-
1
-
-
80052403741
-
Transition metal homeostasis: From yeast to human disease
-
M. R. Bleackley and R. T. Macgillivray, Transition metal homeostasis: from yeast to human disease, BioMetals, 2011, 24(5), 785-809.
-
(2011)
BioMetals
, vol.24
, Issue.5
, pp. 785-809
-
-
Bleackley, M.R.1
Macgillivray, R.T.2
-
2
-
-
33749236250
-
A fungal family of transcriptional regulators: The zinc cluster proteins
-
S. MacPherson, M. Larochelle and B. Turcotte, A fungal family of transcriptional regulators: the zinc cluster proteins, Microbiol. Mol. Biol. Rev., 2006, 70(3), 583-604.
-
(2006)
Microbiol. Mol. Biol. Rev.
, vol.70
, Issue.3
, pp. 583-604
-
-
MacPherson, S.1
Larochelle, M.2
Turcotte, B.3
-
3
-
-
67650550797
-
Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae
-
D. J. Eide, Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae, J. Biol. Chem., 2009, 284(28), 18565-18569.
-
(2009)
J. Biol. Chem.
, vol.284
, Issue.28
, pp. 18565-18569
-
-
Eide, D.J.1
-
4
-
-
80455163152
-
The oxidative stress of zinc deficiency
-
D. J. Eide, The oxidative stress of zinc deficiency, Metallomics, 2011, 3(11), 1124-1129.
-
(2011)
Metallomics
, vol.3
, Issue.11
, pp. 1124-1129
-
-
Eide, D.J.1
-
5
-
-
84880910119
-
Mechanisms other than activation of the iron regulon account for the hyper-resistance to cobalt of a Saccharomyces cerevisiae strain obtained by evolutionary engineering
-
C. Alkim, L. Benbadis, U. Yilmaz, Z. P. Cakar and J. M. Francois, Mechanisms other than activation of the iron regulon account for the hyper-resistance to cobalt of a Saccharomyces cerevisiae strain obtained by evolutionary engineering, Metallomics, 2013, 5(8), 1043-1060.
-
(2013)
Metallomics
, vol.5
, Issue.8
, pp. 1043-1060
-
-
Alkim, C.1
Benbadis, L.2
Yilmaz, U.3
Cakar, Z.P.4
Francois, J.M.5
-
6
-
-
79951485220
-
High density array screening to identify the genetic requirements for transition metal tolerance in Saccharomyces cerevisiae
-
M. R. Bleackley, B. P. Young, C. J. Loewen and R. T. MacGillivray, High density array screening to identify the genetic requirements for transition metal tolerance in Saccharomyces cerevisiae, Metallomics, 2011, 3(2), 195-205.
-
(2011)
Metallomics
, vol.3
, Issue.2
, pp. 195-205
-
-
Bleackley, M.R.1
Young, B.P.2
Loewen, C.J.3
MacGillivray, R.T.4
-
7
-
-
68349157532
-
Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach
-
Z. P. Cakar, C. Alkim, B. Turanli, N. Tokman, S. Akman, M. Sarikaya, C. Tamerler, L. Benbadis and J. M. Francois, Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach, J. Biotechnol., 2009, 143(2), 130-138.
-
(2009)
J. Biotechnol.
, vol.143
, Issue.2
, pp. 130-138
-
-
Cakar, Z.P.1
Alkim, C.2
Turanli, B.3
Tokman, N.4
Akman, S.5
Sarikaya, M.6
Tamerler, C.7
Benbadis, L.8
Francois, J.M.9
-
8
-
-
84887608790
-
Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae
-
G. Kucukgoze, C. Alkim, U. Yilmaz, H. I. Kisakesen, S. Gunduz, S. Akman and Z. P. Cakar, Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae, FEMS Yeast Res., 2013, 13(8), 731-746.
-
(2013)
FEMS Yeast Res.
, vol.13
, Issue.8
, pp. 731-746
-
-
Kucukgoze, G.1
Alkim, C.2
Yilmaz, U.3
Kisakesen, H.I.4
Gunduz, S.5
Akman, S.6
Cakar, Z.P.7
-
9
-
-
84904797928
-
Identification of aluminium transport-related genes via genome-wide phenotypic screening of Saccharomyces cerevisiae
-
N.M. Tun, P. J. O'Doherty, Z. H. Chen, X. Y. Wu, T. D. Bailey, C. Kersaitis and M. J. Wu, Identification of aluminium transport-related genes via genome-wide phenotypic screening of Saccharomyces cerevisiae, Metallomics, 2014, 6(8), 1558-1564.
-
(2014)
Metallomics
, vol.6
, Issue.8
, pp. 1558-1564
-
-
Tun, N.M.1
O'Doherty, P.J.2
Chen, Z.H.3
Wu, X.Y.4
Bailey, T.D.5
Kersaitis, C.6
Wu, M.J.7
-
10
-
-
57349095507
-
Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation
-
X. Q. Zhao, C. Xue, X. M. Ge, W. J. Yuan, J. Y. Wang and F. W. Bai, Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation, J. Biotechnol., 2009, 139(1), 55-60.
-
(2009)
J. Biotechnol.
, vol.139
, Issue.1
, pp. 55-60
-
-
Zhao, X.Q.1
Xue, C.2
Ge, X.M.3
Yuan, W.J.4
Wang, J.Y.5
Bai, F.W.6
-
11
-
-
77949410313
-
Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions
-
C. Xue, X. Q. Zhao and F. W. Bai, Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions, Biotechnol. Bioeng., 2010, 105(5), 935-944.
-
(2010)
Biotechnol. Bioeng.
, vol.105
, Issue.5
, pp. 935-944
-
-
Xue, C.1
Zhao, X.Q.2
Bai, F.W.3
-
12
-
-
84859510658
-
Zinc and yeast stress tolerance: Micronutrient plays a big role
-
X. Q. Zhao and F. W. Bai, Zinc and yeast stress tolerance: micronutrient plays a big role, J. Biotechnol., 2012, 158(4), 176-183.
-
(2012)
J. Biotechnol.
, vol.158
, Issue.4
, pp. 176-183
-
-
Zhao, X.Q.1
Bai, F.W.2
-
13
-
-
84867712304
-
Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering
-
T. Hasunuma and A. Kondo, Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering, Biotechnol. Adv., 2012, 30(6), 1207-1218.
-
(2012)
Biotechnol. Adv.
, vol.30
, Issue.6
, pp. 1207-1218
-
-
Hasunuma, T.1
Kondo, A.2
-
14
-
-
70349775063
-
Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production
-
X. Q. Zhao and F. W. Bai, Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production, J. Biotechnol., 2009, 144(1), 23-30.
-
(2009)
J. Biotechnol.
, vol.144
, Issue.1
, pp. 23-30
-
-
Zhao, X.Q.1
Bai, F.W.2
-
15
-
-
79952181277
-
Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae
-
J. R. Almeida, D. Runquist, V. Sanchez i Nogue, G. Liden and M. F. Gorwa-Grauslund, Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae, Biotechnol. J., 2011, 6(3), 286-299.
-
(2011)
Biotechnol. J.
, vol.6
, Issue.3
, pp. 286-299
-
-
Almeida, J.R.1
Runquist, D.2
Sanchez I Nogue, V.3
Liden, G.4
Gorwa-Grauslund, M.F.5
-
16
-
-
84872814927
-
Bioconversion of lignocellulose: Inhibitors and detoxification
-
L. J. Jönsson, B. Alriksson and N. Nilvebrant, Bioconversion of lignocellulose: inhibitors and detoxification, Biotechnol. Biofuels, 2013, 6, 16.
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 16
-
-
Jönsson, L.J.1
Alriksson, B.2
Nilvebrant, N.3
-
17
-
-
84881220384
-
Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: Auxotrophy confounds the use of yeast deletion libraries for strain improvement
-
J. Ding, J. Bierma, M. R. Smith, E. Poliner, C. Wolfe, A. N. Hadduck, S. Zara, M. Jirikovic, K. van Zee, M. H. Penner, J. Patton-Vogt and A. T. Bakalinsky, Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement, Appl. Microbiol. Biotechnol., 2013, 97(16), 7405-7416.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, Issue.16
, pp. 7405-7416
-
-
Ding, J.1
Bierma, J.2
Smith, M.R.3
Poliner, E.4
Wolfe, C.5
Hadduck, A.N.6
Zara, S.7
Jirikovic, M.8
Van Zee, K.9
Penner, M.H.10
Patton-Vogt, J.11
Bakalinsky, A.T.12
-
18
-
-
77952169542
-
Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae
-
E. Casey, M. Sedlak, N. W. Ho and N. S. Mosier, Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae, FEMS Yeast Res., 2010, 10(4), 385-393.
-
(2010)
FEMS Yeast Res.
, vol.10
, Issue.4
, pp. 385-393
-
-
Casey, E.1
Sedlak, M.2
Ho, N.W.3
Mosier, N.S.4
-
19
-
-
0035046617
-
Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium
-
N. V. Narendranath, K. C. Thomas and W. M. Ingledew, Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium, J. Ind. Microbiol. Biotechnol., 2001, 26(3), 171-177.
-
(2001)
J. Ind. Microbiol. Biotechnol.
, vol.26
, Issue.3
, pp. 171-177
-
-
Narendranath, N.V.1
Thomas, K.C.2
Ingledew, W.M.3
-
20
-
-
79957871574
-
Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae
-
H. M. Semchyshyn, O. B. Abrat, J. Miedzobrodzki, Y. Inoue and V. I. Lushchak, Acetate but not propionate induces oxidative stress in bakers' yeast Saccharomyces cerevisiae, Redox Rep., 2011, 16(1), 15-23.
-
(2011)
Redox Rep.
, vol.16
, Issue.1
, pp. 15-23
-
-
Semchyshyn, H.M.1
Abrat, O.B.2
Miedzobrodzki, J.3
Inoue, Y.4
Lushchak, V.I.5
-
21
-
-
84875904201
-
Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid
-
S. Giannattasio, N. Guaragnella, M. Zdralevic and E. Marra, Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid, Front. Microbiol., 2013, 4, 33.
-
(2013)
Front. Microbiol.
, vol.4
, pp. 33
-
-
Giannattasio, S.1
Guaragnella, N.2
Zdralevic, M.3
Marra, E.4
-
22
-
-
34848877207
-
Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: Biochemical and cytochemical aspects
-
A. Formigari, P. Irato and A. Santon, Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2007, 146(4), 443-459.
-
(2007)
Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol.
, vol.146
, Issue.4
, pp. 443-459
-
-
Formigari, A.1
Irato, P.2
Santon, A.3
-
23
-
-
29344433505
-
Zinc: A multipurpose trace element
-
M. Stefanidou, C. Maravelias, A. Dona and C. Spiliopoulou, Zinc: a multipurpose trace element, Arch. Toxicol., 2006, 80(1), 1-9.
-
(2006)
Arch. Toxicol.
, vol.80
, Issue.1
, pp. 1-9
-
-
Stefanidou, M.1
Maravelias, C.2
Dona, A.3
Spiliopoulou, C.4
-
24
-
-
34047243851
-
Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency
-
C. Y. Wu, A. J. Bird, D. R. Winge and D. J. Eide, Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency, J. Biol. Chem., 2007, 282(4), 2184-2195.
-
(2007)
J. Biol. Chem.
, vol.282
, Issue.4
, pp. 2184-2195
-
-
Wu, C.Y.1
Bird, A.J.2
Winge, D.R.3
Eide, D.J.4
-
25
-
-
70350455073
-
Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency
-
C. Y. Wu, S. Roje, F. J. Sandoval, A. J. Bird, D. R. Winge and D. J. Eide, Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency, J. Biol. Chem., 2009, 284(40), 27544-27556.
-
(2009)
J. Biol. Chem.
, vol.284
, Issue.40
, pp. 27544-27556
-
-
Wu, C.Y.1
Roje, S.2
Sandoval, F.J.3
Bird, A.J.4
Winge, D.R.5
Eide, D.J.6
-
26
-
-
70349487306
-
Cytosolic superoxide dismutase (SOD1) is critical for tolerating the oxidative stress of zinc deficiency in yeast
-
C. Y. Wu, J. Steffen and D. J. Eide, Cytosolic superoxide dismutase (SOD1) is critical for tolerating the oxidative stress of zinc deficiency in yeast, PLoS One, 2009, 4(9), e7061.
-
(2009)
PLoS One
, vol.4
, Issue.9
, pp. e7061
-
-
Wu, C.Y.1
Steffen, J.2
Eide, D.J.3
-
27
-
-
78650995732
-
Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
-
T. Hasunuma, T. Sanda, R. Yamada, K. Yoshimura, J. Ishii and A. Kondo, Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae, Microb. Cell Fact., 2011, 10, 2.
-
(2011)
Microb. Cell Fact.
, vol.10
, pp. 2
-
-
Hasunuma, T.1
Sanda, T.2
Yamada, R.3
Yoshimura, K.4
Ishii, J.5
Kondo, A.6
-
28
-
-
84859919753
-
Widely targeted metabolic profiling analysis of yeast central metabolites
-
H. Kato, Y. Izumi, T. Hasunuma, F. Matsuda and A. Kondo, Widely targeted metabolic profiling analysis of yeast central metabolites, J. Biosci. Bioeng., 2012, 113(5), 665-673.
-
(2012)
J. Biosci. Bioeng.
, vol.113
, Issue.5
, pp. 665-673
-
-
Kato, H.1
Izumi, Y.2
Hasunuma, T.3
Matsuda, F.4
Kondo, A.5
-
29
-
-
76749140881
-
Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae
-
S. A. Allen, W. Clark, J. M. McCaffery, Z. Cai, A. Lanctot, P. J. Slininger, Z. L. Liu and S. W. Gorsich, Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae, Biotechnol. Biofuels, 2010, 3, 2.
-
(2010)
Biotechnol. Biofuels
, vol.3
, pp. 2
-
-
Allen, S.A.1
Clark, W.2
McCaffery, J.M.3
Cai, Z.4
Lanctot, A.5
Slininger, P.J.6
Liu, Z.L.7
Gorsich, S.W.8
-
30
-
-
84922637940
-
Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid
-
Y. Yoshiyama, K. Tanaka, K. Yoshiyama, M. Hibi, J. Ogawa and J. Shima, Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid, J. Biosci. Bioeng., 2014, DOI: 10.1016/j.jbiosc.2014.06.021.
-
(2014)
J. Biosci. Bioeng.
-
-
Yoshiyama, Y.1
Tanaka, K.2
Yoshiyama, K.3
Hibi, M.4
Ogawa, J.5
Shima, J.6
-
31
-
-
34547840270
-
Yeast responses to stresses associated with industrial brewery handling
-
B. R. Gibson, S. J. Lawrence, J. P. Leclaire, C. D. Powell and K. A. Smart, Yeast responses to stresses associated with industrial brewery handling, FEMS Microbiol. Rev., 2007, 31(5), 535-569.
-
(2007)
FEMS Microbiol. Rev.
, vol.31
, Issue.5
, pp. 535-569
-
-
Gibson, B.R.1
Lawrence, S.J.2
Leclaire, J.P.3
Powell, C.D.4
Smart, K.A.5
-
32
-
-
84887607047
-
Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system
-
R. V. Perez-Gallardo, L. S. Briones, A. L. Diaz-Perez, S. Gutierrez, J. S. Rodriguez-Zavala and J. Campos-Garcia, Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system, FEMS Yeast Res., 2013, 13(8), 804-819.
-
(2013)
FEMS Yeast Res.
, vol.13
, Issue.8
, pp. 804-819
-
-
Perez-Gallardo, R.V.1
Briones, L.S.2
Diaz-Perez, A.L.3
Gutierrez, S.4
Rodriguez-Zavala, J.S.5
Campos-Garcia, J.6
-
33
-
-
68049143143
-
Nitrosative and oxidative stress responses in fungal pathogenicity
-
A. J. Brown, K. Haynes and J. Quinn, Nitrosative and oxidative stress responses in fungal pathogenicity, Curr. Opin. Microbiol., 2009, 12(4), 384-391.
-
(2009)
Curr. Opin. Microbiol.
, vol.12
, Issue.4
, pp. 384-391
-
-
Brown, A.J.1
Haynes, K.2
Quinn, J.3
-
34
-
-
85028104413
-
Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging
-
A. S. Prasad, Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging, J. Trace Elem. Med. Biol., 2014, 4(28), 364-371.
-
(2014)
J. Trace Elem. Med. Biol.
, vol.4
, Issue.28
, pp. 364-371
-
-
Prasad, A.S.1
-
35
-
-
84911369928
-
Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures
-
C. M. Paget, J. M. Schwartz and D. Delneri, Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures, Mol. Ecol., 2014, 23(21), 5241-5257.
-
(2014)
Mol. Ecol.
, vol.23
, Issue.21
, pp. 5241-5257
-
-
Paget, C.M.1
Schwartz, J.M.2
Delneri, D.3
-
36
-
-
84876326394
-
GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production
-
J. Cao, J. M. Barbosa, N. K. Singh and R. D. Locy, GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production, Yeast, 2013, 30(4), 129-144.
-
(2013)
Yeast
, vol.30
, Issue.4
, pp. 129-144
-
-
Cao, J.1
Barbosa, J.M.2
Singh, N.K.3
Locy, R.D.4
-
37
-
-
0030004354
-
Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae
-
C. M. Grant, F. H. MacIver and I. W. Dawes, Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae, Curr. Genet., 1996, 29, 511-515.
-
(1996)
Curr. Genet.
, vol.29
, pp. 511-515
-
-
Grant, C.M.1
MacIver, F.H.2
Dawes, I.W.3
-
38
-
-
84888125930
-
Glutathione is essential to preserve nuclear function and cell survival under oxidative stress
-
E. Hatem, V. Berthonaud, M. Dardalhon, G. Lagniel, P. Baudouin-Cornu, M. E. Huang, J. Labarre and S. Chedin, Glutathione is essential to preserve nuclear function and cell survival under oxidative stress, Free Radical Biol. Med., 2013, 67, 103-114.
-
(2013)
Free Radical Biol. Med.
, vol.67
, pp. 103-114
-
-
Hatem, E.1
Berthonaud, V.2
Dardalhon, M.3
Lagniel, G.4
Baudouin-Cornu, P.5
Huang, M.E.6
Labarre, J.7
Chedin, S.8
-
39
-
-
55649090079
-
Proline as a stress protectant in yeast: Physiological functions, metabolic regulations, and biotechnological applications
-
H. Takagi, Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications, Appl. Microbiol. Biotechnol., 2008, 81(2), 211-223.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.81
, Issue.2
, pp. 211-223
-
-
Takagi, H.1
-
40
-
-
34447281116
-
Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis
-
T. Hirasawa, K. Yoshikawa, Y. Nakakura, K. Nagahisa, C. Furusawa, Y. Katakura, H. Shimizu and S. Shioya, Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis, J. Biotechnol., 2007, 131(1), 34-44.
-
(2007)
J. Biotechnol.
, vol.131
, Issue.1
, pp. 34-44
-
-
Hirasawa, T.1
Yoshikawa, K.2
Nakakura, Y.3
Nagahisa, K.4
Furusawa, C.5
Katakura, Y.6
Shimizu, H.7
Shioya, S.8
-
41
-
-
84875193397
-
Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol
-
X. Wang, B. Z. Li, M. Z. Ding, W. W. Zhang and Y. J. Yuan, Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol, OMICS, 2013, 17(3), 150-159.
-
(2013)
OMICS
, vol.17
, Issue.3
, pp. 150-159
-
-
Wang, X.1
Li, B.Z.2
Ding, M.Z.3
Zhang, W.W.4
Yuan, Y.J.5
-
42
-
-
77952876202
-
Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
-
B. Z. Li and Y. J. Yuan, Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 2010, 86(6), 1915-1924.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.86
, Issue.6
, pp. 1915-1924
-
-
Li, B.Z.1
Yuan, Y.J.2
-
43
-
-
84865434614
-
Proteomic research reveals the stress response and detoxification of yeast to combined inhibitors
-
M. Z. Ding, X. Wang, W. Liu, J. S. Cheng, Y. Yang and Y. J. Yuan, Proteomic research reveals the stress response and detoxification of yeast to combined inhibitors, PLoS One, 2012, 7(8), e43474.
-
(2012)
PLoS One
, vol.7
, Issue.8
, pp. e43474
-
-
Ding, M.Z.1
Wang, X.2
Liu, W.3
Cheng, J.S.4
Yang, Y.5
Yuan, Y.J.6
-
44
-
-
84875936588
-
Alanine-metabolizing enzyme Alt1 is critical in determining yeast life dpan, as revealed by combined metabolomic and genetic studies
-
S. L. Yu, Y. J. An, H. J. Yang, M. S. Kang, H. Y. Kim, H. Wen, X. Jin, H. N. Kwon, K. J. Min, S. K. Lee and S. Park, Alanine-metabolizing enzyme Alt1 is critical in determining yeast life dpan, as revealed by combined metabolomic and genetic studies, J. Proteome Res., 2013, 12, 1619-1627.
-
(2013)
J. Proteome Res.
, vol.12
, pp. 1619-1627
-
-
Yu, S.L.1
An, Y.J.2
Yang, H.J.3
Kang, M.S.4
Kim, H.Y.5
Wen, H.6
Jin, X.7
Kwon, H.N.8
Min, K.J.9
Lee, S.K.10
Park, S.11
-
45
-
-
84896703191
-
Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress
-
Y. J. Lv, X. Wang, Q. Ma, X. Bai, B. Z. Li, W. Zhang and Y. J. Yuan, Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress, Appl. Microbiol. Biotechnol., 2014, 98(5), 2207-2221.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, Issue.5
, pp. 2207-2221
-
-
Lv, Y.J.1
Wang, X.2
Ma, Q.3
Bai, X.4
Li, B.Z.5
Zhang, W.6
Yuan, Y.J.7
-
46
-
-
84926100303
-
Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose
-
K. S. Ismail, T. Sakamoto, T. Hasunuma, X. Q. Zhao and A. Kondo, Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose, Biotechnol. J., 2014, 12(9), 1519-1525.
-
(2014)
Biotechnol. J.
, vol.12
, Issue.9
, pp. 1519-1525
-
-
Ismail, K.S.1
Sakamoto, T.2
Hasunuma, T.3
Zhao, X.Q.4
Kondo, A.5
-
47
-
-
77958135565
-
Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
-
N. P. Mira, M. Palma, J. F. Guerreiro and I. Sa-Correia, Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid, Microb. Cell Fact., 2010, 9, 79.
-
(2010)
Microb. Cell Fact.
, vol.9
, pp. 79
-
-
Mira, N.P.1
Palma, M.2
Guerreiro, J.F.3
Sa-Correia, I.4
|