Y.1
  • 60
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie 2
    • Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357-9.
    • (2012) Nat Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.2
  • 61
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq - A Python framework to work with high-throughput sequencing data
    • Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166-9.
    • (2015) Bioinformatics , vol.31 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 62
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love M, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
    • (2014) Genome Biol , vol.15 , pp. 550
    • Love, M.1    Huber, W.2    Anders, S.3
  • 63
    • 84879830242 scopus 로고    scopus 로고
    • Investigating host dependence of xylose utilization in recombinant Saccharomyces cerevisiae strains using RNA-seq analysis
    • Feng X, Zhao H. Investigating host dependence of xylose utilization in recombinant Saccharomyces cerevisiae strains using RNA-seq analysis. Biotechnol Biofuels. 2013;6:96-106.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 96-106
    • Feng, X.1    Zhao, H.2
  • 64
    • 0022359150 scopus 로고
    • Saccharomyces cerevisiae whi2 mutants in stationary phase retain the properties of exponentially growing cells
    • Saul DJ, Walton EF, Sudbery PE, Carter BLA. Saccharomyces cerevisiae whi2 mutants in stationary phase retain the properties of exponentially growing cells. J Gen Microbiol. 1985;131:2245-51.
    • (1985) J Gen Microbiol , vol.131 , pp. 2245-2251
    • Saul, D.J.1    Walton, E.F.2    Sudbery, P.E.3    Carter, B.L.A.4
  • 65
    • 0019127205 scopus 로고
    • Genes which control cell-proliferation in the yeast Saccharomyces cerevisiae
    • Sudbery PE, Goodey AR, Carter BLA. Genes which control cell-proliferation in the yeast Saccharomyces cerevisiae. Nature. 1980;288:401-4.
    • (1980) Nature , vol.288 , pp. 401-404
    • Sudbery, P.E.1    Goodey, A.R.2    Carter, B.L.A.3
  • 66
    • 77952876202 scopus 로고    scopus 로고
    • Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
    • Li BZ, Yuan YJ. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2010;86:1915-24.
    • (2010) Appl Microbiol Biotechnol , vol.86 , pp. 1915-1924
    • Li, B.Z.1    Yuan, Y.J.2
  • 67
    • 0035998264 scopus 로고    scopus 로고
    • Yeast Whi2 and Psr1-phosphatase form a complex and regulate STRE-mediated gene expression
    • Kaida D, Yashiroda H, Toh-e A, Kikuchi Y. Yeast Whi2 and Psr1-phosphatase form a complex and regulate STRE-mediated gene expression. Genes Cells. 2002;7:543-52.
    • (2002) Genes Cells , vol.7 , pp. 543-552
    • Kaida, D.1    Yashiroda, H.2    Toh-E, A.3    Kikuchi, Y.4
  • 69
    • 0031717286 scopus 로고    scopus 로고
    • Ace2p, a regulator of (chitinase) expression, affects pseudohyphal production in Saccharomyces cerevisiae
    • King L, Butler G. Ace2p, a regulator of (chitinase) expression, affects pseudohyphal production in Saccharomyces cerevisiae. Curr Genet. 1998;34:9.
    • (1998) Curr Genet , vol.34 , pp. 9
    • King, L.1    Butler, G.2
  • 71
    • 29444455715 scopus 로고    scopus 로고
    • Cell-cycle control of gene expression in budding and fission yeast
    • Bähler J. Cell-cycle control of gene expression in budding and fission yeast. Annu Rev Genet. 2005;39:26.
    • (2005) Annu Rev Genet , vol.39 , pp. 26
    • Bähler, J.1
  • 72
    • 84890284546 scopus 로고    scopus 로고
    • Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase
    • Ask M, Bettiga M, Duraiswamy VR, Olsson L. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase. Biotechnol Biofuels. 2013;6:181.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 181
    • Ask, M.1    Bettiga, M.2    Duraiswamy, V.R.3    Olsson, L.4
  • 75
    • 84892934934 scopus 로고    scopus 로고
    • Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose
    • Matsushika A, Goshima T, Hoshino T. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microb Cell Fact. 2014;13:16.
    • (2014) Microb Cell Fact , vol.13 , pp. 16
    • Matsushika, A.1    Goshima, T.2    Hoshino, T.3
  • 76
    • 0028953840 scopus 로고
    • Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
    • Mumberg D, Müller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995;156:119-22.
    • (1995) Gene , vol.156 , pp. 119-122
    • Mumberg, D.1    Müller, R.2    Funk, M.3
  • 77
    • 0025848024 scopus 로고
    • Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae
    • Nikawa JI, Tsukagoshi Y, Yamashita S, Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. J Biol Chem. 1991;266:11184-91.
    • (1991) J Biol Chem , vol.266 , pp. 11184-11191
    • Nikawa, J.I.1    Tsukagoshi, Y.2    Yamashita, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.