메뉴 건너뛰기




Volumn 16, Issue 2, 2016, Pages

Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae

Author keywords

Acetic acid tolerance; Ethanol production; Histone modification; Oxidative stress; RTT109; Saccharomyces cerevisiae

Indexed keywords

ACETIC ACID; HISTONE ACETYLTRANSFERASE; HISTONE H3; RTT109 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84963596182     PISSN: 15671356     EISSN: 15671364     Source Type: Journal    
DOI: 10.1093/femsyr/fow010     Document Type: Article
Times cited : (32)

References (48)
  • 1
    • 64749093393 scopus 로고    scopus 로고
    • Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae
    • Abbott DA, Suir E, Duong GH et al. Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae. Appl Environ Microbiol 2009;75:2320-5.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 2320-2325
    • Abbott, D.A.1    Suir, E.2    Duong, G.H.3
  • 2
    • 84925067568 scopus 로고    scopus 로고
    • Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene
    • An J, Kwon H, Kim E et al. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene. Environ Microbiol 2015;17:656-69.
    • (2015) Environ Microbiol , vol.17 , pp. 656-669
    • An, J.1    Kwon, H.2    Kim, E.3
  • 3
    • 84884791723 scopus 로고    scopus 로고
    • Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials
    • Ask M, Mapelli V, Höck H et al. Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microb Cell Fact 2013;12:87.
    • (2013) Microb Cell Fact , vol.12 , pp. 87
    • Ask, M.1    Mapelli, V.2    Höck, H.3
  • 4
    • 33846268796 scopus 로고    scopus 로고
    • Protein oxidation and cellular homeostasis: emphasis on metabolism
    • Cecarini V, Gee J, Fioretti E et al. Protein oxidation and cellular homeostasis: emphasis on metabolism. BBA-Mol Cell Res 2007;1773:93-104.
    • (2007) BBA-Mol Cell Res , vol.1773 , pp. 93-104
    • Cecarini, V.1    Gee, J.2    Fioretti, E.3
  • 5
    • 47549105301 scopus 로고    scopus 로고
    • Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair
    • Chen CC, Carson JJ, Feser J et al. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 2008;134:231-43.
    • (2008) Cell , vol.134 , pp. 231-243
    • Chen, C.C.1    Carson, J.J.2    Feser, J.3
  • 6
    • 84963522773 scopus 로고    scopus 로고
    • Effect of cell flocculation and supplementation of zinc sulfate on enhancement of ethanol production in the presence of acetic acid
    • Cheng C, Zhao XQ, Bai FW. Effect of cell flocculation and supplementation of zinc sulfate on enhancement of ethanol production in the presence of acetic acid. Chinese J Appl Environ Biol 2016;22:1136-42.
    • (2016) Chinese J Appl Environ Biol , vol.22 , pp. 1136-1142
    • Cheng, C.1    Zhao, X.Q.2    Bai, F.W.3
  • 7
    • 0030997844 scopus 로고    scopus 로고
    • Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase
    • Costa V, Amorim MA, Reis E et al. Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology 1997;143:1649-56.
    • (1997) Microbiology , vol.143 , pp. 1649-1656
    • Costa, V.1    Amorim, M.A.2    Reis, E.3
  • 8
    • 84924599442 scopus 로고    scopus 로고
    • Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases
    • Dahlin JL, Chen X, WaltersMAet al. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases. Crit Rev Biochem Mol 2015;50:31-53.
    • (2015) Crit Rev Biochem Mol , vol.50 , pp. 31-53
    • Dahlin, J.L.1    Chen, X.2    Walters, M.A.3
  • 9
    • 82955203156 scopus 로고    scopus 로고
    • Understanding histone acetyltransferase Rtt109 structure and function: how many chaperones does it take?
    • D'Arcy S, Luger K. Understanding histone acetyltransferase Rtt109 structure and function: how many chaperones does it take? Curr Opin Struc Biol 2011;21:728-34.
    • (2011) Curr Opin Struc Biol , vol.21 , pp. 728-734
    • D'Arcy, S.1    Luger, K.2
  • 10
    • 84941995652 scopus 로고    scopus 로고
    • PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress
    • Ding J, Holzwarth G, Bradford CS et al. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress. Appl Microbiol Biot 2015a;99:8667-80.
    • (2015) Appl Microbiol Biot , vol.99 , pp. 8667-8680
    • Ding, J.1    Holzwarth, G.2    Bradford, C.S.3
  • 11
    • 84944155176 scopus 로고    scopus 로고
    • Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance
    • Ding J, Holzwarth G, Penner MH et al. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance. FEMS Microbiol Lett 2015b;362:1-7.
    • (2015) FEMS Microbiol Lett , vol.362 , pp. 1-7
    • Ding, J.1    Holzwarth, G.2    Penner, M.H.3
  • 12
    • 33846818840 scopus 로고    scopus 로고
    • Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56
    • Driscoll R, Hudson A, Jackson SP. Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 2007;315:649-52.
    • (2007) Science , vol.315 , pp. 649-652
    • Driscoll, R.1    Hudson, A.2    Jackson, S.P.3
  • 13
    • 34250792218 scopus 로고    scopus 로고
    • N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species
    • Du X, Takagi H. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl Microbiol Biot 2007;75:1343-51.
    • (2007) Appl Microbiol Biot , vol.75 , pp. 1343-1351
    • Du, X.1    Takagi, H.2
  • 14
    • 84880509599 scopus 로고    scopus 로고
    • Overexpression of stress-related genes enhances cell viability and velum formation in Sherry wine yeasts
    • Fierro-Risco J, Rincón AM, Benítez T et al. Overexpression of stress-related genes enhances cell viability and velum formation in Sherry wine yeasts. Appl Microbiol Biotl 2013;97:6867-81.
    • (2013) Appl Microbiol Biotl , vol.97 , pp. 6867-6881
    • Fierro-Risco, J.1    Rincón, A.M.2    Benítez, T.3
  • 15
    • 84875904201 scopus 로고    scopus 로고
    • Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid
    • Giannattasio S, Guaragnella N, Zdralevic M et al. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front Microbiol 2013;4:33.
    • (2013) Front Microbiol , vol.4 , pp. 33
    • Giannattasio, S.1    Guaragnella, N.2    Zdralevic, M.3
  • 16
    • 0030747207 scopus 로고    scopus 로고
    • Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine
    • Grant CM, MacIver FH, Dawes IW. Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine. Mol Biol Cell 1997;8:1699-707.
    • (1997) Mol Biol Cell , vol.8 , pp. 1699-1707
    • Grant, C.M.1    MacIver, F.H.2    Dawes, I.W.3
  • 17
    • 38049068839 scopus 로고    scopus 로고
    • Catalase T and Cu, Zn-superoxide dismutase in the acetic acid-induced programmed cell death in Saccharomyces cerevisiae
    • Guaragnella N, Antonacci L, Giannattasio S et al. Catalase T and Cu, Zn-superoxide dismutase in the acetic acid-induced programmed cell death in Saccharomyces cerevisiae. FEBS Lett 2008;582:210-4.
    • (2008) FEBS Lett , vol.582 , pp. 210-214
    • Guaragnella, N.1    Antonacci, L.2    Giannattasio, S.3
  • 18
    • 0033578750 scopus 로고    scopus 로고
    • Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae
    • Inoue Y, Matsuda T, Sugiyama K et al. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 1999;274:27002-9.
    • (1999) J Biol Chem , vol.274 , pp. 27002-27009
    • Inoue, Y.1    Matsuda, T.2    Sugiyama, K.3
  • 19
    • 0032439653 scopus 로고    scopus 로고
    • Oxidative stress responses of the yeast Saccharomyces cerevisiae
    • Jamieson DJ. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 1998;14:1511-27.
    • (1998) Yeast , vol.14 , pp. 1511-1527
    • Jamieson, D.J.1
  • 21
    • 84874499132 scopus 로고    scopus 로고
    • Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
    • Kim SR, Skerker JM, Kang W et al. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One 2013;8:e57048.
    • (2013) PLoS One , vol.8
    • Kim, S.R.1    Skerker, J.M.2    Kang, W.3
  • 22
    • 70249142494 scopus 로고    scopus 로고
    • Cooperation between the INO80 complex and histone chaperones determines adaptation of stress gene transcription in the yeast Saccharomyces cerevisiae
    • Klopf E, Paskova L, C Solé et al. Cooperation between the INO80 complex and histone chaperones determines adaptation of stress gene transcription in the yeast Saccharomyces cerevisiae. Mol Cell Boil 2009;29:4994-5007.
    • (2009) Mol Cell Boil , vol.29 , pp. 4994-5007
    • Klopf, E.1    Paskova, L.2    Solé, C.3
  • 23
    • 0032414180 scopus 로고    scopus 로고
    • Region of Flo1 proteins responsible for sugar recognition
    • Kobayashi O, Hayashi N, Kuroki R et al. Region of Flo1 proteins responsible for sugar recognition. J Bacteriol 1998;180: 6503-10.
    • (1998) J Bacteriol , vol.180 , pp. 6503-6510
    • Kobayashi, O.1    Hayashi, N.2    Kuroki, R.3
  • 24
    • 33847076849 scopus 로고    scopus 로고
    • Chromatin modifications and their function
    • Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693-705.
    • (2007) Cell , vol.128 , pp. 693-705
    • Kouzarides, T.1
  • 25
    • 84937637609 scopus 로고    scopus 로고
    • Transcriptome analysis of aceticacid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance
    • Lee Y, Nasution O, Choi E et al. Transcriptome analysis of aceticacid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance. Appl Microbiol Biot 2015;99:6391-403.
    • (2015) Appl Microbiol Biot , vol.99 , pp. 6391-6403
    • Lee, Y.1    Nasution, O.2    Choi, E.3
  • 26
    • 68349135058 scopus 로고    scopus 로고
    • Histonemodification patterns and epigenetic codes
    • Lennartsson A, Ekwall K. Histonemodification patterns and epigenetic codes. BBA-Gen Subjects 2009;1790:863-8.
    • (2009) BBA-Gen Subjects , vol.1790 , pp. 863-868
    • Lennartsson, A.1    Ekwall, K.2
  • 27
    • 53049105934 scopus 로고    scopus 로고
    • Structural insights into histone H3 lysine 56 acetylation by Rtt109
    • Lin C, Yuan YA. Structural insights into histone H3 lysine 56 acetylation by Rtt109. Structure 2008;16:1503-10.
    • (2008) Structure , vol.16 , pp. 1503-1510
    • Lin, C.1    Yuan, Y.A.2
  • 28
    • 84906355798 scopus 로고    scopus 로고
    • Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae
    • Liu XY, Zhang XH, Zhang ZJ. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae. J Biotechnol 2014;187:116-23.
    • (2014) J Biotechnol , vol.187 , pp. 116-123
    • Liu, X.Y.1    Zhang, X.H.2    Zhang, Z.J.3
  • 30
    • 0034807841 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid
    • Ludovico P, Sousa MJ, Silva MT et al. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 2001;147:2409-15.
    • (2001) Microbiology , vol.147 , pp. 2409-2415
    • Ludovico, P.1    Sousa, M.J.2    Silva, M.T.3
  • 31
    • 84925503038 scopus 로고    scopus 로고
    • Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance
    • Ma C, Wei XW, Sun CH et al. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance. Appl Microbiol Biot 2015;99:2441-9.
    • (2015) Appl Microbiol Biot , vol.99 , pp. 2441-2449
    • Ma, C.1    Wei, X.W.2    Sun, C.H.3
  • 32
    • 79953173256 scopus 로고    scopus 로고
    • Transcriptional regulation by Asf1: new mechanistic insights from studies of the DNA damage response to replication stress
    • Minard LV, Williams JS, Walker AC et al. Transcriptional regulation by Asf1: new mechanistic insights from studies of the DNA damage response to replication stress. J Biol Chem 2011;286:7082-92.
    • (2011) J Biol Chem , vol.286 , pp. 7082-7092
    • Minard, L.V.1    Williams, J.S.2    Walker, A.C.3
  • 33
    • 1842536834 scopus 로고    scopus 로고
    • Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae
    • Moraitis C, Curran BPG. Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae. Yeast 2004;21:313-23.
    • (2004) Yeast , vol.21 , pp. 313-323
    • Moraitis, C.1    Curran, B.P.G.2
  • 34
    • 77955791570 scopus 로고    scopus 로고
    • An antioxidative mechanism mediated by the yeastN-acetyltransferaseMpr1: oxidative stress-induced arginine synthesis and its physiological role
    • Nishimura A, Kotani T, Sasano Y et al. An antioxidative mechanism mediated by the yeastN-acetyltransferaseMpr1: oxidative stress-induced arginine synthesis and its physiological role. FEMS Yeast Res 2010;10:687-98.
    • (2010) FEMS Yeast Res , vol.10 , pp. 687-698
    • Nishimura, A.1    Kotani, T.2    Sasano, Y.3
  • 35
    • 84899962183 scopus 로고    scopus 로고
    • Comprehensive analysis of genes involved in the oxidative stress tolerance using yeast heterozygous deletion collection
    • Okada N, Ogawa J, Shima J. Comprehensive analysis of genes involved in the oxidative stress tolerance using yeast heterozygous deletion collection. FEMS Yeast Res 2014;14: 425-34.
    • (2014) FEMS Yeast Res , vol.14 , pp. 425-434
    • Okada, N.1    Ogawa, J.2    Shima, J.3
  • 36
    • 6044256118 scopus 로고    scopus 로고
    • Histones and histonemodifications
    • Peterson CL, LanielMA. Histones and histonemodifications. Curr Microbiol 2004;14:R546-51.
    • (2004) Curr Microbiol , vol.14 , pp. R546-R551
    • Peterson, C.L.1    Laniel, M.A.2
  • 37
    • 84939416440 scopus 로고    scopus 로고
    • CTT1 overexpression increases life span of calorie-restricted Saccharomyces cerevisiae deficient in Sod1
    • Rona G, Herdeiro R, Mathias CJ et al. CTT1 overexpression increases life span of calorie-restricted Saccharomyces cerevisiae deficient in Sod1. Biogerontology 2015;16:343-51.
    • (2015) Biogerontology , vol.16 , pp. 343-351
    • Rona, G.1    Herdeiro, R.2    Mathias, C.J.3
  • 38
    • 76849094998 scopus 로고    scopus 로고
    • Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae
    • Stanley D, Fraser S, Chambers PJ et al. Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. J Ind Microbiol Biot 2010;37:139-49.
    • (2010) J Ind Microbiol Biot , vol.37 , pp. 139-149
    • Stanley, D.1    Fraser, S.2    Chambers, P.J.3
  • 39
    • 50449091106 scopus 로고    scopus 로고
    • Molecular basis for the autoregulation of the protein acetyl transferase Rtt109
    • Stavropoulos P, Nagy V, Blobel G et al. Molecular basis for the autoregulation of the protein acetyl transferase Rtt109. P Natl Acad Sci USA 2008;105:12236-41.
    • (2008) P Natl Acad Sci USA , vol.105 , pp. 12236-12241
    • Stavropoulos, P.1    Nagy, V.2    Blobel, G.3
  • 40
    • 84925461188 scopus 로고    scopus 로고
    • Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae
    • Takabatake A, Kawazoe N, Izawa S. Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae. Appl Microbiol Biot 2015;99:2805-14.
    • (2015) Appl Microbiol Biot , vol.99 , pp. 2805-2814
    • Takabatake, A.1    Kawazoe, N.2    Izawa, S.3
  • 41
    • 0036209598 scopus 로고    scopus 로고
    • Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids
    • Thomas KC, Hynes SH, Ingledew WM. Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Apppl Environ Microbiol 2002;68:1616-23.
    • (2002) Apppl Environ Microbiol , vol.68 , pp. 1616-1623
    • Thomas, K.C.1    Hynes, S.H.2    Ingledew, W.M.3
  • 42
    • 84923102716 scopus 로고    scopus 로고
    • Impact of zinc sulfate addition on dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in antioxidant effect of zinc
    • Wan C, Zhang MM, Fang Q et al. Impact of zinc sulfate addition on dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in antioxidant effect of zinc. Metallomics 2015;7:322-32.
    • (2015) Metallomics , vol.7 , pp. 322-332
    • Wan, C.1    Zhang, M.M.2    Fang, Q.3
  • 43
    • 84883819175 scopus 로고    scopus 로고
    • Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation
    • Wang L, Zhao XQ, Xue C et al. Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation. Biotechnol Biofuel 2013;6:1-10.
    • (2013) Biotechnol Biofuel , vol.6 , pp. 1-10
    • Wang, L.1    Zhao, X.Q.2    Xue, C.3
  • 44
    • 77956006894 scopus 로고    scopus 로고
    • Hsp12 is an intrinsically unstructured stress protein that folds upon membrane associationand modulates membrane function
    • Welker S, Rudolph B, Frenzel E et al. Hsp12 is an intrinsically unstructured stress protein that folds upon membrane associationand modulates membrane function. Mol Cell 2010;39:507-20.
    • (2010) Mol Cell , vol.39 , pp. 507-520
    • Welker, S.1    Rudolph, B.2    Frenzel, E.3
  • 45
    • 84908299692 scopus 로고    scopus 로고
    • Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production
    • Westman JO, Mapelli V, Taherzadeh MJ et al. Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production. Appl Environ Microb 2014;80:6908-18.
    • (2014) Appl Environ Microb , vol.80 , pp. 6908-6918
    • Westman, J.O.1    Mapelli, V.2    Taherzadeh, M.J.3
  • 46
    • 84951566814 scopus 로고    scopus 로고
    • Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1
    • Zhang MM, Zhao XQ, Cheng C et al. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1. Biotechnol J 2015;10:1903-11.
    • (2015) Biotechnol J , vol.10 , pp. 1903-1911
    • Zhang, M.M.1    Zhao, X.Q.2    Cheng, C.3
  • 47
    • 84859510658 scopus 로고    scopus 로고
    • Zinc and yeast stress tolerance: micronutrient plays a big role
    • Zhao XQ, Bai FW. Zinc and yeast stress tolerance: micronutrient plays a big role. J Biotechnol 2012;158:176-83.
    • (2012) J Biotechnol , vol.158 , pp. 176-183
    • Zhao, X.Q.1    Bai, F.W.2
  • 48
    • 84874118739 scopus 로고    scopus 로고
    • Comparative functional genomics to reveal the molecular basis of phenotypic diversities and guide the genetic breeding of industrial yeast strains
    • Zheng DQ, Liu TZ, Chen J et al. Comparative functional genomics to reveal the molecular basis of phenotypic diversities and guide the genetic breeding of industrial yeast strains. Appl Microbiol Biot 2013;97:2067-76.
    • (2013) Appl Microbiol Biot , vol.97 , pp. 2067-2076
    • Zheng, D.Q.1    Liu, T.Z.2    Chen, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.