-
1
-
-
77952169542
-
Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae
-
Casey E, Sedlak M, Ho NW, Mosier NS. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res. 2010;10:385-93.
-
(2010)
FEMS Yeast Res
, vol.10
, pp. 385-393
-
-
Casey, E.1
Sedlak, M.2
Ho, N.W.3
Mosier, N.S.4
-
2
-
-
79959587185
-
Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids
-
Huang H, Guo X, Li D, Liu M, Wu J, Ren H. Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids. Bioresour Technol. 2011;102:7486-93.
-
(2011)
Bioresour Technol
, vol.102
, pp. 7486-7493
-
-
Huang, H.1
Guo, X.2
Li, D.3
Liu, M.4
Wu, J.5
Ren, H.6
-
3
-
-
0035046617
-
Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium
-
Narendranath NV, Thomas KC, Ingledew WM. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol. 2001;26:171-7.
-
(2001)
J Ind Microbiol Biotechnol
, vol.26
, pp. 171-177
-
-
Narendranath, N.V.1
Thomas, K.C.2
Ingledew, W.M.3
-
4
-
-
0031214487
-
Acetic acid - Friend of foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae
-
Taherzadeh MJ, Niklasson C, Lidén G. Acetic acid - friend of foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae. Chem Eng Sci. 1997;52:2653-9.
-
(1997)
Chem Eng Sci
, vol.52
, pp. 2653-2659
-
-
Taherzadeh, M.J.1
Niklasson, C.2
Lidén, G.3
-
5
-
-
33947286326
-
Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
-
Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Lidén G, Gorwa-Grausland MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2007;82:340-9.
-
(2007)
J Chem Technol Biotechnol
, vol.82
, pp. 340-349
-
-
Almeida, J.R.M.1
Modig, T.2
Petersson, A.3
Hahn-Hagerdal, B.4
Lidén, G.5
Gorwa-Grausland, M.F.6
-
6
-
-
64549126134
-
Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain
-
Bellissimi E, van Dijken JP, Pronk JT, van Maris AJA. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res. 2009;9:358-64.
-
(2009)
FEMS Yeast Res
, vol.9
, pp. 358-364
-
-
Bellissimi, E.1
Van Dijken, J.P.2
Pronk, J.T.3
Van Maris, A.J.A.4
-
7
-
-
84874487785
-
Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. Influence of pH and acetic acid on ethanol production
-
Matsushika A, Sawayama S. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production. Appl Biochem Biotechnol. 2012;168:2094-104.
-
(2012)
Appl Biochem Biotechnol
, vol.168
, pp. 2094-2104
-
-
Matsushika, A.1
Sawayama, S.2
-
8
-
-
34547868108
-
Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae
-
Abbott DA, Knijnenburg TA, de Poorter LM, Reinders MJ, Pronk JT, van Maris AJ. Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae. FEMS Yeast Res. 2007;7:819-33.
-
(2007)
FEMS Yeast Res
, vol.7
, pp. 819-833
-
-
Abbott, D.A.1
Knijnenburg, T.A.2
De Poorter, L.M.3
Reinders, M.J.4
Pronk, J.T.5
Van Maris, A.J.6
-
9
-
-
77958135565
-
Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
-
Mira NP, Palma M, Guerreiro JF, Sa-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact. 2010;9:79-91.
-
(2010)
Microb Cell Fact
, vol.9
, pp. 79-91
-
-
Mira, N.P.1
Palma, M.2
Guerreiro, J.F.3
Sa-Correia, I.4
-
10
-
-
77958169154
-
Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid
-
Mira NP, Becker JD, Sa-Correia I. Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS. 2010;14:587-601.
-
(2010)
OMICS
, vol.14
, pp. 587-601
-
-
Mira, N.P.1
Becker, J.D.2
Sa-Correia, I.3
-
11
-
-
77952876202
-
Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
-
Li BZ, Yuan YJ. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2010;86:1915-24.
-
(2010)
Appl Microbiol Biotechnol
, vol.86
, pp. 1915-1924
-
-
Li, B.Z.1
Yuan, Y.J.2
-
12
-
-
78650995732
-
Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
-
Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact. 2011;10:2.
-
(2011)
Microb Cell Fact
, vol.10
, pp. 2
-
-
Hasunuma, T.1
Sanda, T.2
Yamada, R.3
Yoshimura, K.4
Ishii, J.5
Kondo, A.6
-
13
-
-
78651428997
-
Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene
-
Zhang JG, Liu XY, He XP, Guo XN, Lu Y, Zhang BR. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene. Biotechnol Lett. 2011;33:277-84.
-
(2011)
Biotechnol Lett
, vol.33
, pp. 277-284
-
-
Zhang, J.G.1
Liu, X.Y.2
He, X.P.3
Guo, X.N.4
Lu, Y.5
Zhang, B.R.6
-
14
-
-
84864575136
-
Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass
-
Koppram R, Albers E, Olsson L. Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels. 2012;5:32.
-
(2012)
Biotechnol Biofuels
, vol.5
, pp. 32
-
-
Koppram, R.1
Albers, E.2
Olsson, L.3
-
15
-
-
79954422577
-
Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae
-
Wright J, Bellissimi E, de Hulster E, Wagner A, Pronk JT, van Maris AJ. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res. 2011;11:299-306.
-
(2011)
FEMS Yeast Res
, vol.11
, pp. 299-306
-
-
Wright, J.1
Bellissimi, E.2
De Hulster, E.3
Wagner, A.4
Pronk, J.T.5
Van Maris, A.J.6
-
16
-
-
0037146578
-
Finding genes that underlie complex traits
-
Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underlie complex traits. Science. 2002;298:2345-9.
-
(2002)
Science
, vol.298
, pp. 2345-2349
-
-
Glazier, A.M.1
Nadeau, J.H.2
Aitman, T.J.3
-
17
-
-
0037149488
-
Dissecting the architecture of a quantitative trait locus in yeast
-
Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefner PJ, McCusker JH, Davis RW. Dissecting the architecture of a quantitative trait locus in yeast. Nature. 2002;416:326-30.
-
(2002)
Nature
, vol.416
, pp. 326-330
-
-
Steinmetz, L.M.1
Sinha, H.2
Richards, D.R.3
Spiegelman, J.I.4
Oefner, P.J.5
McCusker, J.H.6
Davis, R.W.7
-
18
-
-
0035380102
-
Finding the molecular basis of quantitative traits: Successes and pitfalls
-
Flint J, Mott R. Finding the molecular basis of quantitative traits: successes and pitfalls. Nat Rev Genet. 2001;2:437-45.
-
(2001)
Nat Rev Genet
, vol.2
, pp. 437-445
-
-
Flint, J.1
Mott, R.2
-
19
-
-
28444467392
-
Quantitative trait loci mapped to single-nucleotide resolution in yeast
-
Deutschbauer AM, Davis RW. Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat Genet. 2005;37:1333-40.
-
(2005)
Nat Genet
, vol.37
, pp. 1333-1340
-
-
Deutschbauer, A.M.1
Davis, R.W.2
-
20
-
-
77951143253
-
Dissection of genetically complex traits with extremely large pools of yeast segregants
-
Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy AA, Kruglyak L. Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature. 2010;464:1039-42.
-
(2010)
Nature
, vol.464
, pp. 1039-1042
-
-
Ehrenreich, I.M.1
Torabi, N.2
Jia, Y.3
Kent, J.4
Martis, S.5
Shapiro, J.A.6
Gresham, D.7
Caudy, A.A.8
Kruglyak, L.9
-
21
-
-
84860571592
-
Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis
-
Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang Y, Demeke M, Foulquie-Moreno MR, Goovaerts A, Souvereyns K, et al. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res. 2012;22:975-84.
-
(2012)
Genome Res
, vol.22
, pp. 975-984
-
-
Swinnen, S.1
Schaerlaekens, K.2
Pais, T.3
Claesen, J.4
Hubmann, G.5
Yang, Y.6
Demeke, M.7
Foulquie-Moreno, M.R.8
Goovaerts, A.9
Souvereyns, K.10
-
22
-
-
84879626192
-
Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast
-
Pais TM, Foulquie-Moreno MR, Hubmann G, Duitama J, Swinnen S, Goovaerts A, Yang Y, Dumortier F, Thevelein JM. Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast. PLoS Genet. 2013;9:e1003548.
-
(2013)
PLoS Genet
, vol.9
, pp. e1003548
-
-
Pais, T.M.1
Foulquie-Moreno, M.R.2
Hubmann, G.3
Duitama, J.4
Swinnen, S.5
Goovaerts, A.6
Yang, Y.7
Dumortier, F.8
Thevelein, J.M.9
-
23
-
-
84876383360
-
Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering
-
Hubmann G, Foulquie-Moreno MR, Nevoigt E, Duitama J, Meurens N, Pais TM, Mathe L, Saerens S, Nguyen HT, Swinnen S, et al. Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering. Metab Eng. 2013;17:68-81.
-
(2013)
Metab Eng
, vol.17
, pp. 68-81
-
-
Hubmann, G.1
Foulquie-Moreno, M.R.2
Nevoigt, E.3
Duitama, J.4
Meurens, N.5
Pais, T.M.6
Mathe, L.7
Saerens, S.8
Nguyen, H.T.9
Swinnen, S.10
-
24
-
-
84878695412
-
Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation
-
Hubmann G, Mathe L, Foulquie-Moreno MR, Duitama J, Nevoigt E, Thevelein JM. Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation. Biotechnol Biofuels. 2013;6:87.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 87
-
-
Hubmann, G.1
Mathe, L.2
Foulquie-Moreno, M.R.3
Duitama, J.4
Nevoigt, E.5
Thevelein, J.M.6
-
25
-
-
84884660819
-
QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing
-
Yang Y, Foulquie-Moreno MR, Clement L, Erdei E, Tanghe A, Schaerlaekens K, Dumortier F, Thevelein JM. QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing. PLoS Genet. 2013;9:e1003693.
-
(2013)
PLoS Genet
, vol.9
, pp. e1003693
-
-
Yang, Y.1
Foulquie-Moreno, M.R.2
Clement, L.3
Erdei, E.4
Tanghe, A.5
Schaerlaekens, K.6
Dumortier, F.7
Thevelein, J.M.8
-
26
-
-
79956073707
-
Revealing the genetic structure of a trait by sequencing a population under selection
-
Parts L, Cubillos FA, Warringer J, Jain K, Salinas F, Bumpstead SJ, Molin M, Zia A, Simpson JT, Quail MA, et al. Revealing the genetic structure of a trait by sequencing a population under selection. Genome Res. 2011;21:1131-8.
-
(2011)
Genome Res
, vol.21
, pp. 1131-1138
-
-
Parts, L.1
Cubillos, F.A.2
Warringer, J.3
Jain, K.4
Salinas, F.5
Bumpstead, S.J.6
Molin, M.7
Zia, A.8
Simpson, J.T.9
Quail, M.A.10
-
27
-
-
84879119602
-
Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
-
Demeke MM, Dietz H, Li Y, Foulquie-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Liden G, Dumortier F, et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels. 2013;6:89.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 89
-
-
Demeke, M.M.1
Dietz, H.2
Li, Y.3
Foulquie-Moreno, M.R.4
Mutturi, S.5
Deprez, S.6
Den Abt, T.7
Bonini, B.M.8
Liden, G.9
Dumortier, F.10
-
28
-
-
84858386071
-
Fosmid-based whole genome haplotyping of a HapMap trio child: Evaluation of single individual haplotyping techniques
-
Duitama J, McEwen GK, Huebsch T, Palczewski S, Schulz S, Verstrepen K, Suk EK, Hoehe MR. Fosmid-based whole genome haplotyping of a HapMap trio child: evaluation of single individual haplotyping techniques. Nucleic Acids Res. 2012;40:2041-53.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 2041-2053
-
-
Duitama, J.1
McEwen, G.K.2
Huebsch, T.3
Palczewski, S.4
Schulz, S.5
Verstrepen, K.6
Suk, E.K.7
Hoehe, M.R.8
-
29
-
-
84874127303
-
Simultaneous mapping of multiple gene loci with pooled segregants
-
Claesen J, Clement L, Shkedy Z, Foulquie-Moreno MR, Burzykowski T. Simultaneous mapping of multiple gene loci with pooled segregants. PLoS ONE. 2013;8:e55133.
-
(2013)
PLoS ONE
, vol.8
, pp. e55133
-
-
Claesen, J.1
Clement, L.2
Shkedy, Z.3
Foulquie-Moreno, M.R.4
Burzykowski, T.5
-
30
-
-
84899007503
-
An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments
-
Duitama J, Quintero JC, Cruz DF, Quintero C, Hubmann G, Foulquie-Moreno MR, Verstrepen KJ, Thevelein JM, Tohme J. An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Res. 2014;42:e44.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. e44
-
-
Duitama, J.1
Quintero, J.C.2
Cruz, D.F.3
Quintero, C.4
Hubmann, G.5
Foulquie-Moreno, M.R.6
Verstrepen, K.J.7
Thevelein, J.M.8
Tohme, J.9
-
31
-
-
25844432253
-
Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes
-
Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sa-Correia I. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun. 2005;337:95-103.
-
(2005)
Biochem Biophys Res Commun
, vol.337
, pp. 95-103
-
-
Fernandes, A.R.1
Mira, N.P.2
Vargas, R.C.3
Canelhas, I.4
Sa-Correia, I.5
-
32
-
-
84901361638
-
An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae
-
Wilkening S, Lin G, Fritsch ES, Tekkedil MM, Anders S, Kuehn R, Nguyen M, Aiyar RS, Proctor M, Sakhanenko NA, et al. An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae. Genetics. 2014;196:853-65.
-
(2014)
Genetics
, vol.196
, pp. 853-865
-
-
Wilkening, S.1
Lin, G.2
Fritsch, E.S.3
Tekkedil, M.M.4
Anders, S.5
Kuehn, R.6
Nguyen, M.7
Aiyar, R.S.8
Proctor, M.9
Sakhanenko, N.A.10
-
33
-
-
84883114857
-
Combining inhibitor tolerance and d-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production
-
Demeke MM, Dumortier F, Li Y, Broeckx T, Foulquie-Moreno MR, Thevelein JM. Combining inhibitor tolerance and d-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol Biofuels. 2013;6:120.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 120
-
-
Demeke, M.M.1
Dumortier, F.2
Li, Y.3
Broeckx, T.4
Foulquie-Moreno, M.R.5
Thevelein, J.M.6
-
34
-
-
77958162502
-
Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: A genome-wide view
-
Mira NP, Teixeira MC, Sa-Correia I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS. 2010;14:525-40.
-
(2010)
OMICS
, vol.14
, pp. 525-540
-
-
Mira, N.P.1
Teixeira, M.C.2
Sa-Correia, I.3
-
35
-
-
84868611282
-
Overexpression of HAA1 gene encoding transcriptional activator enhances acetic acid tolerance in Saccharomyces cerevisiae
-
Tanaka K, Ishii Y, Ogawa J, Shima J. Overexpression of HAA1 gene encoding transcriptional activator enhances acetic acid tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol. 2012;78:8161-3.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 8161-8163
-
-
Tanaka, K.1
Ishii, Y.2
Ogawa, J.3
Shima, J.4
-
36
-
-
33747337558
-
Yeast genes involved in response to lactic acid and acetic acid: Acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
-
Kawahata M, Masaki K, Fujii T, Iefuji H. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 2006;6:924-36.
-
(2006)
FEMS Yeast Res
, vol.6
, pp. 924-936
-
-
Kawahata, M.1
Masaki, K.2
Fujii, T.3
Iefuji, H.4
-
37
-
-
0029860016
-
Identification of the structural gene for glyoxalase I from Saccharomyces cerevisiae
-
Inoue Y, Kimura A. Identification of the structural gene for glyoxalase I from Saccharomyces cerevisiae. J Biol Chem. 1996;271:25958-65.
-
(1996)
J Biol Chem
, vol.271
, pp. 25958-25965
-
-
Inoue, Y.1
Kimura, A.2
-
38
-
-
16244386203
-
The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae
-
Aguilera J, Rodriguez-Vargas S, Prieto JA. The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae. Mol Microbiol. 2005;56:228-39.
-
(2005)
Mol Microbiol
, vol.56
, pp. 228-239
-
-
Aguilera, J.1
Rodriguez-Vargas, S.2
Prieto, J.A.3
-
39
-
-
33751278445
-
Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae
-
Mollapour M, Piper PW. Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res. 2006;6:1274-80.
-
(2006)
FEMS Yeast Res
, vol.6
, pp. 1274-1280
-
-
Mollapour, M.1
Piper, P.W.2
-
40
-
-
34548775911
-
Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid
-
Mollapour M, Piper PW. Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol. 2007;27:6446-56.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 6446-6456
-
-
Mollapour, M.1
Piper, P.W.2
-
41
-
-
79957871574
-
Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae
-
Semchyshyn HM, Abrat OB, Miedzobrodzki J, Inoue Y, Lushchak VI. Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae. Redox Rep. 2011;16:15-23.
-
(2011)
Redox Rep
, vol.16
, pp. 15-23
-
-
Semchyshyn, H.M.1
Abrat, O.B.2
Miedzobrodzki, J.3
Inoue, Y.4
Lushchak, V.I.5
-
42
-
-
0024435602
-
The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein
-
Buchman C, Skroch P, Welch J, Fogel S, Karin M. The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein. Mol Cell Biol. 1989;9:4091-5.
-
(1989)
Mol Cell Biol
, vol.9
, pp. 4091-4095
-
-
Buchman, C.1
Skroch, P.2
Welch, J.3
Fogel, S.4
Karin, M.5
-
43
-
-
0035914449
-
Haa1, a protein homologous to the copper-regulated transcription factor Ace1, is a novel transcriptional activator
-
Keller G, Ray E, Brown PO, Winge DR. Haa1, a protein homologous to the copper-regulated transcription factor Ace1, is a novel transcriptional activator. J Biol Chem. 2001;276:38697-702.
-
(2001)
J Biol Chem
, vol.276
, pp. 38697-38702
-
-
Keller, G.1
Ray, E.2
Brown, P.O.3
Winge, D.R.4
-
44
-
-
42349100173
-
-
Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St Onge RP, Tyers M, Koller D, et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science. 2008;320:362-65.
-
(2008)
The Chemical Genomic Portrait of Yeast E. Science Genes. All for Phenotype U.A.
, vol.320
, pp. 362-365
-
-
Hillenmeyer, M.E.1
Fung, E.2
Wildenhain, J.3
Pierce, S.E.4
Hoon, S.5
Lee, W.6
Proctor, M.7
St Onge, R.P.8
Tyers, M.9
Koller, D.10
-
45
-
-
77955198414
-
Chemical-genetic profile analysis of five inhibitory compounds in yeast
-
Alamgir M, Erukova V, Jessulat M, Azizi A, Golshani A. Chemical-genetic profile analysis of five inhibitory compounds in yeast. BMC Chem Biol. 2010;10:6.
-
(2010)
BMC Chem Biol
, vol.10
, pp. 6
-
-
Alamgir, M.1
Erukova, V.2
Jessulat, M.3
Azizi, A.4
Golshani, A.5
-
46
-
-
84887606590
-
Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae
-
Vandenbosch D, De Canck E, Dhondt I, Rigole P, Nelis HJ, Coenye T. Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae. FEMS Yeast Res. 2013;13:720-30.
-
(2013)
FEMS Yeast Res
, vol.13
, pp. 720-730
-
-
Vandenbosch, D.1
De Canck, E.2
Dhondt, I.3
Rigole, P.4
Nelis, H.J.5
Coenye, T.6
-
47
-
-
69549083476
-
Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae
-
Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet. 2009;50:301-10.
-
(2009)
J Appl Genet
, vol.50
, pp. 301-310
-
-
Auesukaree, C.1
Damnernsawad, A.2
Kruatrachue, M.3
Pokethitiyook, P.4
Boonchird, C.5
Kaneko, Y.6
Harashima, S.7
-
48
-
-
0025978950
-
Micromanipulation and dissection of asci
-
Sherman F, Hicks J. Micromanipulation and dissection of asci. Methods Enzymol. 1991;194:21-37.
-
(1991)
Methods Enzymol
, vol.194
, pp. 21-37
-
-
Sherman, F.1
Hicks, J.2
-
49
-
-
44949267924
-
Rapid assessment of S. Cerevisiae mating type by PCR
-
Huxley C, Green ED, Dunham I. Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet. 1990;6:236.
-
(1990)
Trends Genet
, vol.6
, pp. 236
-
-
Huxley, C.1
Green, E.D.2
Dunham, I.3
-
50
-
-
0023481280
-
A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli
-
Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57:267-72.
-
(1987)
Gene
, vol.57
, pp. 267-272
-
-
Hoffman, C.S.1
Winston, F.2
-
51
-
-
0028954118
-
Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure
-
Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995;11:355-60.
-
(1995)
Yeast
, vol.11
, pp. 355-360
-
-
Gietz, R.D.1
Schiestl, R.H.2
Willems, A.R.3
Woods, R.A.4
-
52
-
-
0027237665
-
A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae
-
Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 1993;21:3329-30.
-
(1993)
Nucleic Acids Res
, vol.21
, pp. 3329-3330
-
-
Baudin, A.1
Ozier-Kalogeropoulos, O.2
Denouel, A.3
Lacroute, F.4
Cullin, C.5
-
53
-
-
0029871347
-
PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. Cerevisiae
-
Wach A. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast. 1996;12:259-65.
-
(1996)
Yeast
, vol.12
, pp. 259-265
-
-
Wach, A.1
-
55
-
-
84897379090
-
Improved linkage analysis of quantitative trait loci using bulk segregants unveils a novel determinant of high ethanol tolerance in yeast
-
Duitama J, Sanchez-Rodriguez A, Goovaerts A, Pulido-Tamayo S, Hubmann G, Foulquie-Moreno MR, Thevelein JM, Verstrepen KJ, Marchal K. Improved linkage analysis of quantitative trait loci using bulk segregants unveils a novel determinant of high ethanol tolerance in yeast. BMC Genom. 2014;15:207.
-
(2014)
BMC Genom
, vol.15
, pp. 207
-
-
Duitama, J.1
Sanchez-Rodriguez, A.2
Goovaerts, A.3
Pulido-Tamayo, S.4
Hubmann, G.5
Foulquie-Moreno, M.R.6
Thevelein, J.M.7
Verstrepen, K.J.8
Marchal, K.9
|