메뉴 건너뛰기




Volumn 144, Issue 1, 2009, Pages 23-30

Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production

Author keywords

Ethanol fermentation; Saccharomyces cerevisiae; Stress tolerance

Indexed keywords

DEFENSE MECHANISM; ETHANOL FERMENTATION; ETHANOL INHIBITION; ETHANOL PRODUCTION; FUEL ETHANOL; GENOME SHUFFLING; HIGH GRAVITY; HIGH TEMPERATURE; IN-DEPTH UNDERSTANDING; LATEST DEVELOPMENT; LIGNOCELLULOSIC BIOMASS; OSMOTIC PRESSURE; PRE-TREATMENT; SACCHAROMYCES CEREVISIAE; STRESS RESPONSE; STRESS TOLERANCE; YEAST CELL; YEAST STRAIN;

EID: 70349775063     PISSN: 01681656     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbiotec.2009.05.001     Document Type: Review
Times cited : (183)

References (92)
  • 2
    • 0035370872 scopus 로고    scopus 로고
    • Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae
    • Alexandre H., Ansanay-Galeote V., Dequin S., and Blondin B. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 498 (2001) 98-103
    • (2001) FEBS Lett. , vol.498 , pp. 98-103
    • Alexandre, H.1    Ansanay-Galeote, V.2    Dequin, S.3    Blondin, B.4
  • 3
  • 6
    • 33845442201 scopus 로고    scopus 로고
    • Engineering yeast transcription machinery for improved ethanol tolerance and production
    • Alper H., Moxley J., Nevoigt E., Fink G.R., and Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314 (2006) 1565-1568
    • (2006) Science , vol.314 , pp. 1565-1568
    • Alper, H.1    Moxley, J.2    Nevoigt, E.3    Fink, G.R.4    Stephanopoulos, G.5
  • 7
    • 0031454272 scopus 로고    scopus 로고
    • Stress tolerance: the key to effective strains of industrial baker's yeast
    • Attfield P.V. Stress tolerance: the key to effective strains of industrial baker's yeast. Nat. Biotechnol. 15 (1997) 1351-1357
    • (1997) Nat. Biotechnol. , vol.15 , pp. 1351-1357
    • Attfield, P.V.1
  • 8
    • 2442528647 scopus 로고    scopus 로고
    • Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions
    • Bai F.W., Chen L.J., Zhang Z., Anderson W.A., and Moo-Young M. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J. Biotechnol. 110 (2004) 287-293
    • (2004) J. Biotechnol. , vol.110 , pp. 287-293
    • Bai, F.W.1    Chen, L.J.2    Zhang, Z.3    Anderson, W.A.4    Moo-Young, M.5
  • 9
    • 36349013043 scopus 로고    scopus 로고
    • Ethanol fermentation technologies from sugar and starch feedstocks
    • Bai F.W., Anderson W.A., and Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 26 (2008) 89-105
    • (2008) Biotechnol. Adv. , vol.26 , pp. 89-105
    • Bai, F.W.1    Anderson, W.A.2    Moo-Young, M.3
  • 10
    • 55449104987 scopus 로고    scopus 로고
    • Stress-activated genomic expression changes serve a preparative role for impending stress in yeast
    • Berry D.B., and Gasch A.P. Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol. Biol. Cell 19 (2008) 4580-4587
    • (2008) Mol. Biol. Cell , vol.19 , pp. 4580-4587
    • Berry, D.B.1    Gasch, A.P.2
  • 11
    • 0034213194 scopus 로고    scopus 로고
    • Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae
    • Birch R.M., and Walker G.M. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme Microb. Technol. 26 (2000) 678-687
    • (2000) Enzyme Microb. Technol. , vol.26 , pp. 678-687
    • Birch, R.M.1    Walker, G.M.2
  • 12
    • 15044340553 scopus 로고    scopus 로고
    • Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae
    • Cakar Z.P., Seker U.O., Tamerler C., Sonderegger M., and Sauer U. Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res. 5 (2005) 569-578
    • (2005) FEMS Yeast Res. , vol.5 , pp. 569-578
    • Cakar, Z.P.1    Seker, U.O.2    Tamerler, C.3    Sonderegger, M.4    Sauer, U.5
  • 14
    • 0001966790 scopus 로고    scopus 로고
    • Use of response surface to investigate metal ion interaction in yeast fermentations
    • Chandrasena G., and Walker G.M. Use of response surface to investigate metal ion interaction in yeast fermentations. J. Am. Soc. Brew. Chem. 55 (1997) 24-29
    • (1997) J. Am. Soc. Brew. Chem. , vol.55 , pp. 24-29
    • Chandrasena, G.1    Walker, G.M.2
  • 15
    • 0034035732 scopus 로고    scopus 로고
    • Cellular lipid composition influences stress activation of the yeast general stress response element (STRE)
    • Chatterjee M.T., Khalawan S.A., and Curran B.P.G. Cellular lipid composition influences stress activation of the yeast general stress response element (STRE). Microbiology 146 (2000) 844-877
    • (2000) Microbiology , vol.146 , pp. 844-877
    • Chatterjee, M.T.1    Khalawan, S.A.2    Curran, B.P.G.3
  • 16
    • 33744987171 scopus 로고    scopus 로고
    • Feedback control of morphogenesis in fungi by aromatic alcohols
    • Chen H., and Fink G.R. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 20 (2006) 1150-1161
    • (2006) Genes Dev. , vol.20 , pp. 1150-1161
    • Chen, H.1    Fink, G.R.2
  • 17
    • 0032992657 scopus 로고    scopus 로고
    • Role of phosphatidylinositol (PI) in ethanol production and ethanol tolerance by a high ethanol producing yeast
    • Chi Z., Kohlwein S.D., and Paltauf F. Role of phosphatidylinositol (PI) in ethanol production and ethanol tolerance by a high ethanol producing yeast. J. Ind. Microbiol. Biotechnol. 22 (1999) 58-63
    • (1999) J. Ind. Microbiol. Biotechnol. , vol.22 , pp. 58-63
    • Chi, Z.1    Kohlwein, S.D.2    Paltauf, F.3
  • 18
    • 0027291399 scopus 로고
    • Acquisition of ethanol tolerance in Saccharomyces cerevisiae: the key role of the mitochondrial superoxide dismutase
    • Costa V., Reis E., Quintanilha A., and Moradas-Ferreira P. Acquisition of ethanol tolerance in Saccharomyces cerevisiae: the key role of the mitochondrial superoxide dismutase. Arch. Biochem. Biophys. 300 (1993) 608-614
    • (1993) Arch. Biochem. Biophys. , vol.300 , pp. 608-614
    • Costa, V.1    Reis, E.2    Quintanilha, A.3    Moradas-Ferreira, P.4
  • 19
    • 33846288948 scopus 로고    scopus 로고
    • Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol
    • Cot M., Loret M.O., Francois J., and Benbadis L. Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol. FEMS Yeast Res. 7 (2007) 22-32
    • (2007) FEMS Yeast Res. , vol.7 , pp. 22-32
    • Cot, M.1    Loret, M.O.2    Francois, J.3    Benbadis, L.4
  • 21
    • 0022970627 scopus 로고
    • Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation
    • Dombek K.M., and Ingram L.O. Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation. Appl. Environ. Microbiol. 52 (1986) 975-981
    • (1986) Appl. Environ. Microbiol. , vol.52 , pp. 975-981
    • Dombek, K.M.1    Ingram, L.O.2
  • 23
    • 34250792218 scopus 로고    scopus 로고
    • N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species
    • Du X., and Takagi H. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl. Microbiol. Biotechnol. 75 (2007) 1343-1351
    • (2007) Appl. Microbiol. Biotechnol. , vol.75 , pp. 1343-1351
    • Du, X.1    Takagi, H.2
  • 24
    • 54049100371 scopus 로고    scopus 로고
    • Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast
    • Espinazo-Romeu M., Cantoral J.M., Matallana E., and Aranda A. Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast. FEMS Yeast Res. 8 (2008) 1127-1136
    • (2008) FEMS Yeast Res. , vol.8 , pp. 1127-1136
    • Espinazo-Romeu, M.1    Cantoral, J.M.2    Matallana, E.3    Aranda, A.4
  • 25
    • 57049150206 scopus 로고    scopus 로고
    • Selection and optimization of microbial hosts for biofuels production
    • Fischer C.R., Klein-Marcuschamer D., and Stephanopoulos G. Selection and optimization of microbial hosts for biofuels production. Metab. Eng. 10 (2008) 295-304
    • (2008) Metab. Eng. , vol.10 , pp. 295-304
    • Fischer, C.R.1    Klein-Marcuschamer, D.2    Stephanopoulos, G.3
  • 26
    • 33745886222 scopus 로고    scopus 로고
    • The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols
    • Fujita K., Matsuyama A., Kobayashi Y., and Iwahashi H. The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res. 6 (2006) 744-750
    • (2006) FEMS Yeast Res. , vol.6 , pp. 744-750
    • Fujita, K.1    Matsuyama, A.2    Kobayashi, Y.3    Iwahashi, H.4
  • 30
    • 19544376842 scopus 로고    scopus 로고
    • On-line monitoring and characterization of flocculating yeast cell flocs during continuous ethanol fermentation
    • Ge X.M., Zhao X.Q., and Bai F.W. On-line monitoring and characterization of flocculating yeast cell flocs during continuous ethanol fermentation. Biotechnol. Bioeng. 90 (2005) 523-531
    • (2005) Biotechnol. Bioeng. , vol.90 , pp. 523-531
    • Ge, X.M.1    Zhao, X.Q.2    Bai, F.W.3
  • 31
    • 33745667335 scopus 로고    scopus 로고
    • Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1 and TKL1 in Saccharomyces cerevisiae
    • Gorsich S.E., Dien B.S., Nichols N.N., Slininger P.J., Liu Z.L., and Skory C.D. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1 and TKL1 in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 71 (2006) 339-349
    • (2006) Appl. Microbiol. Biotechnol. , vol.71 , pp. 339-349
    • Gorsich, S.E.1    Dien, B.S.2    Nichols, N.N.3    Slininger, P.J.4    Liu, Z.L.5    Skory, C.D.6
  • 32
    • 38749088667 scopus 로고    scopus 로고
    • The adenylate energy charge and specific fermentation rate of brewer's yeasts fermenting high- and very high-gravity worts
    • Guimaraes P.M., and Londesborough J. The adenylate energy charge and specific fermentation rate of brewer's yeasts fermenting high- and very high-gravity worts. Yeast 25 (2008) 47-58
    • (2008) Yeast , vol.25 , pp. 47-58
    • Guimaraes, P.M.1    Londesborough, J.2
  • 34
    • 34447281116 scopus 로고    scopus 로고
    • Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis
    • Hirasawa T., Yoshikawa K., Nakakura Y., Nagahisa K., Furusawa C., Katakura Y., Shimizu H., and Shioya S. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J. Biotechnol. 131 (2007) 34-44
    • (2007) J. Biotechnol. , vol.131 , pp. 34-44
    • Hirasawa, T.1    Yoshikawa, K.2    Nakakura, Y.3    Nagahisa, K.4    Furusawa, C.5    Katakura, Y.6    Shimizu, H.7    Shioya, S.8
  • 35
    • 67651065710 scopus 로고    scopus 로고
    • Protein amino acid composition of plasma membranes affects membrane fluidity and thereby ethanol tolerance in a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae
    • Hu C.K., Bai F.W., and An L.J. Protein amino acid composition of plasma membranes affects membrane fluidity and thereby ethanol tolerance in a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae. Chin. J. Biotechnol. 21 (2005) 809-813
    • (2005) Chin. J. Biotechnol. , vol.21 , pp. 809-813
    • Hu, C.K.1    Bai, F.W.2    An, L.J.3
  • 36
    • 34548414927 scopus 로고    scopus 로고
    • Effect of flocculence of a self-flocculating yeast on its tolerance to ethanol and the mechanism
    • Hu C.K., Bai F.W., and An L.J. Effect of flocculence of a self-flocculating yeast on its tolerance to ethanol and the mechanism. Chin. J. Biotechnol. 21 (2005) 123-128
    • (2005) Chin. J. Biotechnol. , vol.21 , pp. 123-128
    • Hu, C.K.1    Bai, F.W.2    An, L.J.3
  • 37
    • 0041629125 scopus 로고    scopus 로고
    • 2+ via reduction in plasma membrane permeability
    • 2+ via reduction in plasma membrane permeability. Biotechnol. Lett. 25 (2003) 1191-1194
    • (2003) Biotechnol. Lett. , vol.25 , pp. 1191-1194
    • Hu, C.K.1    Bai, F.W.2    An, L.J.3
  • 38
    • 50249188992 scopus 로고    scopus 로고
    • Enhancements in ethanol tolerance of a self-flocculating yeast by calcium ion through decrease in plasmalemma permeability
    • Hu C.K., Bai F.W., and An L.J. Enhancements in ethanol tolerance of a self-flocculating yeast by calcium ion through decrease in plasmalemma permeability. Chin. J. Biotechnol. 19 (2003) 715-719
    • (2003) Chin. J. Biotechnol. , vol.19 , pp. 715-719
    • Hu, C.K.1    Bai, F.W.2    An, L.J.3
  • 39
    • 34249053477 scopus 로고    scopus 로고
    • Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae
    • Hu X.H., Wang M.H., Tan T., Li J.R., Yang H., Leach L., Zhang R.M., and Luo Z.W. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 175 (2007) 1479-1487
    • (2007) Genetics , vol.175 , pp. 1479-1487
    • Hu, X.H.1    Wang, M.H.2    Tan, T.3    Li, J.R.4    Yang, H.5    Leach, L.6    Zhang, R.M.7    Luo, Z.W.8
  • 40
    • 0021668356 scopus 로고
    • Effects of alcohols on microorganisms
    • Ingram L.O., and Buttke T.M. Effects of alcohols on microorganisms. Adv. Microb. Physiol. 25 (1984) 253-300
    • (1984) Adv. Microb. Physiol. , vol.25 , pp. 253-300
    • Ingram, L.O.1    Buttke, T.M.2
  • 41
    • 28444455642 scopus 로고    scopus 로고
    • Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae
    • Jung Y.J., and Park H.D. Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae. Biotechnol. Lett. 27 (2005) 1855-1859
    • (2005) Biotechnol. Lett. , vol.27 , pp. 1855-1859
    • Jung, Y.J.1    Park, H.D.2
  • 42
    • 42549086290 scopus 로고    scopus 로고
    • Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses
    • Kaino T., and Takagi H. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl. Microbiol. Biotechnol. 79 (2008) 273-283
    • (2008) Appl. Microbiol. Biotechnol. , vol.79 , pp. 273-283
    • Kaino, T.1    Takagi, H.2
  • 43
    • 12544249147 scopus 로고    scopus 로고
    • Inhibition of ethnol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
    • Klinke H.B., Thomsen A.B., and Ahring B.K. Inhibition of ethnol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 66 (2004) 10-26
    • (2004) Appl. Microbiol. Biotechnol. , vol.66 , pp. 10-26
    • Klinke, H.B.1    Thomsen, A.B.2    Ahring, B.K.3
  • 44
    • 0035289692 scopus 로고    scopus 로고
    • Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase
    • Larsson S., Cassland P., and Jönsson L.J. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl. Environ. Microbiol. 67 (2001) 1163-1170
    • (2001) Appl. Environ. Microbiol. , vol.67 , pp. 1163-1170
    • Larsson, S.1    Cassland, P.2    Jönsson, L.J.3
  • 45
    • 34548388010 scopus 로고    scopus 로고
    • Ethanol tolerance and the variation of plasma membrane composition of yeast floc populations with different size distribution
    • Lei J.J., Zhao X.Q., Ge X.M., and Bai F.W. Ethanol tolerance and the variation of plasma membrane composition of yeast floc populations with different size distribution. J. Biotechnol. 131 (2007) 270-275
    • (2007) J. Biotechnol. , vol.131 , pp. 270-275
    • Lei, J.J.1    Zhao, X.Q.2    Ge, X.M.3    Bai, F.W.4
  • 46
    • 33750290903 scopus 로고    scopus 로고
    • Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors
    • Liu Z.L. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl. Microbiol. Biotechnol. 73 (2006) 27-36
    • (2006) Appl. Microbiol. Biotechnol. , vol.73 , pp. 27-36
    • Liu, Z.L.1
  • 47
    • 84988080245 scopus 로고
    • Effect of zinc and cobalt on yeast growth and fermentation
    • Maddox I.S., and Hough J.S. Effect of zinc and cobalt on yeast growth and fermentation. J. Inst. Brew. 76 (1970) 262-264
    • (1970) J. Inst. Brew. , vol.76 , pp. 262-264
    • Maddox, I.S.1    Hough, J.S.2
  • 49
    • 33846667838 scopus 로고    scopus 로고
    • Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugar-cane bagasse hydrolysate with high content of fermentation inhibitors
    • Martin C., Marcet M., Almazan O., and Jonsson L.J. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugar-cane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour. Technol. 98 (2007) 1767-1773
    • (2007) Bioresour. Technol. , vol.98 , pp. 1767-1773
    • Martin, C.1    Marcet, M.2    Almazan, O.3    Jonsson, L.J.4
  • 50
    • 0037224715 scopus 로고    scopus 로고
    • L-proline accumulation and freeze tolerance of Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding gamma-glutamyl kinase
    • Morita Y., Nakamori S., and Takagi H. L-proline accumulation and freeze tolerance of Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding gamma-glutamyl kinase. Appl. Environ. Microbiol. 69 (2003) 212-219
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 212-219
    • Morita, Y.1    Nakamori, S.2    Takagi, H.3
  • 51
    • 0001646590 scopus 로고
    • Influence of calcium ion on ethanol tolerance of Saccharomyces bayanus and alcoholic fermentation by yeasts
    • Nabais R.C., Sa-Correia I., Viegas C.A., and Novais J.M. Influence of calcium ion on ethanol tolerance of Saccharomyces bayanus and alcoholic fermentation by yeasts. Appl. Environ. Microbiol. 54 (1988) 2439-2446
    • (1988) Appl. Environ. Microbiol. , vol.54 , pp. 2439-2446
    • Nabais, R.C.1    Sa-Correia, I.2    Viegas, C.A.3    Novais, J.M.4
  • 52
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 72 (2008) 379-412
    • (2008) Microbiol. Mol. Biol. Rev. , vol.72 , pp. 379-412
    • Nevoigt, E.1
  • 53
    • 0035954535 scopus 로고    scopus 로고
    • Use of dynamic step response for control of fed-batch conversion of lignocellulosic hydrolyzates to ethanol
    • Nilsson A., Taherzadeh M.J., and Lidén G. Use of dynamic step response for control of fed-batch conversion of lignocellulosic hydrolyzates to ethanol. Biotechnology 89 (2001) 41-53
    • (2001) Biotechnology , vol.89 , pp. 41-53
    • Nilsson, A.1    Taherzadeh, M.J.2    Lidén, G.3
  • 54
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II. Inhibitors and mechanisms of inhibition
    • Palmqvist E., and Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. II. Inhibitors and mechanisms of inhibition. Bioresour. Technol. 74 (2000) 25-33
    • (2000) Bioresour. Technol. , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hagerdal, B.2
  • 56
    • 19044361932 scopus 로고    scopus 로고
    • Acquisition of tolerance against oxidative stress damage in Saccharomyces cerevisiae
    • Pereira M.D., Eleutherio E.C., and Panek A.D. Acquisition of tolerance against oxidative stress damage in Saccharomyces cerevisiae. BMC Microbiol. 1 (2001) 11-21
    • (2001) BMC Microbiol. , vol.1 , pp. 11-21
    • Pereira, M.D.1    Eleutherio, E.C.2    Panek, A.D.3
  • 57
  • 58
    • 33845447287 scopus 로고    scopus 로고
    • Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions
    • Pham T.K., Chong P.K., Gan C.S., and Wright P.C. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions. J. Proteome Res. 5 (2006) 3411-3419
    • (2006) J. Proteome Res. , vol.5 , pp. 3411-3419
    • Pham, T.K.1    Chong, P.K.2    Gan, C.S.3    Wright, P.C.4
  • 59
    • 58149380181 scopus 로고    scopus 로고
    • The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation
    • Pham T.K., and Wright P.C. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. J. Proteome Res. 7 (2008) 4766-4774
    • (2008) J. Proteome Res. , vol.7 , pp. 4766-4774
    • Pham, T.K.1    Wright, P.C.2
  • 60
    • 54949083874 scopus 로고    scopus 로고
    • Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae
    • Pizarro F.J., Felipe M.C., Nielsen J., and Agosin E. Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74 (2008) 6358-6368
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 6358-6368
    • Pizarro, F.J.1    Felipe, M.C.2    Nielsen, J.3    Agosin, E.4
  • 61
    • 36949025723 scopus 로고    scopus 로고
    • A systems biology perspective of wine fermentations
    • Pizarro F.J., Vargas F.A., and Agosin E. A systems biology perspective of wine fermentations. Yeast 24 (2007) 977-991
    • (2007) Yeast , vol.24 , pp. 977-991
    • Pizarro, F.J.1    Vargas, F.A.2    Agosin, E.3
  • 63
    • 0346882674 scopus 로고    scopus 로고
    • Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation
    • Rossignol T., Dulau L., Julien A., and Blondin B. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20 (2003) 1369-1385
    • (2003) Yeast , vol.20 , pp. 1369-1385
    • Rossignol, T.1    Dulau, L.2    Julien, A.3    Blondin, B.4
  • 64
    • 0024517435 scopus 로고
    • Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations
    • Salmon J.M. Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations. Appl. Environ. Microbiol. 55 (1989) 953-958
    • (1989) Appl. Environ. Microbiol. , vol.55 , pp. 953-958
    • Salmon, J.M.1
  • 66
    • 34250855702 scopus 로고    scopus 로고
    • Desensitization of feedback inhibition of the Saccharomyces cerevisiae gamma-glutamyl kinase enhances proline accumulation and freezing tolerance
    • Sekine T., Kawaguchi A., Hamano Y., and Takagi H. Desensitization of feedback inhibition of the Saccharomyces cerevisiae gamma-glutamyl kinase enhances proline accumulation and freezing tolerance. Appl. Environ. Microbiol. 73 (2007) 4011-4019
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 4011-4019
    • Sekine, T.1    Kawaguchi, A.2    Hamano, Y.3    Takagi, H.4
  • 67
    • 57649149334 scopus 로고    scopus 로고
    • Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae
    • Shi D.J., Wang C.L., and Wang K.M. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 36 (2009) 139-147
    • (2009) J. Ind. Microbiol. Biotechnol. , vol.36 , pp. 139-147
    • Shi, D.J.1    Wang, C.L.2    Wang, K.M.3
  • 68
    • 55649090079 scopus 로고    scopus 로고
    • Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications
    • Takagi H. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl. Microbiol. Biotechnol. 81 (2008) 211-223
    • (2008) Appl. Microbiol. Biotechnol. , vol.81 , pp. 211-223
    • Takagi, H.1
  • 69
    • 34248378166 scopus 로고    scopus 로고
    • Construction and analysis of self-cloning sake yeasts that accumulate proline
    • Takagi H., Matsui F., Kawaguchi A., Wu H., Shimoi H., and Kubo Y. Construction and analysis of self-cloning sake yeasts that accumulate proline. J. Biosci. Bioeng. 103 (2007) 377-380
    • (2007) J. Biosci. Bioeng. , vol.103 , pp. 377-380
    • Takagi, H.1    Matsui, F.2    Kawaguchi, A.3    Wu, H.4    Shimoi, H.5    Kubo, Y.6
  • 70
    • 0034915260 scopus 로고    scopus 로고
    • Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae
    • Takahashi T., Shimoi H., and Ito K. Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae. Mol. Genet. Genomics 265 (2001) 1112-1119
    • (2001) Mol. Genet. Genomics , vol.265 , pp. 1112-1119
    • Takahashi, T.1    Shimoi, H.2    Ito, K.3
  • 71
    • 0025310617 scopus 로고
    • Fuel ethanol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes
    • Thomas K.C., and Ingledew W.M. Fuel ethanol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Appl. Environ. Microbiol. 56 (1990) 2046-2050
    • (1990) Appl. Environ. Microbiol. , vol.56 , pp. 2046-2050
    • Thomas, K.C.1    Ingledew, W.M.2
  • 72
    • 0026896779 scopus 로고
    • Production of 21% (v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes
    • Thomas K.C., and Ingledew W.M. Production of 21% (v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes. J. Ind. Microbiol. 10 (1992) 61-68
    • (1992) J. Ind. Microbiol. , vol.10 , pp. 61-68
    • Thomas, K.C.1    Ingledew, W.M.2
  • 73
    • 33846461331 scopus 로고    scopus 로고
    • Use of experimental design method to investigate metal ion effects in yeast fermentations
    • Tosun A., and Ergun M. Use of experimental design method to investigate metal ion effects in yeast fermentations. J. Chem. Biotechnol. 82 (2007) 11-15
    • (2007) J. Chem. Biotechnol. , vol.82 , pp. 11-15
    • Tosun, A.1    Ergun, M.2
  • 75
    • 45349112838 scopus 로고
    • Trehalose, reserve and/or stress metabolite
    • Van Laere A. Trehalose, reserve and/or stress metabolite. FEMS Microbiol. Rev. 63 (1989) 201-210
    • (1989) FEMS Microbiol. Rev. , vol.63 , pp. 201-210
    • Van Laere, A.1
  • 76
    • 33646336879 scopus 로고    scopus 로고
    • Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress
    • Van Voorst F., Houghton L.J., Jonson L., Kiellan M.C., and Brant A. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23 (2006) 351-359
    • (2006) Yeast , vol.23 , pp. 351-359
    • Van Voorst, F.1    Houghton, L.J.2    Jonson, L.3    Kiellan, M.C.4    Brant, A.5
  • 77
    • 17644369252 scopus 로고    scopus 로고
    • Quantitative analysis of wine yeast gene expression profiles under winemaking conditions
    • Varela C.J., Cárdenas J., Melo F., and Agosin E. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions. Yeast 22 (2005) 369-383
    • (2005) Yeast , vol.22 , pp. 369-383
    • Varela, C.J.1    Cárdenas, J.2    Melo, F.3    Agosin, E.4
  • 78
    • 0028820129 scopus 로고
    • The accharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A
    • Varela J.C., Praekelt U.M., Meacock P.A., Planta R.J., and Mager W.H. The accharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol. Cell. Biol. 15 (1995) 6232-6245
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 6232-6245
    • Varela, J.C.1    Praekelt, U.M.2    Meacock, P.A.3    Planta, R.J.4    Mager, W.H.5
  • 80
    • 0033165978 scopus 로고    scopus 로고
    • Grain pearling and very high gravity (VHG) fermentation technologies for fuel alcohol production from rye and triticale
    • Wang S., Thomas K.C., Sosulski K., and Ingledew W.M. Grain pearling and very high gravity (VHG) fermentation technologies for fuel alcohol production from rye and triticale. Process Biochem. 34 (1999) 421-428
    • (1999) Process Biochem. , vol.34 , pp. 421-428
    • Wang, S.1    Thomas, K.C.2    Sosulski, K.3    Ingledew, W.M.4
  • 81
    • 34147150291 scopus 로고    scopus 로고
    • Genome-shuffling improved acid tolerance and l-lactic acid volumetric productivity in Lactobacillus rhamnosus
    • Wang Y., Li Y., Pei X., Yu L., and Feng Y. Genome-shuffling improved acid tolerance and l-lactic acid volumetric productivity in Lactobacillus rhamnosus. J. Biotechnol. 129 (2007) 510-515
    • (2007) J. Biotechnol. , vol.129 , pp. 510-515
    • Wang, Y.1    Li, Y.2    Pei, X.3    Yu, L.4    Feng, Y.5
  • 84
    • 24944573941 scopus 로고    scopus 로고
    • Continuous ethanol production using self flocculating yeast in a cascade of fermentors
    • Xu T.J., Zhao X.Q., and Bai F.W. Continuous ethanol production using self flocculating yeast in a cascade of fermentors. Enzyme Microb. Technol. 37 (2005) 634-640
    • (2005) Enzyme Microb. Technol. , vol.37 , pp. 634-640
    • Xu, T.J.1    Zhao, X.Q.2    Bai, F.W.3
  • 85
    • 50249161511 scopus 로고    scopus 로고
    • Improving ethanol tolerance of a self-flocculating yeast by optimization of medium composition
    • Xue C., Zhao X.Q., Yuan W.J., and Bai F.W. Improving ethanol tolerance of a self-flocculating yeast by optimization of medium composition. World J. Microbiol. Biotechnol. 24 (2008) 2257-2261
    • (2008) World J. Microbiol. Biotechnol. , vol.24 , pp. 2257-2261
    • Xue, C.1    Zhao, X.Q.2    Yuan, W.J.3    Bai, F.W.4
  • 86
    • 34447530234 scopus 로고    scopus 로고
    • Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae
    • Yazawa H., Iwahashi H., and Uemura H. Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae. Yeast 24 (2007) 551-560
    • (2007) Yeast , vol.24 , pp. 551-560
    • Yazawa, H.1    Iwahashi, H.2    Uemura, H.3
  • 87
    • 0037337660 scopus 로고    scopus 로고
    • Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content
    • You K.M., Rosenfield C.L., and Knipple D.C. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl. Environ. Microbiol. 69 (2003) 1499-1503
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 1499-1503
    • You, K.M.1    Rosenfield, C.L.2    Knipple, D.C.3
  • 88
    • 58149337066 scopus 로고    scopus 로고
    • Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae
    • Yoshikawa K., Tanaka T., Furusawa C., Nagahisa K., Hirasawa T., and Shimizu H. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res. 9 (2009) 32-44
    • (2009) FEMS Yeast Res. , vol.9 , pp. 32-44
    • Yoshikawa, K.1    Tanaka, T.2    Furusawa, C.3    Nagahisa, K.4    Hirasawa, T.5    Shimizu, H.6
  • 90
    • 57349095507 scopus 로고    scopus 로고
    • Impact of zinc supplementation on the improvement of ethanol tolerance of self-flocculating yeast in continuous ethanol fermentation
    • Zhao X.Q., Xue C., Ge X.M., Wang J.Y., Yuan W.J., and Bai F.W. Impact of zinc supplementation on the improvement of ethanol tolerance of self-flocculating yeast in continuous ethanol fermentation. J. Biotechnol. 139 (2009) 55-60
    • (2009) J. Biotechnol. , vol.139 , pp. 55-60
    • Zhao, X.Q.1    Xue, C.2    Ge, X.M.3    Wang, J.Y.4    Yuan, W.J.5    Bai, F.W.6
  • 91
    • 1842828963 scopus 로고    scopus 로고
    • Expression of stress response genes in wine strains with different fermentative behavior
    • Zuzuarregui A., and del Olmo M. Expression of stress response genes in wine strains with different fermentative behavior. FEMS Yeast Res. 4 (2004) 699-710
    • (2004) FEMS Yeast Res. , vol.4 , pp. 699-710
    • Zuzuarregui, A.1    del Olmo, M.2
  • 92
    • 33644848882 scopus 로고    scopus 로고
    • Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation
    • Zuzuarregui A., Monteoliva L., Gil C., and del Olmo M. Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation. Appl. Environ. Microbiol. 72 (2006) 836-847
    • (2006) Appl. Environ. Microbiol. , vol.72 , pp. 836-847
    • Zuzuarregui, A.1    Monteoliva, L.2    Gil, C.3    del Olmo, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.