메뉴 건너뛰기




Volumn 9, Issue 1, 2016, Pages

Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae

Author keywords

Acetic acid tolerance; Bioethanol production; Inbreeding; Polygenic analysis; Pooled segregant whole genome sequence analysis; QTL mapping; Saccharomyces cerevisiae

Indexed keywords

ACETIC ACID; BIOETHANOL; BIOINFORMATICS; DNA SEQUENCES; ETHANOL; GENES; GENETIC ENGINEERING; MAPPING; ORGANIC ACIDS; PH;

EID: 84954025882     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-015-0421-x     Document Type: Article
Times cited : (79)

References (55)
  • 1
    • 77952169542 scopus 로고    scopus 로고
    • Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae
    • Casey E, Sedlak M, Ho NW, Mosier NS. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res. 2010;10:385-93.
    • (2010) FEMS Yeast Res , vol.10 , pp. 385-393
    • Casey, E.1    Sedlak, M.2    Ho, N.W.3    Mosier, N.S.4
  • 2
    • 79959587185 scopus 로고    scopus 로고
    • Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids
    • Huang H, Guo X, Li D, Liu M, Wu J, Ren H. Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids. Bioresour Technol. 2011;102:7486-93.
    • (2011) Bioresour Technol , vol.102 , pp. 7486-7493
    • Huang, H.1    Guo, X.2    Li, D.3    Liu, M.4    Wu, J.5    Ren, H.6
  • 3
    • 0035046617 scopus 로고    scopus 로고
    • Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium
    • Narendranath NV, Thomas KC, Ingledew WM. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol. 2001;26:171-7.
    • (2001) J Ind Microbiol Biotechnol , vol.26 , pp. 171-177
    • Narendranath, N.V.1    Thomas, K.C.2    Ingledew, W.M.3
  • 4
    • 0031214487 scopus 로고    scopus 로고
    • Acetic acid - Friend of foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae
    • Taherzadeh MJ, Niklasson C, Lidén G. Acetic acid - friend of foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae. Chem Eng Sci. 1997;52:2653-9.
    • (1997) Chem Eng Sci , vol.52 , pp. 2653-2659
    • Taherzadeh, M.J.1    Niklasson, C.2    Lidén, G.3
  • 6
    • 64549126134 scopus 로고    scopus 로고
    • Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain
    • Bellissimi E, van Dijken JP, Pronk JT, van Maris AJA. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res. 2009;9:358-64.
    • (2009) FEMS Yeast Res , vol.9 , pp. 358-364
    • Bellissimi, E.1    Van Dijken, J.P.2    Pronk, J.T.3    Van Maris, A.J.A.4
  • 7
    • 84874487785 scopus 로고    scopus 로고
    • Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. Influence of pH and acetic acid on ethanol production
    • Matsushika A, Sawayama S. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production. Appl Biochem Biotechnol. 2012;168:2094-104.
    • (2012) Appl Biochem Biotechnol , vol.168 , pp. 2094-2104
    • Matsushika, A.1    Sawayama, S.2
  • 8
    • 34547868108 scopus 로고    scopus 로고
    • Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae
    • Abbott DA, Knijnenburg TA, de Poorter LM, Reinders MJ, Pronk JT, van Maris AJ. Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae. FEMS Yeast Res. 2007;7:819-33.
    • (2007) FEMS Yeast Res , vol.7 , pp. 819-833
    • Abbott, D.A.1    Knijnenburg, T.A.2    De Poorter, L.M.3    Reinders, M.J.4    Pronk, J.T.5    Van Maris, A.J.6
  • 9
    • 77958135565 scopus 로고    scopus 로고
    • Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
    • Mira NP, Palma M, Guerreiro JF, Sa-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact. 2010;9:79-91.
    • (2010) Microb Cell Fact , vol.9 , pp. 79-91
    • Mira, N.P.1    Palma, M.2    Guerreiro, J.F.3    Sa-Correia, I.4
  • 10
    • 77958169154 scopus 로고    scopus 로고
    • Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid
    • Mira NP, Becker JD, Sa-Correia I. Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS. 2010;14:587-601.
    • (2010) OMICS , vol.14 , pp. 587-601
    • Mira, N.P.1    Becker, J.D.2    Sa-Correia, I.3
  • 11
    • 77952876202 scopus 로고    scopus 로고
    • Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
    • Li BZ, Yuan YJ. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2010;86:1915-24.
    • (2010) Appl Microbiol Biotechnol , vol.86 , pp. 1915-1924
    • Li, B.Z.1    Yuan, Y.J.2
  • 12
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact. 2011;10:2.
    • (2011) Microb Cell Fact , vol.10 , pp. 2
    • Hasunuma, T.1    Sanda, T.2    Yamada, R.3    Yoshimura, K.4    Ishii, J.5    Kondo, A.6
  • 13
    • 78651428997 scopus 로고    scopus 로고
    • Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene
    • Zhang JG, Liu XY, He XP, Guo XN, Lu Y, Zhang BR. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene. Biotechnol Lett. 2011;33:277-84.
    • (2011) Biotechnol Lett , vol.33 , pp. 277-284
    • Zhang, J.G.1    Liu, X.Y.2    He, X.P.3    Guo, X.N.4    Lu, Y.5    Zhang, B.R.6
  • 14
    • 84864575136 scopus 로고    scopus 로고
    • Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass
    • Koppram R, Albers E, Olsson L. Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels. 2012;5:32.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 32
    • Koppram, R.1    Albers, E.2    Olsson, L.3
  • 15
    • 79954422577 scopus 로고    scopus 로고
    • Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae
    • Wright J, Bellissimi E, de Hulster E, Wagner A, Pronk JT, van Maris AJ. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res. 2011;11:299-306.
    • (2011) FEMS Yeast Res , vol.11 , pp. 299-306
    • Wright, J.1    Bellissimi, E.2    De Hulster, E.3    Wagner, A.4    Pronk, J.T.5    Van Maris, A.J.6
  • 16
    • 0037146578 scopus 로고    scopus 로고
    • Finding genes that underlie complex traits
    • Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underlie complex traits. Science. 2002;298:2345-9.
    • (2002) Science , vol.298 , pp. 2345-2349
    • Glazier, A.M.1    Nadeau, J.H.2    Aitman, T.J.3
  • 18
    • 0035380102 scopus 로고    scopus 로고
    • Finding the molecular basis of quantitative traits: Successes and pitfalls
    • Flint J, Mott R. Finding the molecular basis of quantitative traits: successes and pitfalls. Nat Rev Genet. 2001;2:437-45.
    • (2001) Nat Rev Genet , vol.2 , pp. 437-445
    • Flint, J.1    Mott, R.2
  • 19
    • 28444467392 scopus 로고    scopus 로고
    • Quantitative trait loci mapped to single-nucleotide resolution in yeast
    • Deutschbauer AM, Davis RW. Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat Genet. 2005;37:1333-40.
    • (2005) Nat Genet , vol.37 , pp. 1333-1340
    • Deutschbauer, A.M.1    Davis, R.W.2
  • 24
    • 84878695412 scopus 로고    scopus 로고
    • Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation
    • Hubmann G, Mathe L, Foulquie-Moreno MR, Duitama J, Nevoigt E, Thevelein JM. Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation. Biotechnol Biofuels. 2013;6:87.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 87
    • Hubmann, G.1    Mathe, L.2    Foulquie-Moreno, M.R.3    Duitama, J.4    Nevoigt, E.5    Thevelein, J.M.6
  • 25
    • 84884660819 scopus 로고    scopus 로고
    • QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing
    • Yang Y, Foulquie-Moreno MR, Clement L, Erdei E, Tanghe A, Schaerlaekens K, Dumortier F, Thevelein JM. QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing. PLoS Genet. 2013;9:e1003693.
    • (2013) PLoS Genet , vol.9 , pp. e1003693
    • Yang, Y.1    Foulquie-Moreno, M.R.2    Clement, L.3    Erdei, E.4    Tanghe, A.5    Schaerlaekens, K.6    Dumortier, F.7    Thevelein, J.M.8
  • 27
    • 84879119602 scopus 로고    scopus 로고
    • Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
    • Demeke MM, Dietz H, Li Y, Foulquie-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Liden G, Dumortier F, et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels. 2013;6:89.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 89
    • Demeke, M.M.1    Dietz, H.2    Li, Y.3    Foulquie-Moreno, M.R.4    Mutturi, S.5    Deprez, S.6    Den Abt, T.7    Bonini, B.M.8    Liden, G.9    Dumortier, F.10
  • 31
    • 25844432253 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes
    • Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sa-Correia I. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun. 2005;337:95-103.
    • (2005) Biochem Biophys Res Commun , vol.337 , pp. 95-103
    • Fernandes, A.R.1    Mira, N.P.2    Vargas, R.C.3    Canelhas, I.4    Sa-Correia, I.5
  • 33
    • 84883114857 scopus 로고    scopus 로고
    • Combining inhibitor tolerance and d-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production
    • Demeke MM, Dumortier F, Li Y, Broeckx T, Foulquie-Moreno MR, Thevelein JM. Combining inhibitor tolerance and d-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol Biofuels. 2013;6:120.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 120
    • Demeke, M.M.1    Dumortier, F.2    Li, Y.3    Broeckx, T.4    Foulquie-Moreno, M.R.5    Thevelein, J.M.6
  • 34
    • 77958162502 scopus 로고    scopus 로고
    • Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: A genome-wide view
    • Mira NP, Teixeira MC, Sa-Correia I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS. 2010;14:525-40.
    • (2010) OMICS , vol.14 , pp. 525-540
    • Mira, N.P.1    Teixeira, M.C.2    Sa-Correia, I.3
  • 35
    • 84868611282 scopus 로고    scopus 로고
    • Overexpression of HAA1 gene encoding transcriptional activator enhances acetic acid tolerance in Saccharomyces cerevisiae
    • Tanaka K, Ishii Y, Ogawa J, Shima J. Overexpression of HAA1 gene encoding transcriptional activator enhances acetic acid tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol. 2012;78:8161-3.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 8161-8163
    • Tanaka, K.1    Ishii, Y.2    Ogawa, J.3    Shima, J.4
  • 36
    • 33747337558 scopus 로고    scopus 로고
    • Yeast genes involved in response to lactic acid and acetic acid: Acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
    • Kawahata M, Masaki K, Fujii T, Iefuji H. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 2006;6:924-36.
    • (2006) FEMS Yeast Res , vol.6 , pp. 924-936
    • Kawahata, M.1    Masaki, K.2    Fujii, T.3    Iefuji, H.4
  • 37
    • 0029860016 scopus 로고    scopus 로고
    • Identification of the structural gene for glyoxalase I from Saccharomyces cerevisiae
    • Inoue Y, Kimura A. Identification of the structural gene for glyoxalase I from Saccharomyces cerevisiae. J Biol Chem. 1996;271:25958-65.
    • (1996) J Biol Chem , vol.271 , pp. 25958-25965
    • Inoue, Y.1    Kimura, A.2
  • 38
    • 16244386203 scopus 로고    scopus 로고
    • The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae
    • Aguilera J, Rodriguez-Vargas S, Prieto JA. The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae. Mol Microbiol. 2005;56:228-39.
    • (2005) Mol Microbiol , vol.56 , pp. 228-239
    • Aguilera, J.1    Rodriguez-Vargas, S.2    Prieto, J.A.3
  • 39
    • 33751278445 scopus 로고    scopus 로고
    • Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae
    • Mollapour M, Piper PW. Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res. 2006;6:1274-80.
    • (2006) FEMS Yeast Res , vol.6 , pp. 1274-1280
    • Mollapour, M.1    Piper, P.W.2
  • 40
    • 34548775911 scopus 로고    scopus 로고
    • Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid
    • Mollapour M, Piper PW. Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol. 2007;27:6446-56.
    • (2007) Mol Cell Biol , vol.27 , pp. 6446-6456
    • Mollapour, M.1    Piper, P.W.2
  • 41
    • 79957871574 scopus 로고    scopus 로고
    • Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae
    • Semchyshyn HM, Abrat OB, Miedzobrodzki J, Inoue Y, Lushchak VI. Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae. Redox Rep. 2011;16:15-23.
    • (2011) Redox Rep , vol.16 , pp. 15-23
    • Semchyshyn, H.M.1    Abrat, O.B.2    Miedzobrodzki, J.3    Inoue, Y.4    Lushchak, V.I.5
  • 42
    • 0024435602 scopus 로고
    • The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein
    • Buchman C, Skroch P, Welch J, Fogel S, Karin M. The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein. Mol Cell Biol. 1989;9:4091-5.
    • (1989) Mol Cell Biol , vol.9 , pp. 4091-4095
    • Buchman, C.1    Skroch, P.2    Welch, J.3    Fogel, S.4    Karin, M.5
  • 43
    • 0035914449 scopus 로고    scopus 로고
    • Haa1, a protein homologous to the copper-regulated transcription factor Ace1, is a novel transcriptional activator
    • Keller G, Ray E, Brown PO, Winge DR. Haa1, a protein homologous to the copper-regulated transcription factor Ace1, is a novel transcriptional activator. J Biol Chem. 2001;276:38697-702.
    • (2001) J Biol Chem , vol.276 , pp. 38697-38702
    • Keller, G.1    Ray, E.2    Brown, P.O.3    Winge, D.R.4
  • 46
    • 84887606590 scopus 로고    scopus 로고
    • Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae
    • Vandenbosch D, De Canck E, Dhondt I, Rigole P, Nelis HJ, Coenye T. Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae. FEMS Yeast Res. 2013;13:720-30.
    • (2013) FEMS Yeast Res , vol.13 , pp. 720-730
    • Vandenbosch, D.1    De Canck, E.2    Dhondt, I.3    Rigole, P.4    Nelis, H.J.5    Coenye, T.6
  • 48
    • 0025978950 scopus 로고
    • Micromanipulation and dissection of asci
    • Sherman F, Hicks J. Micromanipulation and dissection of asci. Methods Enzymol. 1991;194:21-37.
    • (1991) Methods Enzymol , vol.194 , pp. 21-37
    • Sherman, F.1    Hicks, J.2
  • 49
    • 44949267924 scopus 로고
    • Rapid assessment of S. Cerevisiae mating type by PCR
    • Huxley C, Green ED, Dunham I. Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet. 1990;6:236.
    • (1990) Trends Genet , vol.6 , pp. 236
    • Huxley, C.1    Green, E.D.2    Dunham, I.3
  • 50
    • 0023481280 scopus 로고
    • A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli
    • Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57:267-72.
    • (1987) Gene , vol.57 , pp. 267-272
    • Hoffman, C.S.1    Winston, F.2
  • 51
    • 0028954118 scopus 로고
    • Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure
    • Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995;11:355-60.
    • (1995) Yeast , vol.11 , pp. 355-360
    • Gietz, R.D.1    Schiestl, R.H.2    Willems, A.R.3    Woods, R.A.4
  • 53
    • 0029871347 scopus 로고    scopus 로고
    • PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. Cerevisiae
    • Wach A. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast. 1996;12:259-65.
    • (1996) Yeast , vol.12 , pp. 259-265
    • Wach, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.