-
1
-
-
70350599774
-
Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water
-
Lu X., Yamauchi K., Phaiiboonsilpa N., Saka S. Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. J.Wood Sci. 2009, 55:367-375.
-
(2009)
J.Wood Sci.
, vol.55
, pp. 367-375
-
-
Lu, X.1
Yamauchi, K.2
Phaiiboonsilpa, N.3
Saka, S.4
-
2
-
-
67649819695
-
New improvements for lignocellulosic ethanol
-
Margeot A., Hahn-Hägerdal B., Edlund M., Slade R., Monot F. New improvements for lignocellulosic ethanol. Curr. Opin. Biotechnol. 2009, 20:372-380.
-
(2009)
Curr. Opin. Biotechnol.
, vol.20
, pp. 372-380
-
-
Margeot, A.1
Hahn-Hägerdal, B.2
Edlund, M.3
Slade, R.4
Monot, F.5
-
3
-
-
0025707819
-
Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose
-
Antal M.J., Mok W.S., Richards G.N. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydr. Res. 1990, 199:91-109.
-
(1990)
Carbohydr. Res.
, vol.199
, pp. 91-109
-
-
Antal, M.J.1
Mok, W.S.2
Richards, G.N.3
-
4
-
-
0026221310
-
Mechanism of formation of 2-furaldehyde from d-xylose
-
Antal M.J., Leesomboon T., Mok W.S., Richards G.N. Mechanism of formation of 2-furaldehyde from d-xylose. Carbohydr. Res. 1991, 217:71-85.
-
(1991)
Carbohydr. Res.
, vol.217
, pp. 71-85
-
-
Antal, M.J.1
Leesomboon, T.2
Mok, W.S.3
Richards, G.N.4
-
5
-
-
12544249147
-
Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
-
Klinke H.B., Thomsen A.B., Ahring B.K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 2004, 66:10-26.
-
(2004)
Appl. Microbiol. Biotechnol.
, vol.66
, pp. 10-26
-
-
Klinke, H.B.1
Thomsen, A.B.2
Ahring, B.K.3
-
6
-
-
84858445966
-
Improvement of tolerance of Saccharomyces cerevisiae to hot-compressed water-treated cellulose by expression of ADH1
-
Jayakody L.N., Horie K., Hayashi N., Kitagaki H. Improvement of tolerance of Saccharomyces cerevisiae to hot-compressed water-treated cellulose by expression of ADH1. Appl. Microbiol. Biotechnol. 2012, 94:273-283.
-
(2012)
Appl. Microbiol. Biotechnol.
, vol.94
, pp. 273-283
-
-
Jayakody, L.N.1
Horie, K.2
Hayashi, N.3
Kitagaki, H.4
-
7
-
-
0343618697
-
Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition
-
Palmqvist E., Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74:25-33.
-
(2000)
Bioresour. Technol.
, vol.74
, pp. 25-33
-
-
Palmqvist, E.1
Hahn-Hägerdal, B.2
-
8
-
-
65549118633
-
De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae)
-
Hansen E.H., Møller B.L., Kock G.R., Bünner C.M., Kristensen C., Jensen O.R., Okkels F.T., Olsen C.E., Motaiwa M.S., Hansen J. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae). Appl. Environ. Microbiol. 2009, 75:2765-2774.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 2765-2774
-
-
Hansen, E.H.1
Møller, B.L.2
Kock, G.R.3
Bünner, C.M.4
Kristensen, C.5
Jensen, O.R.6
Okkels, F.T.7
Olsen, C.E.8
Motaiwa, M.S.9
Hansen, J.10
-
9
-
-
45149104923
-
Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae
-
Endo A., Nakamura T., Ando A., Tokuyasu K., Shima J. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol. Biofuels 2008, 1:3.
-
(2008)
Biotechnol. Biofuels
, vol.1
, pp. 3
-
-
Endo, A.1
Nakamura, T.2
Ando, A.3
Tokuyasu, K.4
Shima, J.5
-
10
-
-
69949164861
-
Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae
-
Endo A., Nakamura T., Shima J. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2009, 299:95-99.
-
(2009)
FEMS Microbiol. Lett.
, vol.299
, pp. 95-99
-
-
Endo, A.1
Nakamura, T.2
Shima, J.3
-
11
-
-
83055187798
-
Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations
-
Pereira F.B., Guimaraes P.M., Gomes D.G., Mira N.P., Teixeira M.C., Sá-Correia I., Domingues L. Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations. Biotechnol. Biofuels 2011, 4:57.
-
(2011)
Biotechnol. Biofuels
, vol.4
, pp. 57
-
-
Pereira, F.B.1
Guimaraes, P.M.2
Gomes, D.G.3
Mira, N.P.4
Teixeira, M.C.5
Sá-Correia, I.6
Domingues, L.7
-
12
-
-
84876591791
-
Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in Saccharomyces cerevisiae: application and validation of high-content, image-based profiling
-
Iwaki A., Ohnuki S., Suga Y., Izawa S., Ohya Y. Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in Saccharomyces cerevisiae: application and validation of high-content, image-based profiling. PLoS One 2013, 8:e61748.
-
(2013)
PLoS One
, vol.8
-
-
Iwaki, A.1
Ohnuki, S.2
Suga, Y.3
Izawa, S.4
Ohya, Y.5
-
14
-
-
57249097175
-
Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae
-
Liu Z.L., Moon J., Andersh B.J., Slininger P.J., Weber S. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2008, 81:743-753.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.81
, pp. 743-753
-
-
Liu, Z.L.1
Moon, J.2
Andersh, B.J.3
Slininger, P.J.4
Weber, S.5
-
15
-
-
33745667335
-
Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
-
Gorsich S.W., Dien B.S., Nichols N.N., Slininger P.J., Liu Z.L., Skory C.D. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2006, 71:339-349.
-
(2006)
Appl. Microbiol. Biotechnol.
, vol.71
, pp. 339-349
-
-
Gorsich, S.W.1
Dien, B.S.2
Nichols, N.N.3
Slininger, P.J.4
Liu, Z.L.5
Skory, C.D.6
-
16
-
-
0029829625
-
Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress
-
Juhnke H., Krems B., Kotter P., Entian K.D. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol. Gen. Genet. 1996, 252:456-464.
-
(1996)
Mol. Gen. Genet.
, vol.252
, pp. 456-464
-
-
Juhnke, H.1
Krems, B.2
Kotter, P.3
Entian, K.D.4
-
17
-
-
0032030784
-
Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae
-
Izawa S., Maeda K., Miki T., Mano J., Inoue Y., Kimura A. Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochem. J. 1998, 330:811-817.
-
(1998)
Biochem. J.
, vol.330
, pp. 811-817
-
-
Izawa, S.1
Maeda, K.2
Miki, T.3
Mano, J.4
Inoue, Y.5
Kimura, A.6
-
18
-
-
76749140881
-
Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae
-
Allen S.A., Clark W., Mccaffery J.M., Zhen C., Lanctot A., Slininger P.J., Liu Z.L., Gorsich S.W. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol. Biofuels 2010, 3:2.
-
(2010)
Biotechnol. Biofuels
, vol.3
, pp. 2
-
-
Allen, S.A.1
Clark, W.2
Mccaffery, J.M.3
Zhen, C.4
Lanctot, A.5
Slininger, P.J.6
Liu, Z.L.7
Gorsich, S.W.8
-
19
-
-
0028057226
-
YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides
-
Kuge S., Jones N. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J. 1994, 13:655-664.
-
(1994)
EMBO J.
, vol.13
, pp. 655-664
-
-
Kuge, S.1
Jones, N.2
-
20
-
-
0033214613
-
Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae
-
Izawa S., Maeda K., Sugiyama K., Mano J., Inoue Y., Kimura A. Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J.Biol. Chem. 1999, 274:28459-28465.
-
(1999)
J.Biol. Chem.
, vol.274
, pp. 28459-28465
-
-
Izawa, S.1
Maeda, K.2
Sugiyama, K.3
Mano, J.4
Inoue, Y.5
Kimura, A.6
-
21
-
-
0030942294
-
Regulation of yAP-1 nuclear localization in response to oxidative stress
-
Kuge S., Jones N., Nomoto A. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J. 1997, 16:1710-1720.
-
(1997)
EMBO J.
, vol.16
, pp. 1710-1720
-
-
Kuge, S.1
Jones, N.2
Nomoto, A.3
-
22
-
-
27544466847
-
Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes
-
Okamoto K., Shaw J.M. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 2005, 39:503-536.
-
(2005)
Annu. Rev. Genet.
, vol.39
, pp. 503-536
-
-
Okamoto, K.1
Shaw, J.M.2
-
23
-
-
0025362399
-
Arapid and simple method for preparation of RNA from Saccharomyces cerevisiae
-
Schmitt M.E., Brown T.A., Trumpower B.L. Arapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 1990, 18:3091-3092.
-
(1990)
Nucleic Acids Res.
, vol.18
, pp. 3091-3092
-
-
Schmitt, M.E.1
Brown, T.A.2
Trumpower, B.L.3
-
24
-
-
78751477572
-
The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes
-
Collinson E.J., Wimmer-Kleikamp S., Gerega S.K., Yang Y.H., Parish C.R., Dawes I.W., Stocker R. The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes. J.Biol. Chem. 2011, 286:2205-2214.
-
(2011)
J.Biol. Chem.
, vol.286
, pp. 2205-2214
-
-
Collinson, E.J.1
Wimmer-Kleikamp, S.2
Gerega, S.K.3
Yang, Y.H.4
Parish, C.R.5
Dawes, I.W.6
Stocker, R.7
-
25
-
-
80053445278
-
Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae
-
other 7 authors
-
Kruegel U., Robison B., Dange T., Kahlert G., Delaney J.R., Kotireddy S., Tsuchiya M., Tsuchiyama S., Murakami C.J., Schleit J., other 7 authors Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet. 2011, 7:e1002253.
-
(2011)
PLoS Genet.
, vol.7
-
-
Kruegel, U.1
Robison, B.2
Dange, T.3
Kahlert, G.4
Delaney, J.R.5
Kotireddy, S.6
Tsuchiya, M.7
Tsuchiyama, S.8
Murakami, C.J.9
Schleit, J.10
-
26
-
-
82855163179
-
Ascreening for essential cell growth-related genes involved in arsenite toxicity in Saccharomyces cerevisiae
-
Takahashi T., Satake S., Hirose K., Hwang G.H., Naganuma A. Ascreening for essential cell growth-related genes involved in arsenite toxicity in Saccharomyces cerevisiae. J.Toxicol. Sci. 2011, 36:859-861.
-
(2011)
J.Toxicol. Sci.
, vol.36
, pp. 859-861
-
-
Takahashi, T.1
Satake, S.2
Hirose, K.3
Hwang, G.H.4
Naganuma, A.5
-
27
-
-
0002972659
-
Assay of β-galactosidase
-
Cold Spring Harbor Laboratory, New York, J.H. Miller (Ed.)
-
Miller J.H. Assay of β-galactosidase. Experiments in molecular genetics 1972, 352-356. Cold Spring Harbor Laboratory, New York. J.H. Miller (Ed.).
-
(1972)
Experiments in molecular genetics
, pp. 352-356
-
-
Miller, J.H.1
-
29
-
-
0031048280
-
The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae
-
Morgan B.A., Banks G.R., Toone W.M., Raitt D., Kuge S., Johnston L.H. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 1997, 16:1035-1044.
-
(1997)
EMBO J.
, vol.16
, pp. 1035-1044
-
-
Morgan, B.A.1
Banks, G.R.2
Toone, W.M.3
Raitt, D.4
Kuge, S.5
Johnston, L.H.6
-
30
-
-
2342657879
-
Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7
-
Tsuzi D., Maeta K., Takatsume Y., Izawa S., Inoue Y. Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7. FEBS Lett. 2004, 565:148-154.
-
(2004)
FEBS Lett.
, vol.565
, pp. 148-154
-
-
Tsuzi, D.1
Maeta, K.2
Takatsume, Y.3
Izawa, S.4
Inoue, Y.5
-
31
-
-
0035726624
-
Regulation of the yeast Yap1 nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation
-
Kuge S., Arita M., Murayama A., Maeta K., Izawa S., Inoue Y., Nomoto A. Regulation of the yeast Yap1 nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol. Cell. Biol. 2001, 21:6139-6150.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 6139-6150
-
-
Kuge, S.1
Arita, M.2
Murayama, A.3
Maeta, K.4
Izawa, S.5
Inoue, Y.6
Nomoto, A.7
-
33
-
-
4344562921
-
Structural basis for redox regulation of Yap1 transcription factor localization
-
Wood M.J., Storz G., Tjandra N. Structural basis for redox regulation of Yap1 transcription factor localization. Nature 2004, 430:917-921.
-
(2004)
Nature
, vol.430
, pp. 917-921
-
-
Wood, M.J.1
Storz, G.2
Tjandra, N.3
-
34
-
-
0345643515
-
Oxygen stress: a regulator of apoptosis in yeast
-
Madeo F., Fröhlich E., Ligr M., Grey M., Sigrist S.J., Wolf D., Fröhlich K.U. Oxygen stress: a regulator of apoptosis in yeast. J.Cell Biol. 1999, 145:757-767.
-
(1999)
J.Cell Biol.
, vol.145
, pp. 757-767
-
-
Madeo, F.1
Fröhlich, E.2
Ligr, M.3
Grey, M.4
Sigrist, S.J.5
Wolf, D.6
Fröhlich, K.U.7
-
35
-
-
84870243020
-
Perturbation of sphingolipid metabolism induces endoplasmic reticulum stress-mediated mitochondrial apoptosis in budding yeast
-
Kajiwara K., Muneoka T., Watanabe Y., Karashima T., Kitagaki H., Funato K. Perturbation of sphingolipid metabolism induces endoplasmic reticulum stress-mediated mitochondrial apoptosis in budding yeast. Mol. Microbiol. 2012, 86:1246-1261.
-
(2012)
Mol. Microbiol.
, vol.86
, pp. 1246-1261
-
-
Kajiwara, K.1
Muneoka, T.2
Watanabe, Y.3
Karashima, T.4
Kitagaki, H.5
Funato, K.6
-
36
-
-
84878393908
-
Oxidative stress and programmed cell death in yeast
-
Farrugia G., Balzan R. Oxidative stress and programmed cell death in yeast. Front. Oncol. 2012, 2:64.
-
(2012)
Front. Oncol.
, vol.2
, pp. 64
-
-
Farrugia, G.1
Balzan, R.2
-
37
-
-
84856687068
-
Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells
-
Lefevre S., Sliwa D., Rustin P., Camadro J.M., Santos R. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells. Biochem. Biophys. Res. Commun. 2012, 418:336-341.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.418
, pp. 336-341
-
-
Lefevre, S.1
Sliwa, D.2
Rustin, P.3
Camadro, J.M.4
Santos, R.5
-
38
-
-
79952520044
-
Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins
-
Wu S., Zhou F., Zhang Z., Xing D. Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J. 2012, 241:941-954.
-
(2012)
FEBS J.
, vol.241
, pp. 941-954
-
-
Wu, S.1
Zhou, F.2
Zhang, Z.3
Xing, D.4
-
39
-
-
85012844558
-
Aldehydes and cardiovascular disease
-
Elsevier, Oxford, C.A. McQueen (Ed.)
-
Conklin D.J., Bhatnagar A. Aldehydes and cardiovascular disease. Comprehensive toxicology 2010, vol. 6:489-512. Elsevier, Oxford. C.A. McQueen (Ed.).
-
(2010)
Comprehensive toxicology
, vol.6
, pp. 489-512
-
-
Conklin, D.J.1
Bhatnagar, A.2
-
40
-
-
0028168801
-
GSH1, which encodes γ-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation
-
Wu A.L., Moye-Rowley W.S. GSH1, which encodes γ-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation. Mol. Cell. Biol. 1994, 14:5832-5839.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 5832-5839
-
-
Wu, A.L.1
Moye-Rowley, W.S.2
-
41
-
-
0033523113
-
Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast
-
Lee J., Godon C., Lagniel G., Spector D., Garin J., Labarre J., Toledano M.B. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J.Biol. Chem. 1999, 274:16040-16046.
-
(1999)
J.Biol. Chem.
, vol.274
, pp. 16040-16046
-
-
Lee, J.1
Godon, C.2
Lagniel, G.3
Spector, D.4
Garin, J.5
Labarre, J.6
Toledano, M.B.7
-
42
-
-
79957931614
-
Association of the Skn7 and Yap1 transcription factors in the Saccharomyces cerevisiae oxidative stress response
-
Mulford K.E., Fasseler J.S. Association of the Skn7 and Yap1 transcription factors in the Saccharomyces cerevisiae oxidative stress response. Eukaryot. Cell 2011, 10:761-769.
-
(2011)
Eukaryot. Cell
, vol.10
, pp. 761-769
-
-
Mulford, K.E.1
Fasseler, J.S.2
-
43
-
-
77956565655
-
Mitochondrial aldehyde dehydrogenase and cardiac diseases
-
Chen C.H., Sun L., Mochly-Rosen D. Mitochondrial aldehyde dehydrogenase and cardiac diseases. Cardiovasc. Res. 2010, 88:51-56.
-
(2010)
Cardiovasc. Res.
, vol.88
, pp. 51-56
-
-
Chen, C.H.1
Sun, L.2
Mochly-Rosen, D.3
-
44
-
-
84857689737
-
Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production
-
Sasano Y., Watanabe D., Ukibe K., Inai T., Ohtsu I., Shimoi H., Takagi H. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J.Biosci. Bioeng. 2012, 113:451-455.
-
(2012)
J.Biosci. Bioeng.
, vol.113
, pp. 451-455
-
-
Sasano, Y.1
Watanabe, D.2
Ukibe, K.3
Inai, T.4
Ohtsu, I.5
Shimoi, H.6
Takagi, H.7
|