메뉴 건너뛰기




Volumn 362, Issue 3, 2015, Pages

Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance

Author keywords

Acetic acid; Acetyl CoA synthetase; Acs2; Lignocellulose; Saccharomyces cerevisiae

Indexed keywords

ACETYL COENZYME A SYNTHETASE; ADENOSINE TRIPHOSPHATE; ACETIC ACID; ACETYL COENZYME A;

EID: 84944155176     PISSN: 03781097     EISSN: 15746968     Source Type: Journal    
DOI: 10.1093/femsle/fnu042     Document Type: Article
Times cited : (49)

References (39)
  • 2
    • 60549114895 scopus 로고    scopus 로고
    • Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway
    • Almeida B, Ohlmeier S, Almeida AJ, et al. Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. Proteomics 2009;9:720-32.
    • (2009) Proteomics , vol.9 , pp. 720-732
    • Almeida, B.1    Ohlmeier, S.2    Almeida, A.J.3
  • 3
    • 84906083461 scopus 로고    scopus 로고
    • Signaling of chloroquineinduced stress in the yeast Saccharomyces cerevisiae requires the Hog1 and Slt2 mitogen-activated protein kinase pathways
    • Baranwal S, Azad GK, Singh V, et al. Signaling of chloroquineinduced stress in the yeast Saccharomyces cerevisiae requires the Hog1 and Slt2 mitogen-activated protein kinase pathways. Antimicrob Agents Ch 2014;58:5552-66.
    • (2014) Antimicrob Agents Ch , vol.58 , pp. 5552-5566
    • Baranwal, S.1    Azad, G.K.2    Singh, V.3
  • 4
    • 0000033162 scopus 로고
    • Acyl adenylates: an enzymatic mechanism of acetate activation
    • Berg P. Acyl adenylates: an enzymatic mechanism of acetate activation. J Biol Chem 1956;222:991-1013.
    • (1956) J Biol Chem , vol.222 , pp. 991-1013
    • Berg, P.1
  • 5
    • 0017184389 scopus 로고
    • A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
    • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54.
    • (1976) Anal Biochem , vol.72 , pp. 248-254
    • Bradford, M.M.1
  • 6
    • 84875279038 scopus 로고    scopus 로고
    • Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
    • Chen Y, Daviet L, Schalk M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 2013;15:48-54.
    • (2013) Metab Eng , vol.15 , pp. 48-54
    • Chen, Y.1    Daviet, L.2    Schalk, M.3
  • 7
    • 79952114061 scopus 로고    scopus 로고
    • Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae
    • Chen F, Zhou J, Shi Z, et al. Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae. Acta Microbiol Sin 2010;50:1172-9.
    • (2010) Acta Microbiol Sin , vol.50 , pp. 1172-1179
    • Chen, F.1    Zhou, J.2    Shi, Z.3
  • 8
    • 0032145409 scopus 로고    scopus 로고
    • Overproduction of acetyl-coenzyme A synthetase isoenzymes in respiring Saccharomyces cerevisiae cells does not reduce acetate production after exposure to glucose excess.
    • De Jong-Gubbels P, van den Berg MA, Luttik MA, et al. Overproduction of acetyl-coenzyme A synthetase isoenzymes in respiring Saccharomyces cerevisiae cells does not reduce acetate production after exposure to glucose excess. FEMS Microbiol Lett 1998;165:15-20.
    • (1998) FEMS Microbiol Lett , vol.165 , pp. 15-20
    • De Jong-Gubbels, P.1    van den Berg, M.A.2    Luttik, M.A.3
  • 9
    • 0027062806 scopus 로고
    • Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae
    • De Virgilio C, Bürckert N, Barth G, et al. Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae. Yeast 1992;8:1043-51.
    • (1992) Yeast , vol.8 , pp. 1043-1051
    • De Virgilio, C.1    Bürckert, N.2    Barth, G.3
  • 10
    • 34447622497 scopus 로고    scopus 로고
    • Occurrence of naturally acetylated lignin units
    • Del Río JC, Marques G, Rencoret J, et al. Occurrence of naturally acetylated lignin units. J Agr Food Chem 2007;55:5461-8.
    • (2007) J Agr Food Chem , vol.55 , pp. 5461-5468
    • Del Río, J.C.1    Marques, G.2    Rencoret, J.3
  • 11
    • 84881220384 scopus 로고    scopus 로고
    • Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement
    • Ding J, Bierma J, Smith MR, et al. Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. Appl Microbiol Biot 2013;97:7405-16.
    • (2013) Appl Microbiol Biot , vol.97 , pp. 7405-7416
    • Ding, J.1    Bierma, J.2    Smith, M.R.3
  • 12
    • 78751528914 scopus 로고    scopus 로고
    • A vector set for systematic metabolic engineering in Saccharomyces cerevisiae
    • Fang F, Salmon K, Shen MWY, et al. A vector set for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast 2011;28:123-36.
    • (2011) Yeast , vol.28 , pp. 123-136
    • Fang, F.1    Salmon, K.2    Shen, M.W.Y.3
  • 13
    • 0017350841 scopus 로고
    • Purification and properties of acetyl coenzyme A synthetase from bakers' yeast
    • Frenkel EP, Kitchens RL. Purification and properties of acetyl coenzyme A synthetase from bakers' yeast. J Biol Chem 1977;252:504-7.
    • (1977) J Biol Chem , vol.252 , pp. 504-507
    • Frenkel, E.P.1    Kitchens, R.L.2
  • 14
    • 0028954118 scopus 로고
    • Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure
    • Gietz RD, Schiestl RH, Willems AR, et al. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 1995;11:355-60.
    • (1995) Yeast , vol.11 , pp. 355-360
    • Gietz, R.D.1    Schiestl, R.H.2    Willems, A.R.3
  • 15
    • 38049068839 scopus 로고    scopus 로고
    • Catalase T and Cu, Zn-superoxide dismutase in the acetic acid-induced programmed cell death in Saccharomyces cerevisiae
    • Guaragnella N, Antonacci L, Giannattasio S, et al. Catalase T and Cu, Zn-superoxide dismutase in the acetic acid-induced programmed cell death in Saccharomyces cerevisiae. FEBS Lett 2008;582:210-4.
    • (2008) FEBS Lett , vol.582 , pp. 210-214
    • Guaragnella, N.1    Antonacci, L.2    Giannattasio, S.3
  • 16
    • 84055178136 scopus 로고    scopus 로고
    • A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress
    • Hueso G, Aparicio-Sanchis R, Montesinos C, et al. A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress. Biochem J 2012;441:255-64.
    • (2012) Biochem J , vol.441 , pp. 255-264
    • Hueso, G.1    Aparicio-Sanchis, R.2    Montesinos, C.3
  • 17
    • 33747337558 scopus 로고    scopus 로고
    • Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
    • Kawahata M, Masaki K, Fujii T, et al. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 2006;6:924-36.
    • (2006) FEMS Yeast Res , vol.6 , pp. 924-936
    • Kawahata, M.1    Masaki, K.2    Fujii, T.3
  • 18
    • 12544249147 scopus 로고    scopus 로고
    • Inhibition of ethanolproducing yeast and bacteria by degradation products produced during pre-treatment of biomass
    • Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanolproducing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biot 2004;66:10-26.
    • (2004) Appl Microbiol Biot , vol.66 , pp. 10-26
    • Klinke, H.B.1    Thomsen, A.B.2    Ahring, B.K.3
  • 19
    • 84908409797 scopus 로고    scopus 로고
    • Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae
    • Kozak BU, van Rossum HM, Luttik MAH, et al. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. mBio 2014;5:e01696-14.
    • (2014) mBio , vol.5 , pp. e01696-e01714
    • Kozak, B.U.1    van Rossum, H.M.2    Luttik, M.A.H.3
  • 20
    • 84906355798 scopus 로고    scopus 로고
    • Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae
    • Liu X, Zhang X, Zhang Z. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae. J Biotechnol 2014;187:116-23.
    • (2014) J Biotechnol , vol.187 , pp. 116-123
    • Liu, X.1    Zhang, X.2    Zhang, Z.3
  • 21
    • 0036678040 scopus 로고    scopus 로고
    • Cytochrome c release andmitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae
    • Ludovico P, Rodrigues F, Almeida A, et al. Cytochrome c release andmitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 2002;13:2598-606.
    • (2002) Mol Biol Cell , vol.13 , pp. 2598-2606
    • Ludovico, P.1    Rodrigues, F.2    Almeida, A.3
  • 22
    • 75749134466 scopus 로고    scopus 로고
    • Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor
    • Medina VG, Almering MJH, van Maris AJA, et al. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microb 2010;76:190-5.
    • (2010) Appl Environ Microb , vol.76 , pp. 190-195
    • Medina, V.G.1    Almering, M.J.H.2    van Maris, A.J.A.3
  • 23
    • 34548775911 scopus 로고    scopus 로고
    • Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid
    • Mollapour M, Piper PW. Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 2007;27:6446-56.
    • (2007) Mol Cell Biol , vol.27 , pp. 6446-6456
    • Mollapour, M.1    Piper, P.W.2
  • 24
    • 84870866192 scopus 로고    scopus 로고
    • A prototrophic deletionmutant collection for yeast metabolomics and systems biology
    • MülledarM, Capuoano F, Pir P, et al. A prototrophic deletionmutant collection for yeast metabolomics and systems biology. Nature Biotechnol 2012;30:1176-8.
    • (2012) Nature Biotechnol , vol.30 , pp. 1176-1178
    • Mülledar, M.1    Capuoano, F.2    Pir, P.3
  • 25
    • 0033982072 scopus 로고    scopus 로고
    • Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae
    • Pampulha ME, Loureiro-Dias MC. Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol Lett 2000;184:69-72.
    • (2000) FEMS Microbiol Lett , vol.184 , pp. 69-72
    • Pampulha, M.E.1    Loureiro-Dias, M.C.2
  • 26
    • 17344392308 scopus 로고    scopus 로고
    • A newmathematical model for relative quantification in real-time RT-PCR
    • PfafflMW. A newmathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29:e45.
    • (2001) Nucleic Acids Res , vol.29 , pp. e45
    • Pfaffl, M.W.1
  • 27
    • 0033856517 scopus 로고    scopus 로고
    • 2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation
    • 2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microb 2000;66: 3151-9.
    • (2000) Appl Environ Microb , vol.66 , pp. 3151-3159
    • Remize, F.1    Andrieu, E.2    Dequin, S.3
  • 28
    • 84891829362 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals
    • Runguphan W, Keasling JD. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 2014;21:103-13.
    • (2014) Metab Eng , vol.21 , pp. 103-113
    • Runguphan, W.1    Keasling, J.D.2
  • 29
    • 0015836722 scopus 로고
    • Studies on acetyl-Coenzyme A synthetase of yeast: inhibition by long-chain acyl-Coenzyme A esters
    • Satyanarayana T, Klein HP. Studies on acetyl-Coenzyme A synthetase of yeast: inhibition by long-chain acyl-Coenzyme A esters. J Bacteriol 1973;115:600-6.
    • (1973) J Bacteriol , vol.115 , pp. 600-606
    • Satyanarayana, T.1    Klein, H.P.2
  • 30
    • 0016150742 scopus 로고
    • Evidence for two immunologically distinct acetyl-co-enzyme A synthetase in yeast
    • Satyanarayana T, Mandel AD, Klein HP. Evidence for two immunologically distinct acetyl-co-enzyme A synthetase in yeast. Biochim Biophys Acta 1974;341:396-401.
    • (1974) Biochim Biophys Acta , vol.341 , pp. 396-401
    • Satyanarayana, T.1    Mandel, A.D.2    Klein, H.P.3
  • 31
    • 84865545171 scopus 로고    scopus 로고
    • Combined metabolic engineering of precursor and co-factor supply to increase a- santalene production by Saccharomyces cerevisiae
    • Scalcinati G, Partow S, Siewers V, et al. Combined metabolic engineering of precursor and co-factor supply to increase a- santalene production by Saccharomyces cerevisiae. Microb Cell Fact 2012;11:117.
    • (2012) Microb Cell Fact , vol.11 , pp. 117
    • Scalcinati, G.1    Partow, S.2    Siewers, V.3
  • 32
    • 33847378479 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
    • Shiba Y, Paradise EM, Kirby J, et al. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 2007;9: 160-8.
    • (2007) Metab Eng , vol.9 , pp. 160-168
    • Shiba, Y.1    Paradise, E.M.2    Kirby, J.3
  • 33
    • 0027074595 scopus 로고
    • Analysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae
    • Sierkstra LN, Verbakel JM, Verrips CT. Analysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae. J Gen Microbiol 1992;138:2559-66.
    • (1992) J Gen Microbiol , vol.138 , pp. 2559-2566
    • Sierkstra, L.N.1    Verbakel, J.M.2    Verrips, C.T.3
  • 34
    • 84902075335 scopus 로고    scopus 로고
    • The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae
    • Swinnen S, Fernańdez Niño M, González-Ramos D, et al. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae. FEMS Yeast Res 2014;14: 642-53.
    • (2014) FEMS Yeast Res , vol.14 , pp. 642-653
    • Swinnen, S.1    Fernańdez Niño, M.2    González-Ramos, D.3
  • 35
    • 84868611282 scopus 로고    scopus 로고
    • Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator
    • Tanaka K, Ishii Y, Ogawa J, et al. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microb 2012;78:8161-3.
    • (2012) Appl Environ Microb , vol.78 , pp. 8161-8163
    • Tanaka, K.1    Ishii, Y.2    Ogawa, J.3
  • 36
    • 0029802611 scopus 로고    scopus 로고
    • The two acetyl-coenzyme a synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation
    • Van den Berg MA, Jong-Gubbels Pde, Kortland CJ, et al. The two acetyl-coenzyme a synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 1996;271:28953-9.
    • (1996) J Biol Chem , vol.271 , pp. 28953-28959
    • Van den Berg, M.A.1    Pde, J.-G.2    Kortland, C.J.3
  • 37
    • 0029134555 scopus 로고
    • ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose
    • Van den Berg MA, Steensma HY. ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose. Eur J Biochem 1995;231:704-13.
    • (1995) Eur J Biochem , vol.231 , pp. 704-713
    • Van den Berg, M.A.1    Steensma, H.Y.2
  • 38
    • 84885439374 scopus 로고    scopus 로고
    • Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast
    • Wei N, Quarterman J, Kim SR, et al. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat Commun 2013;4:2580.
    • (2013) Nat Commun , vol.4 , pp. 2580
    • Wei, N.1    Quarterman, J.2    Kim, S.R.3
  • 39
    • 0028212746 scopus 로고
    • Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae
    • Xu X, Wightman JD, Geller BL, et al. Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae. Curr Genet 1994;25:488-96.
    • (1994) Curr Genet , vol.25 , pp. 488-496
    • Xu, X.1    Wightman, J.D.2    Geller, B.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.