메뉴 건너뛰기




Volumn 99, Issue 5, 2015, Pages 2441-2449

Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance

Author keywords

Acetic acid tolerance; Artificial transcription factor (ATF); Ethanol production; QDR3; Saccharomyces cerevisiae; Zinc finger protein (ZFP)

Indexed keywords

ACETIC ACID; ETHANOL; GENES; PH; PROTEINS; SUBSTRATES; TRANSCRIPTION FACTORS; YEAST; ZINC;

EID: 84925503038     PISSN: 01757598     EISSN: 14320614     Source Type: Journal    
DOI: 10.1007/s00253-014-6343-x     Document Type: Article
Times cited : (49)

References (40)
  • 1
    • 79952181277 scopus 로고    scopus 로고
    • Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3MXisFyqs7k%3D, PID: 21305697
    • Almeida JR, Runquist D, Sànchez i Nogué V, Lidén G, Gorwa-Grauslund MF (2011) Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J 6:286–299
    • (2011) Biotechnol J , vol.6 , pp. 286-299
    • Almeida, J.R.1    Runquist, D.2    Sànchez i Nogué, V.3    Lidén, G.4    Gorwa-Grauslund, M.F.5
  • 2
    • 33845442201 scopus 로고    scopus 로고
    • Engineering yeast transcription machinery for improved ethanol tolerance and production
    • COI: 1:CAS:528:DC%2BD28Xht1OntL%2FP, PID: 17158319
    • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568
    • (2006) Science , vol.314 , pp. 1565-1568
    • Alper, H.1    Moxley, J.2    Nevoigt, E.3    Fink, G.R.4    Stephanopoulos, G.5
  • 4
    • 0027237665 scopus 로고
    • A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DyaK3sXlslCruro%3D, PID: 8341614
    • Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329
    • (1993) Nucleic Acids Res , vol.21 , pp. 3329
    • Baudin, A.1    Ozier-Kalogeropoulos, O.2    Denouel, A.3    Lacroute, F.4    Cullin, C.5
  • 5
    • 84883114857 scopus 로고    scopus 로고
    • Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production
    • COI: 1:CAS:528:DC%2BC3sXhvVegs77F, PID: 23971950
    • Demeke MM, Dumortier F, Li Y, Broeckx T, Foulquié-Moreno MR, Thevelein JM (2013) Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol Biofuels 6:120
    • (2013) Biotechnol Biofuels , vol.6 , pp. 120
    • Demeke, M.M.1    Dumortier, F.2    Li, Y.3    Broeckx, T.4    Foulquié-Moreno, M.R.5    Thevelein, J.M.6
  • 6
    • 84881220384 scopus 로고    scopus 로고
    • Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement
    • COI: 1:CAS:528:DC%2BC3sXhtVGktrbF, PID: 23828602
    • Ding J, Bierma J, Smith MR, Poliner E, Wolfe C, Hadduck AN, Bakalinsky AT (2013) Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. Appl Microbiol Biotechnol 97:7405–7416
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 7405-7416
    • Ding, J.1    Bierma, J.2    Smith, M.R.3    Poliner, E.4    Wolfe, C.5    Hadduck, A.N.6    Bakalinsky, A.T.7
  • 7
    • 67650550797 scopus 로고    scopus 로고
    • Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD1MXotVKnsr0%3D, PID: 19363031
    • Eide DJ (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J Biol Chem 284:18565–18569
    • (2009) J Biol Chem , vol.284 , pp. 18565-18569
    • Eide, D.J.1
  • 8
    • 25844432253 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes
    • COI: 1:CAS:528:DC%2BD2MXhtVKis7vO, PID: 16176797
    • Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sá-Correia I (2005) Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337:95–103
    • (2005) Biochem Biophys Res Commun , vol.337 , pp. 95-103
    • Fernandes, A.R.1    Mira, N.P.2    Vargas, R.C.3    Canelhas, I.4    Sá-Correia, I.5
  • 10
    • 38049068839 scopus 로고    scopus 로고
    • Catalase T and Cu, Zn-superoxide dismutase in the aceticacid-induced programmed cell death in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD1cXpsF2gtA%3D%3D, PID: 18082141
    • Guaragnella N, Antonacci L, Giannattasio S, Marra E, Passarella S (2008) Catalase T and Cu, Zn-superoxide dismutase in the aceticacid-induced programmed cell death in Saccharomyces cerevisiae. FEBS Lett 582:210–214
    • (2008) FEBS Lett , vol.582 , pp. 210-214
    • Guaragnella, N.1    Antonacci, L.2    Giannattasio, S.3    Marra, E.4    Passarella, S.5
  • 11
    • 80053351500 scopus 로고    scopus 로고
    • Achievements and perspectives in yeast acetic acid-induced programmed cell death pathways
    • COI: 1:CAS:528:DC%2BC3MXht1ajsL%2FM, PID: 21936848
    • Guaragnella N, Antonacci L, Passarella S, Marra E, Giannattasio S (2011) Achievements and perspectives in yeast acetic acid-induced programmed cell death pathways. Biochem Soc Trans 39(5):1538–1543
    • (2011) Biochem Soc Trans , vol.39 , Issue.5 , pp. 1538-1543
    • Guaragnella, N.1    Antonacci, L.2    Passarella, S.3    Marra, E.4    Giannattasio, S.5
  • 12
    • 84867712304 scopus 로고    scopus 로고
    • Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering
    • COI: 1:CAS:528:DC%2BC38XhsFKns7rL, PID: 22085593
    • Hasunuma T, Kondo A (2012) Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 30:1207–1218
    • (2012) Biotechnol Adv , vol.30 , pp. 1207-1218
    • Hasunuma, T.1    Kondo, A.2
  • 13
    • 49349100455 scopus 로고    scopus 로고
    • Redox control and oxidative stress in yeast cells
    • COI: 1:CAS:528:DC%2BD1cXhtVarsbfN, PID: 18178164
    • Herrero E, Ros J, Bellí G, Cabiscol E (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780(11):1217–1235
    • (2008) Biochim Biophys Acta , vol.1780 , Issue.11 , pp. 1217-1235
    • Herrero, E.1    Ros, J.2    Bellí, G.3    Cabiscol, E.4
  • 14
    • 84872814927 scopus 로고    scopus 로고
    • Bioconversion of lignocellulose: inhibitors and detoxification
    • PID: 23356676
    • Jönsson LJ, Alriksson B, Nilvebrant N (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16
    • (2013) Biotechnol Biofuels , vol.6 , pp. 16
    • Jönsson, L.J.1    Alriksson, B.2    Nilvebrant, N.3
  • 15
    • 84881226766 scopus 로고    scopus 로고
    • Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5
    • PID: 23050242
    • Kitanovic A, Bonowski F, Heigwer F, Ruoff P, Kitanovic I, Ungewiss C, Wölfl S (2012) Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5. Front Oncol 2:118
    • (2012) Front Oncol , vol.2 , pp. 118
    • Kitanovic, A.1    Bonowski, F.2    Heigwer, F.3    Ruoff, P.4    Kitanovic, I.5    Ungewiss, C.6    Wölfl, S.7
  • 16
    • 77952280117 scopus 로고    scopus 로고
    • The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation
    • COI: 1:CAS:528:DC%2BC3cXptlyrsbo%3D, PID: 20478078
    • Klug A (2010) The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q Rev Biophys 43:1–21
    • (2010) Q Rev Biophys , vol.43 , pp. 1-21
    • Klug, A.1
  • 17
    • 52649115929 scopus 로고    scopus 로고
    • Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in Escherichia coli
    • COI: 1:CAS:528:DC%2BD1cXmtFSls7s%3D
    • Lee JY, Sung BH, Yu BJ, Lee JH, Lee SH, Kim MS, Koob MD, Kim MC (2008) Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in Escherichia coli. Nucleic Acids Res 36:1–10
    • (2008) Nucleic Acids Res , vol.36 , pp. 1-10
    • Lee, J.Y.1    Sung, B.H.2    Yu, B.J.3    Lee, J.H.4    Lee, S.H.5    Kim, M.S.6    Koob, M.D.7    Kim, M.C.8
  • 18
    • 79952589723 scopus 로고    scopus 로고
    • Engineering butanol-tolerance in Escherichia coli with artificial transcription factor libraries
    • COI: 1:CAS:528:DC%2BC3MXjtFSqtro%3D, PID: 21404248
    • Lee JY, Yang KS, Jang SA, Sung BH, Kim SC (2011) Engineering butanol-tolerance in Escherichia coli with artificial transcription factor libraries. Biotechnol Bioeng 108:742–749
    • (2011) Biotechnol Bioeng , vol.108 , pp. 742-749
    • Lee, J.Y.1    Yang, K.S.2    Jang, S.A.3    Sung, B.H.4    Kim, S.C.5
  • 19
    • 84886098095 scopus 로고    scopus 로고
    • Artificial transcription regulator as a tool for improvement of cellular property in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC38XhsV2jsr%2FM
    • Lee SW, Kim E, Kim JS, Oh MK (2013) Artificial transcription regulator as a tool for improvement of cellular property in Saccharomyces cerevisiae. Chem Eng Sci 103:42–49
    • (2013) Chem Eng Sci , vol.103 , pp. 42-49
    • Lee, S.W.1    Kim, E.2    Kim, J.S.3    Oh, M.K.4
  • 20
    • 84896703191 scopus 로고    scopus 로고
    • Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress
    • COI: 1:CAS:528:DC%2BC2cXpvVyhuw%3D%3D, PID: 24442506
    • Lv YJ, Wang X, Ma Q, Bai X, Li BZ, Zhang W, Yuan YJ (2014) Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress. Appl Microbiol Biotechnol 98:2207–2221
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 2207-2221
    • Lv, Y.J.1    Wang, X.2    Ma, Q.3    Bai, X.4    Li, B.Z.5    Zhang, W.6    Yuan, Y.J.7
  • 21
    • 34548775911 scopus 로고    scopus 로고
    • Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid
    • COI: 1:CAS:528:DC%2BD2sXhtVKls7nO, PID: 17620418
    • Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27:6446–6456
    • (2007) Mol Cell Biol , vol.27 , pp. 6446-6456
    • Mollapour, M.1    Piper, P.W.2
  • 22
    • 4444290337 scopus 로고    scopus 로고
    • Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative
    • COI: 1:CAS:528:DC%2BD2cXnsVKmu78%3D, PID: 15334557
    • Mollapour M, Fong D, Balakrishnan K, Harris N, Thompson S, Schüller C, Kuchler K, Piper PW (2004) Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative. Yeast 21(11):927–946
    • (2004) Yeast , vol.21 , Issue.11 , pp. 927-946
    • Mollapour, M.1    Fong, D.2    Balakrishnan, K.3    Harris, N.4    Thompson, S.5    Schüller, C.6    Kuchler, K.7    Piper, P.W.8
  • 23
    • 77953022341 scopus 로고    scopus 로고
    • A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation
    • COI: 1:CAS:528:DC%2BC3cXntVegsLc%3D, PID: 20346409
    • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331
    • (2010) Metab Eng , vol.12 , pp. 307-331
    • Nicolaou, S.A.1    Gaida, S.M.2    Papoutsakis, E.T.3
  • 24
    • 84883795504 scopus 로고    scopus 로고
    • Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast
    • COI: 1:CAS:528:DC%2BD1MXlsFGhsw%3D%3D, PID: 19108609
    • Nishizawa M, Komai T, Katou Y, Shirahige K, Ito T, Toh-E A (2008) Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast. PLoS Biol 6:2817–2830
    • (2008) PLoS Biol , vol.6 , pp. 2817-2830
    • Nishizawa, M.1    Komai, T.2    Katou, Y.3    Shirahige, K.4    Ito, T.5    Toh-E, A.6
  • 25
    • 34250830938 scopus 로고    scopus 로고
    • A phylogenetic analysis of the sugar porters in hemiascomycetous yeasts
    • COI: 1:CAS:528:DC%2BD2sXmvFSms7g%3D, PID: 17587872
    • Palma M, Goffeau A, Spencer-Martins I, Baret PV (2007) A phylogenetic analysis of the sugar porters in hemiascomycetous yeasts. J Mol Microbiol Biotechnol 12:241–248
    • (2007) J Mol Microbiol Biotechnol , vol.12 , pp. 241-248
    • Palma, M.1    Goffeau, A.2    Spencer-Martins, I.3    Baret, P.V.4
  • 26
    • 10744225041 scopus 로고    scopus 로고
    • Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors
    • COI: 1:CAS:528:DC%2BD3sXns1Clsbo%3D, PID: 12960965
    • Park KS, Lee DK, Lee H, Lee Y, Jang YS, Kim YH, Kim JS (2003) Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat Biotechnol 21:1208–1214
    • (2003) Nat Biotechnol , vol.21 , pp. 1208-1214
    • Park, K.S.1    Lee, D.K.2    Lee, H.3    Lee, Y.4    Jang, Y.S.5    Kim, Y.H.6    Kim, J.S.7
  • 27
    • 22544461606 scopus 로고    scopus 로고
    • Phenotypic alteration and target gene identification using combinatorial libraries of zinc finger proteins in prokaryotic cells
    • COI: 1:CAS:528:DC%2BD2MXmslCrt74%3D, PID: 16030245
    • Park KS, Jang YS, Le H, Kim JS (2005) Phenotypic alteration and target gene identification using combinatorial libraries of zinc finger proteins in prokaryotic cells. J Bacteriol 187:5496–5499
    • (2005) J Bacteriol , vol.187 , pp. 5496-5499
    • Park, K.S.1    Jang, Y.S.2    Le, H.3    Kim, J.S.4
  • 29
    • 0142026429 scopus 로고    scopus 로고
    • Response of genes associated with mitochondrial function to mild heat stress in yeast Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD3sXpt1KitLw%3D, PID: 14561723
    • Sakaki K, Tashiro K, Kuhara S, Mihara K (2003) Response of genes associated with mitochondrial function to mild heat stress in yeast Saccharomyces cerevisiae. J Biochem 134(3):373–384
    • (2003) J Biochem , vol.134 , Issue.3 , pp. 373-384
    • Sakaki, K.1    Tashiro, K.2    Kuhara, S.3    Mihara, K.4
  • 30
    • 79957871574 scopus 로고    scopus 로고
    • Acetate but not propionate induces oxidative stress in bakers’ yeast Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3MXnvFemtb4%3D, PID: 21605494
    • Semchyshyn HM, Abrat OB, Miedzobrodzki J, Inoue Y, Lushchak VI (2011) Acetate but not propionate induces oxidative stress in bakers’ yeast Saccharomyces cerevisiae. Redox Rep 16:15–23
    • (2011) Redox Rep , vol.16 , pp. 15-23
    • Semchyshyn, H.M.1    Abrat, O.B.2    Miedzobrodzki, J.3    Inoue, Y.4    Lushchak, V.I.5
  • 31
    • 84880344676 scopus 로고    scopus 로고
    • Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii
    • COI: 1:CAS:528:DC%2BC3sXht12gtb%2FO, PID: 23856006
    • Stratford M, Steels H, Nebe-von-Caron G, Novodvorska M, Hayer K, Archer DB (2013) Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailii. Int J Food Microbiol 166:126–134
    • (2013) Int J Food Microbiol , vol.166 , pp. 126-134
    • Stratford, M.1    Steels, H.2    Nebe-von-Caron, G.3    Novodvorska, M.4    Hayer, K.5    Archer, D.B.6
  • 33
    • 11844282218 scopus 로고    scopus 로고
    • The yeast multidrug transporter Qdr3 (Ybr043c): localization and role as a determinant of resistance to quinidine, barban, cisplatin, and bleomycin
    • COI: 1:CAS:528:DC%2BD2MXksFGhtw%3D%3D, PID: 15649438
    • Tenreiro S, Vargas RC, Teixeira MC, Magnani V, Sá-Correia I (2005) The yeast multidrug transporter Qdr3 (Ybr043c): localization and role as a determinant of resistance to quinidine, barban, cisplatin, and bleomycin. Biochem Biophys Res Commun 327:952–959
    • (2005) Biochem Biophys Res Commun , vol.327 , pp. 952-959
    • Tenreiro, S.1    Vargas, R.C.2    Teixeira, M.C.3    Magnani, V.4    Sá-Correia, I.5
  • 34
    • 84870830687 scopus 로고    scopus 로고
    • Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC38Xhs1yktrnL
    • Ullah A, Orij R, Brul S, Smits GJ (2012) Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 78:8377–8387
    • (2012) Appl Microbiol Biotechnol , vol.78 , pp. 8377-8387
    • Ullah, A.1    Orij, R.2    Brul, S.3    Smits, G.J.4
  • 35
    • 0029802611 scopus 로고    scopus 로고
    • The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation
    • van den Berg MA, de Jong-Gubbels P, Kortland CJ, van Dijken JP, Pronk JT, Steensma HY (1996) The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Bio Chem 271(46):28953–28959
    • (1996) J Bio Chem , vol.271 , Issue.46 , pp. 28953-28959
    • van den Berg, M.A.1    de Jong-Gubbels, P.2    Kortland, C.J.3    van Dijken, J.P.4    Pronk, J.T.5    Steensma, H.Y.6
  • 36
    • 84903594945 scopus 로고    scopus 로고
    • High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions
    • Woo JM, Yang KM, Kim SU, Blank LM, Park JB (2014) High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions. Appl Microbiol Biotechnol 98:1–10
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 1-10
    • Woo, J.M.1    Yang, K.M.2    Kim, S.U.3    Blank, L.M.4    Park, J.B.5
  • 37
    • 79959248684 scopus 로고    scopus 로고
    • Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance
    • COI: 1:CAS:528:DC%2BC3MXnsFKmsrk%3D, PID: 21437883
    • Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W (2011) Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Biotechnol Bioeng 108:1776–1787
    • (2011) Biotechnol Bioeng , vol.108 , pp. 1776-1787
    • Yang, J.1    Bae, J.Y.2    Lee, Y.M.3    Kwon, H.4    Moon, H.Y.5    Kang, H.A.6    Yee, S.B.7    Kim, W.8    Choi, W.9
  • 38
    • 78651428997 scopus 로고    scopus 로고
    • Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene
    • COI: 1:CAS:528:DC%2BC3MXmsl2ktw%3D%3D, PID: 20953665
    • Zhang JG, Liu XY, He XP, Guo XN, Lu Y, Zhang BR (2011) Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene. Biotechnol Lett 33:277–284
    • (2011) Biotechnol Lett , vol.33 , pp. 277-284
    • Zhang, J.G.1    Liu, X.Y.2    He, X.P.3    Guo, X.N.4    Lu, Y.5    Zhang, B.R.6
  • 39
    • 70349775063 scopus 로고    scopus 로고
    • Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production
    • COI: 1:CAS:528:DC%2BD1MXhtlCntr7P, PID: 19446584
    • Zhao XQ, Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144:23–30
    • (2009) J Biotechnol , vol.144 , pp. 23-30
    • Zhao, X.Q.1    Bai, F.W.2
  • 40
    • 84874118739 scopus 로고    scopus 로고
    • Comparative functional genomics to reveal the molecular basis of phenotypic diversities and guide the genetic breeding of industrial yeast strains
    • COI: 1:CAS:528:DC%2BC3sXitlCgs7Y%3D, PID: 23344998
    • Zheng DQ, Liu TZ, Chen J, Zhang K, Li O, Zhu L, Zhao YH, Wu XC, Wang PM (2013) Comparative functional genomics to reveal the molecular basis of phenotypic diversities and guide the genetic breeding of industrial yeast strains. Appl Microbiol Biotechnol 97:2067–2076
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 2067-2076
    • Zheng, D.Q.1    Liu, T.Z.2    Chen, J.3    Zhang, K.4    Li, O.5    Zhu, L.6    Zhao, Y.H.7    Wu, X.C.8    Wang, P.M.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.