-
1
-
-
84872814927
-
Bioconversion of lignocellulose: Inhibitors and detoxification.
-
Jonsson, L. J., Alriksson, B., Nilvebrant, N. O., Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnol. Biofuels 2013, 6, 16.
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 16
-
-
Jonsson, L.J.1
Alriksson, B.2
Nilvebrant, N.O.3
-
2
-
-
70449413186
-
Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli.
-
Mills, T. Y., Sandoval, N. R., Gill, R. T., Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol. Biofuels 2009, 2, 26.
-
(2009)
Biotechnol. Biofuels
, vol.2
, pp. 26
-
-
Mills, T.Y.1
Sandoval, N.R.2
Gill, R.T.3
-
3
-
-
77958162502
-
Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: Agenome-wide view.
-
Mira, N. P., Teixeira, M. C., Sá-Correia, I., Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: Agenome-wide view. OMICS 2010, 14, 525-540.
-
(2010)
OMICS
, vol.14
, pp. 525-540
-
-
Mira, N.P.1
Teixeira, M.C.2
Sá-Correia, I.3
-
4
-
-
84875904201
-
Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid.
-
Giannattasio, S., Guaragnella, N., Zdralevic, M., Marra, E., Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front Microbiol. 2013, 4, 33.
-
(2013)
Front Microbiol.
, vol.4
, pp. 33
-
-
Giannattasio, S.1
Guaragnella, N.2
Zdralevic, M.3
Marra, E.4
-
5
-
-
84881226766
-
Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5.
-
Kitanovic, A., Bonowski, F., Heigwer, F., Ruoff, P. et al., Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5. Front Oncol. 2012, 2, 118.
-
(2012)
Front Oncol.
, vol.2
, pp. 118
-
-
Kitanovic, A.1
Bonowski, F.2
Heigwer, F.3
Ruoff, P.4
-
6
-
-
84918576525
-
Physiological response of Saccharomyces cerevisiae to weak acids present in lignocellulosic hydrolysate.
-
Guo, Z. P., Olsson, L., Physiological response of Saccharomyces cerevisiae to weak acids present in lignocellulosic hydrolysate. FEMS Yeast Res. 2014, 14, 1234-1248.
-
(2014)
FEMS Yeast Res.
, vol.14
, pp. 1234-1248
-
-
Guo, Z.P.1
Olsson, L.2
-
7
-
-
77958135565
-
Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.
-
Mira, N. P., Palma, M., Guerreiro, J. F., Sá-Correia, I., Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb. Cell Fact. 2010, 9, 79-91.
-
(2010)
Microb. Cell Fact.
, vol.9
, pp. 79-91
-
-
Mira, N.P.1
Palma, M.2
Guerreiro, J.F.3
Sá-Correia, I.4
-
8
-
-
84925067568
-
Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.
-
An, J., Kwon, H., Kim, E., Lee, Y. M. et al., Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene. Environ. Microbiol. 2014, 17, 656-669.
-
(2014)
Environ. Microbiol.
, vol.17
, pp. 656-669
-
-
An, J.1
Kwon, H.2
Kim, E.3
Lee, Y.M.4
-
9
-
-
84937637609
-
Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.
-
Lee, Y., Nasution, O., Choi, E., Choi, I. et al., Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance. Appl. Microbiol. Biotechnol. 2015, 99, 6391-6403.
-
(2015)
Appl. Microbiol. Biotechnol.
, vol.99
, pp. 6391-6403
-
-
Lee, Y.1
Nasution, O.2
Choi, E.3
Choi, I.4
-
10
-
-
84874118739
-
Comparative functional genomics to reveal the molecular basis of phenotypic diversities and guide the genetic breeding of industrial yeast strains.
-
Zheng, D. Q., Liu, T. Z., Chen, J., Zhang, K. et al., Comparative functional genomics to reveal the molecular basis of phenotypic diversities and guide the genetic breeding of industrial yeast strains. Appl. Microbiol. Biotechnol. 2013, 97, 2067-2076.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 2067-2076
-
-
Zheng, D.Q.1
Liu, T.Z.2
Chen, J.3
Zhang, K.4
-
11
-
-
84868611282
-
Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator.
-
Tanaka, K., Ishii, Y., Ogawa, J., Shima, J., Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl. Environ. Microbiol. 2012, 78, 8161-8163.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 8161-8163
-
-
Tanaka, K.1
Ishii, Y.2
Ogawa, J.3
Shima, J.4
-
12
-
-
84944155176
-
Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.
-
Ding, J., Holzwarth, G., Penner, M. H., Patton-Vogt, J., Bakalinsky, A. T., Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance. FEMS Microbiol. Lett. 2015, 362, 1-7.
-
(2015)
FEMS Microbiol. Lett.
, vol.362
, pp. 1-7
-
-
Ding, J.1
Holzwarth, G.2
Penner, M.H.3
Patton-Vogt, J.4
Bakalinsky, A.T.5
-
13
-
-
84941995652
-
PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress.
-
Ding, J., Holzwarth, G., Bradford, C. S., Cooley, B. et al., PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress. Appl. Microbiol. Biotechnol. 2015, 99, 8667-8680.
-
(2015)
Appl. Microbiol. Biotechnol.
, vol.99
, pp. 8667-8680
-
-
Ding, J.1
Holzwarth, G.2
Bradford, C.S.3
Cooley, B.4
-
14
-
-
33845442201
-
Engineering yeast transcription machinery for improved ethanol tolerance and production.
-
Alper, H., Moxley, J., Nevoigt, E., Fink, G. R., Stephanopoulos, G., Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 2006, 314, 1565-1568.
-
(2006)
Science
, vol.314
, pp. 1565-1568
-
-
Alper, H.1
Moxley, J.2
Nevoigt, E.3
Fink, G.R.4
Stephanopoulos, G.5
-
15
-
-
77952280117
-
The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation.
-
Klug, A., The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q. Rev. Biophys. 2010, 43, 1-21.
-
(2010)
Q. Rev. Biophys.
, vol.43
, pp. 1-21
-
-
Klug, A.1
-
16
-
-
84859510658
-
Zinc and yeast stress tolerance: Micronutrient plays a big role.
-
Zhao, X. Q., Bai, F. W., Zinc and yeast stress tolerance: Micronutrient plays a big role. J. Biotechnol. 2012, 158, 176-183.
-
(2012)
J. Biotechnol.
, vol.158
, pp. 176-183
-
-
Zhao, X.Q.1
Bai, F.W.2
-
17
-
-
84880910119
-
Mechanisms other than activation of the iron regulon account for the hyper-resistance to cobalt of a Saccharomyces cerevisiae strain obtained by evolutionary engineering.
-
Alkim, C., Benbadis, L., Yilmaz, U., Cakar, Z. P., Francois, J. M., Mechanisms other than activation of the iron regulon account for the hyper-resistance to cobalt of a Saccharomyces cerevisiae strain obtained by evolutionary engineering. Metallomics 2013, 5, 1043-1060.
-
(2013)
Metallomics
, vol.5
, pp. 1043-1060
-
-
Alkim, C.1
Benbadis, L.2
Yilmaz, U.3
Cakar, Z.P.4
Francois, J.M.5
-
18
-
-
84887608790
-
Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae.
-
Kucukgoze, G., Alkim, C., Yilmaz, U., Kisakesen, H. I. et al., Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae. FEMS Yeast Res. 2013, 13, 731-746.
-
(2013)
FEMS Yeast Res.
, vol.13
, pp. 731-746
-
-
Kucukgoze, G.1
Alkim, C.2
Yilmaz, U.3
Kisakesen, H.I.4
-
19
-
-
84881553932
-
Fed-batch semi-simultaneous saccharification and fermentation of reed pretreated with liquid hot water for bio-ethanol production using Saccharomyces cerevisiae.
-
Lu, J., Li, X. Z., Yang, R. F., Yang, L. et al., Fed-batch semi-simultaneous saccharification and fermentation of reed pretreated with liquid hot water for bio-ethanol production using Saccharomyces cerevisiae. Bioresour. Technol. 2013, 144, 539-547.
-
(2013)
Bioresour. Technol.
, vol.144
, pp. 539-547
-
-
Lu, J.1
Li, X.Z.2
Yang, R.F.3
Yang, L.4
-
20
-
-
84951572999
-
-
(Eds.), Molecular Cloning: A Laboratory Manual, Harbor Laboratory Press, Cold Spring Harbor, New York
-
Green, M. R., Sambrook, J. (Eds.), Molecular Cloning: A Laboratory Manual, Harbor Laboratory Press, Cold Spring Harbor, New York 2012.
-
(2012)
-
-
Green, M.R.1
Sambrook, J.2
-
21
-
-
84867714718
-
Engineering industrial Saccharomyces cerevisiae strain with the FLO1-derivative gene isolated from the flocculating yeast SPSC01 for constitutive flocculation and fuel ethanol production.
-
He, L. Y., Zhao, X. Q., Bai, F. W., Engineering industrial Saccharomyces cerevisiae strain with the FLO1-derivative gene isolated from the flocculating yeast SPSC01 for constitutive flocculation and fuel ethanol production. Appl. Energy 2012, 100, 33-40.
-
(2012)
Appl. Energy
, vol.100
, pp. 33-40
-
-
He, L.Y.1
Zhao, X.Q.2
Bai, F.W.3
-
22
-
-
84883819175
-
Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation.
-
Wang, L., Zhao, X. Q., Xue, C., Bai, F. W., Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation. Biotechnol. Biofuels 2013, 6, 133.
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 133
-
-
Wang, L.1
Zhao, X.Q.2
Xue, C.3
Bai, F.W.4
-
23
-
-
84925503038
-
Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.
-
Ma, C., Wei, X. W., Sun, C. H., Zhang, F. et al., Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance. Appl. Microbiol. Biotechnol. 2015, 99, 2441-2449.
-
(2015)
Appl. Microbiol. Biotechnol.
, vol.99
, pp. 2441-2449
-
-
Ma, C.1
Wei, X.W.2
Sun, C.H.3
Zhang, F.4
-
24
-
-
70549086797
-
Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae.
-
Teste, M., Duquenne, M., Fran Ois, J. M., Parrou, J., Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol. Biol. 2009, 10, 99.
-
(2009)
BMC Mol. Biol.
, vol.10
, pp. 99
-
-
Teste, M.1
Duquenne, M.2
Fran Ois, J.M.3
Parrou, J.4
-
25
-
-
9644262490
-
Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae.
-
Barros, M. H., Bandy, B., Tahara, E. B., Kowaltowski, A. J., Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279, 49883-49888.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 49883-49888
-
-
Barros, M.H.1
Bandy, B.2
Tahara, E.B.3
Kowaltowski, A.J.4
-
26
-
-
77958169154
-
Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid.
-
Mira, N. P., Becker, J. D., Sá-Correia, I., Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS 2010, 14, 587-601.
-
(2010)
OMICS
, vol.14
, pp. 587-601
-
-
Mira, N.P.1
Becker, J.D.2
Sá-Correia, I.3
-
27
-
-
0029879360
-
The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE).
-
Martinez-Pastor, M. T., Marchler, G., Schuller, C., Marchler-Bauer, A. et al., The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 1996, 15, 2227-2235.
-
(1996)
EMBO J.
, vol.15
, pp. 2227-2235
-
-
Martinez-Pastor, M.T.1
Marchler, G.2
Schuller, C.3
Marchler-Bauer, A.4
-
28
-
-
84923102716
-
The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc.
-
Wan, C., Zhang, M. M., Fang, Q., Xiong, L. et al., The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc. Metallomics 2015, 7, 322-332.
-
(2015)
Metallomics
, vol.7
, pp. 322-332
-
-
Wan, C.1
Zhang, M.M.2
Fang, Q.3
Xiong, L.4
-
29
-
-
84880978562
-
Roles of the YAP1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-Hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress.
-
Kim, D., Hahn, J. S., Roles of the YAP1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-Hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Appl. Environ. Microbiol. 2013, 79, 5069-5077.
-
(2013)
Appl. Environ. Microbiol.
, vol.79
, pp. 5069-5077
-
-
Kim, D.1
Hahn, J.S.2
-
30
-
-
0014264167
-
Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae.
-
Lacroute, F., Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae. J. Bacteriol. 1968, 95, 824-832.
-
(1968)
J. Bacteriol.
, vol.95
, pp. 824-832
-
-
Lacroute, F.1
-
31
-
-
84857998116
-
Methylation of H4 lysines 5, 8 and 12 by yeast Set5 calibrates chromatin stress responses.
-
Green, E. M., Mas, G., Young, N. L., Garcia, B. A., Gozani, O., Methylation of H4 lysines 5, 8 and 12 by yeast Set5 calibrates chromatin stress responses. Nat. Struct. Mol. Biol. 2012, 19, 361-363.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 361-363
-
-
Green, E.M.1
Mas, G.2
Young, N.L.3
Garcia, B.A.4
Gozani, O.5
-
32
-
-
84899135663
-
Set5 and Set1 cooperate to repress gene expression at telomeres and retrotransposons.
-
Martín, G. M., King, D. A., Green, E. M., Garcia-Nieto, P. E. et al., Set5 and Set1 cooperate to repress gene expression at telomeres and retrotransposons. Epigenetics 2014, 9, 1.
-
(2014)
Epigenetics
, vol.9
, pp. 1
-
-
Martín, G.M.1
King, D.A.2
Green, E.M.3
Garcia-Nieto, P.E.4
-
33
-
-
84879626192
-
Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast.
-
e1003548.
-
Pais, T. M., Foulquie-Moreno, M. R., Hubmann, G., Duitama, J. et al., Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast. PLoS Genet. 2013, 9, e1003548.
-
(2013)
PLoS Genet.
, vol.9
-
-
Pais, T.M.1
Foulquie-Moreno, M.R.2
Hubmann, G.3
Duitama, J.4
-
34
-
-
84881220384
-
Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: Auxotrophy confounds the use of yeast deletion libraries for strain improvement.
-
Ding, J., Bierma, J., Smith, M. R., Poliner, E. et al., Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: Auxotrophy confounds the use of yeast deletion libraries for strain improvement. Appl. Microbiol. Biotechnol. 2013, 97, 7405-7416.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 7405-7416
-
-
Ding, J.1
Bierma, J.2
Smith, M.R.3
Poliner, E.4
-
35
-
-
84906355798
-
Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.
-
Liu, X. Y., Zhang, X. H., Zhang, Z. J., Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae. J. Biotechnol. 2014, 187, 116-123.
-
(2014)
J. Biotechnol.
, vol.187
, pp. 116-123
-
-
Liu, X.Y.1
Zhang, X.H.2
Zhang, Z.J.3
-
36
-
-
38049068839
-
Catalase T and Cu,Zn-superoxide dismutase in the acetic acid-induced programmed cell death in Saccharomyces cerevisiae.
-
Guaragnella, N., Antonacci, L., Giannattasio, S., Marra, E., Passarella, S., Catalase T and Cu, Zn-superoxide dismutase in the acetic acid-induced programmed cell death in Saccharomyces cerevisiae. FEBS Lett. 2008, 582, 210-214.
-
(2008)
FEBS Lett.
, vol.582
, pp. 210-214
-
-
Guaragnella, N.1
Antonacci, L.2
Giannattasio, S.3
Marra, E.4
Passarella, S.5
|