메뉴 건너뛰기




Volumn 7, Issue 2, 2015, Pages 322-332

The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc

Author keywords

[No Author keywords available]

Indexed keywords

ACETIC ACID; AMINO ACIDS; ANTIOXIDANTS; BIOCHEMISTRY; CELLS; CYTOLOGY; DETOXIFICATION; METABOLISM; METABOLITES; PEPTIDES; PH; SULFUR COMPOUNDS; YEAST;

EID: 84923102716     PISSN: 17565901     EISSN: 1756591X     Source Type: Journal    
DOI: 10.1039/c4mt00275j     Document Type: Article
Times cited : (42)

References (47)
  • 1
    • 80052403741 scopus 로고    scopus 로고
    • Transition metal homeostasis: From yeast to human disease
    • M. R. Bleackley and R. T. Macgillivray, Transition metal homeostasis: from yeast to human disease, BioMetals, 2011, 24(5), 785-809.
    • (2011) BioMetals , vol.24 , Issue.5 , pp. 785-809
    • Bleackley, M.R.1    Macgillivray, R.T.2
  • 2
    • 33749236250 scopus 로고    scopus 로고
    • A fungal family of transcriptional regulators: The zinc cluster proteins
    • S. MacPherson, M. Larochelle and B. Turcotte, A fungal family of transcriptional regulators: the zinc cluster proteins, Microbiol. Mol. Biol. Rev., 2006, 70(3), 583-604.
    • (2006) Microbiol. Mol. Biol. Rev. , vol.70 , Issue.3 , pp. 583-604
    • MacPherson, S.1    Larochelle, M.2    Turcotte, B.3
  • 3
    • 67650550797 scopus 로고    scopus 로고
    • Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae
    • D. J. Eide, Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae, J. Biol. Chem., 2009, 284(28), 18565-18569.
    • (2009) J. Biol. Chem. , vol.284 , Issue.28 , pp. 18565-18569
    • Eide, D.J.1
  • 4
    • 80455163152 scopus 로고    scopus 로고
    • The oxidative stress of zinc deficiency
    • D. J. Eide, The oxidative stress of zinc deficiency, Metallomics, 2011, 3(11), 1124-1129.
    • (2011) Metallomics , vol.3 , Issue.11 , pp. 1124-1129
    • Eide, D.J.1
  • 5
    • 84880910119 scopus 로고    scopus 로고
    • Mechanisms other than activation of the iron regulon account for the hyper-resistance to cobalt of a Saccharomyces cerevisiae strain obtained by evolutionary engineering
    • C. Alkim, L. Benbadis, U. Yilmaz, Z. P. Cakar and J. M. Francois, Mechanisms other than activation of the iron regulon account for the hyper-resistance to cobalt of a Saccharomyces cerevisiae strain obtained by evolutionary engineering, Metallomics, 2013, 5(8), 1043-1060.
    • (2013) Metallomics , vol.5 , Issue.8 , pp. 1043-1060
    • Alkim, C.1    Benbadis, L.2    Yilmaz, U.3    Cakar, Z.P.4    Francois, J.M.5
  • 6
    • 79951485220 scopus 로고    scopus 로고
    • High density array screening to identify the genetic requirements for transition metal tolerance in Saccharomyces cerevisiae
    • M. R. Bleackley, B. P. Young, C. J. Loewen and R. T. MacGillivray, High density array screening to identify the genetic requirements for transition metal tolerance in Saccharomyces cerevisiae, Metallomics, 2011, 3(2), 195-205.
    • (2011) Metallomics , vol.3 , Issue.2 , pp. 195-205
    • Bleackley, M.R.1    Young, B.P.2    Loewen, C.J.3    MacGillivray, R.T.4
  • 8
    • 84887608790 scopus 로고    scopus 로고
    • Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae
    • G. Kucukgoze, C. Alkim, U. Yilmaz, H. I. Kisakesen, S. Gunduz, S. Akman and Z. P. Cakar, Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae, FEMS Yeast Res., 2013, 13(8), 731-746.
    • (2013) FEMS Yeast Res. , vol.13 , Issue.8 , pp. 731-746
    • Kucukgoze, G.1    Alkim, C.2    Yilmaz, U.3    Kisakesen, H.I.4    Gunduz, S.5    Akman, S.6    Cakar, Z.P.7
  • 9
    • 84904797928 scopus 로고    scopus 로고
    • Identification of aluminium transport-related genes via genome-wide phenotypic screening of Saccharomyces cerevisiae
    • N.M. Tun, P. J. O'Doherty, Z. H. Chen, X. Y. Wu, T. D. Bailey, C. Kersaitis and M. J. Wu, Identification of aluminium transport-related genes via genome-wide phenotypic screening of Saccharomyces cerevisiae, Metallomics, 2014, 6(8), 1558-1564.
    • (2014) Metallomics , vol.6 , Issue.8 , pp. 1558-1564
    • Tun, N.M.1    O'Doherty, P.J.2    Chen, Z.H.3    Wu, X.Y.4    Bailey, T.D.5    Kersaitis, C.6    Wu, M.J.7
  • 10
    • 57349095507 scopus 로고    scopus 로고
    • Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation
    • X. Q. Zhao, C. Xue, X. M. Ge, W. J. Yuan, J. Y. Wang and F. W. Bai, Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation, J. Biotechnol., 2009, 139(1), 55-60.
    • (2009) J. Biotechnol. , vol.139 , Issue.1 , pp. 55-60
    • Zhao, X.Q.1    Xue, C.2    Ge, X.M.3    Yuan, W.J.4    Wang, J.Y.5    Bai, F.W.6
  • 11
    • 77949410313 scopus 로고    scopus 로고
    • Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions
    • C. Xue, X. Q. Zhao and F. W. Bai, Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions, Biotechnol. Bioeng., 2010, 105(5), 935-944.
    • (2010) Biotechnol. Bioeng. , vol.105 , Issue.5 , pp. 935-944
    • Xue, C.1    Zhao, X.Q.2    Bai, F.W.3
  • 12
    • 84859510658 scopus 로고    scopus 로고
    • Zinc and yeast stress tolerance: Micronutrient plays a big role
    • X. Q. Zhao and F. W. Bai, Zinc and yeast stress tolerance: micronutrient plays a big role, J. Biotechnol., 2012, 158(4), 176-183.
    • (2012) J. Biotechnol. , vol.158 , Issue.4 , pp. 176-183
    • Zhao, X.Q.1    Bai, F.W.2
  • 13
    • 84867712304 scopus 로고    scopus 로고
    • Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering
    • T. Hasunuma and A. Kondo, Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering, Biotechnol. Adv., 2012, 30(6), 1207-1218.
    • (2012) Biotechnol. Adv. , vol.30 , Issue.6 , pp. 1207-1218
    • Hasunuma, T.1    Kondo, A.2
  • 14
    • 70349775063 scopus 로고    scopus 로고
    • Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production
    • X. Q. Zhao and F. W. Bai, Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production, J. Biotechnol., 2009, 144(1), 23-30.
    • (2009) J. Biotechnol. , vol.144 , Issue.1 , pp. 23-30
    • Zhao, X.Q.1    Bai, F.W.2
  • 15
    • 79952181277 scopus 로고    scopus 로고
    • Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae
    • J. R. Almeida, D. Runquist, V. Sanchez i Nogue, G. Liden and M. F. Gorwa-Grauslund, Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae, Biotechnol. J., 2011, 6(3), 286-299.
    • (2011) Biotechnol. J. , vol.6 , Issue.3 , pp. 286-299
    • Almeida, J.R.1    Runquist, D.2    Sanchez I Nogue, V.3    Liden, G.4    Gorwa-Grauslund, M.F.5
  • 16
    • 84872814927 scopus 로고    scopus 로고
    • Bioconversion of lignocellulose: Inhibitors and detoxification
    • L. J. Jönsson, B. Alriksson and N. Nilvebrant, Bioconversion of lignocellulose: inhibitors and detoxification, Biotechnol. Biofuels, 2013, 6, 16.
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 16
    • Jönsson, L.J.1    Alriksson, B.2    Nilvebrant, N.3
  • 18
    • 77952169542 scopus 로고    scopus 로고
    • Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae
    • E. Casey, M. Sedlak, N. W. Ho and N. S. Mosier, Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae, FEMS Yeast Res., 2010, 10(4), 385-393.
    • (2010) FEMS Yeast Res. , vol.10 , Issue.4 , pp. 385-393
    • Casey, E.1    Sedlak, M.2    Ho, N.W.3    Mosier, N.S.4
  • 19
    • 0035046617 scopus 로고    scopus 로고
    • Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium
    • N. V. Narendranath, K. C. Thomas and W. M. Ingledew, Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium, J. Ind. Microbiol. Biotechnol., 2001, 26(3), 171-177.
    • (2001) J. Ind. Microbiol. Biotechnol. , vol.26 , Issue.3 , pp. 171-177
    • Narendranath, N.V.1    Thomas, K.C.2    Ingledew, W.M.3
  • 20
    • 79957871574 scopus 로고    scopus 로고
    • Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae
    • H. M. Semchyshyn, O. B. Abrat, J. Miedzobrodzki, Y. Inoue and V. I. Lushchak, Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae, Redox Rep., 2011, 16(1), 15-23.
    • (2011) Redox Rep. , vol.16 , Issue.1 , pp. 15-23
    • Semchyshyn, H.M.1    Abrat, O.B.2    Miedzobrodzki, J.3    Inoue, Y.4    Lushchak, V.I.5
  • 21
    • 84875904201 scopus 로고    scopus 로고
    • Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid
    • S. Giannattasio, N. Guaragnella, M. Zdralevic and E. Marra, Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid, Front. Microbiol., 2013, 4, 33.
    • (2013) Front. Microbiol. , vol.4 , pp. 33
    • Giannattasio, S.1    Guaragnella, N.2    Zdralevic, M.3    Marra, E.4
  • 22
    • 34848877207 scopus 로고    scopus 로고
    • Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: Biochemical and cytochemical aspects
    • A. Formigari, P. Irato and A. Santon, Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2007, 146(4), 443-459.
    • (2007) Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. , vol.146 , Issue.4 , pp. 443-459
    • Formigari, A.1    Irato, P.2    Santon, A.3
  • 24
    • 34047243851 scopus 로고    scopus 로고
    • Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency
    • C. Y. Wu, A. J. Bird, D. R. Winge and D. J. Eide, Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency, J. Biol. Chem., 2007, 282(4), 2184-2195.
    • (2007) J. Biol. Chem. , vol.282 , Issue.4 , pp. 2184-2195
    • Wu, C.Y.1    Bird, A.J.2    Winge, D.R.3    Eide, D.J.4
  • 25
    • 70350455073 scopus 로고    scopus 로고
    • Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency
    • C. Y. Wu, S. Roje, F. J. Sandoval, A. J. Bird, D. R. Winge and D. J. Eide, Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency, J. Biol. Chem., 2009, 284(40), 27544-27556.
    • (2009) J. Biol. Chem. , vol.284 , Issue.40 , pp. 27544-27556
    • Wu, C.Y.1    Roje, S.2    Sandoval, F.J.3    Bird, A.J.4    Winge, D.R.5    Eide, D.J.6
  • 26
    • 70349487306 scopus 로고    scopus 로고
    • Cytosolic superoxide dismutase (SOD1) is critical for tolerating the oxidative stress of zinc deficiency in yeast
    • C. Y. Wu, J. Steffen and D. J. Eide, Cytosolic superoxide dismutase (SOD1) is critical for tolerating the oxidative stress of zinc deficiency in yeast, PLoS One, 2009, 4(9), e7061.
    • (2009) PLoS One , vol.4 , Issue.9 , pp. e7061
    • Wu, C.Y.1    Steffen, J.2    Eide, D.J.3
  • 27
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • T. Hasunuma, T. Sanda, R. Yamada, K. Yoshimura, J. Ishii and A. Kondo, Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae, Microb. Cell Fact., 2011, 10, 2.
    • (2011) Microb. Cell Fact. , vol.10 , pp. 2
    • Hasunuma, T.1    Sanda, T.2    Yamada, R.3    Yoshimura, K.4    Ishii, J.5    Kondo, A.6
  • 28
    • 84859919753 scopus 로고    scopus 로고
    • Widely targeted metabolic profiling analysis of yeast central metabolites
    • H. Kato, Y. Izumi, T. Hasunuma, F. Matsuda and A. Kondo, Widely targeted metabolic profiling analysis of yeast central metabolites, J. Biosci. Bioeng., 2012, 113(5), 665-673.
    • (2012) J. Biosci. Bioeng. , vol.113 , Issue.5 , pp. 665-673
    • Kato, H.1    Izumi, Y.2    Hasunuma, T.3    Matsuda, F.4    Kondo, A.5
  • 30
    • 84922637940 scopus 로고    scopus 로고
    • Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid
    • Y. Yoshiyama, K. Tanaka, K. Yoshiyama, M. Hibi, J. Ogawa and J. Shima, Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid, J. Biosci. Bioeng., 2014, DOI: 10.1016/j.jbiosc.2014.06.021.
    • (2014) J. Biosci. Bioeng.
    • Yoshiyama, Y.1    Tanaka, K.2    Yoshiyama, K.3    Hibi, M.4    Ogawa, J.5    Shima, J.6
  • 32
    • 84887607047 scopus 로고    scopus 로고
    • Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system
    • R. V. Perez-Gallardo, L. S. Briones, A. L. Diaz-Perez, S. Gutierrez, J. S. Rodriguez-Zavala and J. Campos-Garcia, Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system, FEMS Yeast Res., 2013, 13(8), 804-819.
    • (2013) FEMS Yeast Res. , vol.13 , Issue.8 , pp. 804-819
    • Perez-Gallardo, R.V.1    Briones, L.S.2    Diaz-Perez, A.L.3    Gutierrez, S.4    Rodriguez-Zavala, J.S.5    Campos-Garcia, J.6
  • 33
    • 68049143143 scopus 로고    scopus 로고
    • Nitrosative and oxidative stress responses in fungal pathogenicity
    • A. J. Brown, K. Haynes and J. Quinn, Nitrosative and oxidative stress responses in fungal pathogenicity, Curr. Opin. Microbiol., 2009, 12(4), 384-391.
    • (2009) Curr. Opin. Microbiol. , vol.12 , Issue.4 , pp. 384-391
    • Brown, A.J.1    Haynes, K.2    Quinn, J.3
  • 34
    • 85028104413 scopus 로고    scopus 로고
    • Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging
    • A. S. Prasad, Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging, J. Trace Elem. Med. Biol., 2014, 4(28), 364-371.
    • (2014) J. Trace Elem. Med. Biol. , vol.4 , Issue.28 , pp. 364-371
    • Prasad, A.S.1
  • 35
    • 84911369928 scopus 로고    scopus 로고
    • Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures
    • C. M. Paget, J. M. Schwartz and D. Delneri, Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures, Mol. Ecol., 2014, 23(21), 5241-5257.
    • (2014) Mol. Ecol. , vol.23 , Issue.21 , pp. 5241-5257
    • Paget, C.M.1    Schwartz, J.M.2    Delneri, D.3
  • 36
    • 84876326394 scopus 로고    scopus 로고
    • GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production
    • J. Cao, J. M. Barbosa, N. K. Singh and R. D. Locy, GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production, Yeast, 2013, 30(4), 129-144.
    • (2013) Yeast , vol.30 , Issue.4 , pp. 129-144
    • Cao, J.1    Barbosa, J.M.2    Singh, N.K.3    Locy, R.D.4
  • 37
    • 0030004354 scopus 로고    scopus 로고
    • Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae
    • C. M. Grant, F. H. MacIver and I. W. Dawes, Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae, Curr. Genet., 1996, 29, 511-515.
    • (1996) Curr. Genet. , vol.29 , pp. 511-515
    • Grant, C.M.1    MacIver, F.H.2    Dawes, I.W.3
  • 39
    • 55649090079 scopus 로고    scopus 로고
    • Proline as a stress protectant in yeast: Physiological functions, metabolic regulations, and biotechnological applications
    • H. Takagi, Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications, Appl. Microbiol. Biotechnol., 2008, 81(2), 211-223.
    • (2008) Appl. Microbiol. Biotechnol. , vol.81 , Issue.2 , pp. 211-223
    • Takagi, H.1
  • 40
    • 34447281116 scopus 로고    scopus 로고
    • Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis
    • T. Hirasawa, K. Yoshikawa, Y. Nakakura, K. Nagahisa, C. Furusawa, Y. Katakura, H. Shimizu and S. Shioya, Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis, J. Biotechnol., 2007, 131(1), 34-44.
    • (2007) J. Biotechnol. , vol.131 , Issue.1 , pp. 34-44
    • Hirasawa, T.1    Yoshikawa, K.2    Nakakura, Y.3    Nagahisa, K.4    Furusawa, C.5    Katakura, Y.6    Shimizu, H.7    Shioya, S.8
  • 41
    • 84875193397 scopus 로고    scopus 로고
    • Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol
    • X. Wang, B. Z. Li, M. Z. Ding, W. W. Zhang and Y. J. Yuan, Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol, OMICS, 2013, 17(3), 150-159.
    • (2013) OMICS , vol.17 , Issue.3 , pp. 150-159
    • Wang, X.1    Li, B.Z.2    Ding, M.Z.3    Zhang, W.W.4    Yuan, Y.J.5
  • 42
    • 77952876202 scopus 로고    scopus 로고
    • Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
    • B. Z. Li and Y. J. Yuan, Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 2010, 86(6), 1915-1924.
    • (2010) Appl. Microbiol. Biotechnol. , vol.86 , Issue.6 , pp. 1915-1924
    • Li, B.Z.1    Yuan, Y.J.2
  • 43
    • 84865434614 scopus 로고    scopus 로고
    • Proteomic research reveals the stress response and detoxification of yeast to combined inhibitors
    • M. Z. Ding, X. Wang, W. Liu, J. S. Cheng, Y. Yang and Y. J. Yuan, Proteomic research reveals the stress response and detoxification of yeast to combined inhibitors, PLoS One, 2012, 7(8), e43474.
    • (2012) PLoS One , vol.7 , Issue.8 , pp. e43474
    • Ding, M.Z.1    Wang, X.2    Liu, W.3    Cheng, J.S.4    Yang, Y.5    Yuan, Y.J.6
  • 44
    • 84875936588 scopus 로고    scopus 로고
    • Alanine-metabolizing enzyme Alt1 is critical in determining yeast life dpan, as revealed by combined metabolomic and genetic studies
    • S. L. Yu, Y. J. An, H. J. Yang, M. S. Kang, H. Y. Kim, H. Wen, X. Jin, H. N. Kwon, K. J. Min, S. K. Lee and S. Park, Alanine-metabolizing enzyme Alt1 is critical in determining yeast life dpan, as revealed by combined metabolomic and genetic studies, J. Proteome Res., 2013, 12, 1619-1627.
    • (2013) J. Proteome Res. , vol.12 , pp. 1619-1627
    • Yu, S.L.1    An, Y.J.2    Yang, H.J.3    Kang, M.S.4    Kim, H.Y.5    Wen, H.6    Jin, X.7    Kwon, H.N.8    Min, K.J.9    Lee, S.K.10    Park, S.11
  • 45
    • 84896703191 scopus 로고    scopus 로고
    • Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress
    • Y. J. Lv, X. Wang, Q. Ma, X. Bai, B. Z. Li, W. Zhang and Y. J. Yuan, Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress, Appl. Microbiol. Biotechnol., 2014, 98(5), 2207-2221.
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , Issue.5 , pp. 2207-2221
    • Lv, Y.J.1    Wang, X.2    Ma, Q.3    Bai, X.4    Li, B.Z.5    Zhang, W.6    Yuan, Y.J.7
  • 46
    • 84926100303 scopus 로고    scopus 로고
    • Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose
    • K. S. Ismail, T. Sakamoto, T. Hasunuma, X. Q. Zhao and A. Kondo, Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose, Biotechnol. J., 2014, 12(9), 1519-1525.
    • (2014) Biotechnol. J. , vol.12 , Issue.9 , pp. 1519-1525
    • Ismail, K.S.1    Sakamoto, T.2    Hasunuma, T.3    Zhao, X.Q.4    Kondo, A.5
  • 47
    • 77958135565 scopus 로고    scopus 로고
    • Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
    • N. P. Mira, M. Palma, J. F. Guerreiro and I. Sa-Correia, Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid, Microb. Cell Fact., 2010, 9, 79.
    • (2010) Microb. Cell Fact. , vol.9 , pp. 79
    • Mira, N.P.1    Palma, M.2    Guerreiro, J.F.3    Sa-Correia, I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.