메뉴 건너뛰기




Volumn 34, Issue 9, 2016, Pages 757-769

A 3D Toolbox to Enhance Physiological Relevance of Human Tissue Models

Author keywords

3D models; 3D scaffolds; microfluidics; microtechnologies; organs on chip

Indexed keywords

CELL ENGINEERING; MICROFLUIDICS; PHYSIOLOGY;

EID: 84991204291     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2016.06.012     Document Type: Review
Times cited : (55)

References (90)
  • 1
    • 84939825735 scopus 로고    scopus 로고
    • Life in 3D is never flat: 3D models to optimise drug delivery
    • 1 Fitzgerald, K.A., et al. Life in 3D is never flat: 3D models to optimise drug delivery. J. Control. Release 215 (2015), 39–54.
    • (2015) J. Control. Release , vol.215 , pp. 39-54
    • Fitzgerald, K.A.1
  • 2
    • 84874700631 scopus 로고    scopus 로고
    • Three-dimensional cell culture: the missing link in drug discovery
    • 2 Breslin, S., O'Driscoll, L., Three-dimensional cell culture: the missing link in drug discovery. Drug Discov. Today 18 (2013), 240–249.
    • (2013) Drug Discov. Today , vol.18 , pp. 240-249
    • Breslin, S.1    O'Driscoll, L.2
  • 3
    • 84921957467 scopus 로고    scopus 로고
    • Three-dimensional in vitro tumor models for cancer research and drug evaluation
    • 3 Xu, X., et al. Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol. Adv. 32 (2014), 1256–1268.
    • (2014) Biotechnol. Adv. , vol.32 , pp. 1256-1268
    • Xu, X.1
  • 4
    • 67649331462 scopus 로고    scopus 로고
    • Three-dimensional culture models of mammary gland
    • 4 Campbell, J.J., Watson, C.J., Three-dimensional culture models of mammary gland. Organogenesis 5 (2009), 43–49.
    • (2009) Organogenesis , vol.5 , pp. 43-49
    • Campbell, J.J.1    Watson, C.J.2
  • 5
    • 84863898664 scopus 로고    scopus 로고
    • Microfluidic 3D cell culture: potential application for tissue-based bioassays
    • 5 Li, X.J., et al. Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 4 (2012), 1509–1525.
    • (2012) Bioanalysis , vol.4 , pp. 1509-1525
    • Li, X.J.1
  • 6
    • 84899966772 scopus 로고    scopus 로고
    • The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer
    • 6 Weigelt, B., et al. The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Adv. Drug Deliv. Rev. 69-70 (2014), 42–51.
    • (2014) Adv. Drug Deliv. Rev. , vol.69-70 , pp. 42-51
    • Weigelt, B.1
  • 7
    • 0036636095 scopus 로고    scopus 로고
    • Opinion: Building epithelial architecture: insights from three-dimensional culture models
    • 7 O'Brien, L.E., et al. Opinion: Building epithelial architecture: insights from three-dimensional culture models. Nat. Rev. Mol. Cell Biol. 3 (2002), 531–537.
    • (2002) Nat. Rev. Mol. Cell Biol. , vol.3 , pp. 531-537
    • O'Brien, L.E.1
  • 8
    • 79959867881 scopus 로고    scopus 로고
    • Exploitation of physical and chemical constraints for three-dimensional microtissue construction in microfluidics
    • 8 Choudhury, D., et al. Exploitation of physical and chemical constraints for three-dimensional microtissue construction in microfluidics. Biomicrofluidics, 5, 2011, 022203.
    • (2011) Biomicrofluidics , vol.5 , pp. 022203
    • Choudhury, D.1
  • 9
    • 84878115127 scopus 로고    scopus 로고
    • Structural and molecular interrogation of intact biological systems
    • 9 Chung, K., Structural and molecular interrogation of intact biological systems. Nature 497 (2013), 332–337.
    • (2013) Nature , vol.497 , pp. 332-337
    • Chung, K.1
  • 10
    • 79953311537 scopus 로고    scopus 로고
    • Translating microtechnologies into tissue engineering, pharmacology and cancer research
    • 10 Picollet-D'hahan, N., et al. Translating microtechnologies into tissue engineering, pharmacology and cancer research. Biotech Int., 2010 http://www.biotech-online.com/featured-articles/translating-microtechnologies-into-tissue-engineering-pharmacology-and-cancer-research/trackback/1/.
    • (2010) Biotech Int.
    • Picollet-D'hahan, N.1
  • 11
    • 84918800066 scopus 로고    scopus 로고
    • A medium throughput device to study the effects of combinations of surface strains and fluid-flow shear stresses on cells
    • 11 Sinha, R., et al. A medium throughput device to study the effects of combinations of surface strains and fluid-flow shear stresses on cells. Lab Chip 15 (2015), 429–435.
    • (2015) Lab Chip , vol.15 , pp. 429-435
    • Sinha, R.1
  • 12
    • 84962320853 scopus 로고    scopus 로고
    • Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues
    • 12 Marsano, A., et al. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16 (2016), 599–610.
    • (2016) Lab Chip , vol.16 , pp. 599-610
    • Marsano, A.1
  • 13
    • 84957603856 scopus 로고    scopus 로고
    • On-chip construction of liver lobule-like microtissue and its application for adverse drug reaction assay
    • 13 Ma, C., et al. On-chip construction of liver lobule-like microtissue and its application for adverse drug reaction assay. Anal. Chem. 88 (2016), 1719–1727.
    • (2016) Anal. Chem. , vol.88 , pp. 1719-1727
    • Ma, C.1
  • 14
    • 81355146382 scopus 로고    scopus 로고
    • From 3D cell culture to organs-on-chips
    • 14 Huh, D., et al. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21 (2011), 745–754.
    • (2011) Trends Cell Biol. , vol.21 , pp. 745-754
    • Huh, D.1
  • 15
    • 84940491425 scopus 로고    scopus 로고
    • Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology
    • 15 Caplin, J.D., et al. Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology. Adv. Healthc. Mater. 4 (2015), 1426–1450.
    • (2015) Adv. Healthc. Mater. , vol.4 , pp. 1426-1450
    • Caplin, J.D.1
  • 16
    • 84891930814 scopus 로고    scopus 로고
    • Physiologically relevant organs on chips
    • 16 Yum, K., et al. Physiologically relevant organs on chips. Biotechnol. J. 9 (2014), 16–27.
    • (2014) Biotechnol. J. , vol.9 , pp. 16-27
    • Yum, K.1
  • 17
    • 84905754409 scopus 로고    scopus 로고
    • Microfluidic organs-on-chips
    • 17 Bhatia, S.N., Ingber, D.E., Microfluidic organs-on-chips. Nat. Biotech. 32 (2014), 760–772.
    • (2014) Nat. Biotech. , vol.32 , pp. 760-772
    • Bhatia, S.N.1    Ingber, D.E.2
  • 18
    • 84926408953 scopus 로고    scopus 로고
    • Organs-on-chips at the frontiers of drug discovery
    • 18 Esch, E.W., et al. Organs-on-chips at the frontiers of drug discovery. Nature 14 (2015), 248–260.
    • (2015) Nature , vol.14 , pp. 248-260
    • Esch, E.W.1
  • 19
    • 84874894377 scopus 로고    scopus 로고
    • Microfabricated mammalian organ systems and their integration into models of whole animals and humans
    • 19 Sung, J.H., et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 13 (2013), 1201–1212.
    • (2013) Lab Chip , vol.13 , pp. 1201-1212
    • Sung, J.H.1
  • 20
    • 84934926656 scopus 로고    scopus 로고
    • Tissue engineering: organs from the lab
    • 20 Marx, V., Tissue engineering: organs from the lab. Nature 522 (2015), 373–377.
    • (2015) Nature , vol.522 , pp. 373-377
    • Marx, V.1
  • 21
    • 84926218880 scopus 로고    scopus 로고
    • Artificial organs: honey, I shrunk the lungs
    • 21 Eisenstein, M., Artificial organs: honey, I shrunk the lungs. Nature 519 (2015), S16–S18.
    • (2015) Nature , vol.519 , pp. S16-S18
    • Eisenstein, M.1
  • 22
    • 37649009647 scopus 로고    scopus 로고
    • Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems
    • 22 Huh, D., et al. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl. Acad. Sci. U.S.A. 104 (2007), 18886–18891.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 18886-18891
    • Huh, D.1
  • 23
    • 77954038080 scopus 로고    scopus 로고
    • Reconstituting organ-level lung functions on a chip
    • 23 Huh, D., et al. Reconstituting organ-level lung functions on a chip. Science 328 (2010), 1662–1668.
    • (2010) Science , vol.328 , pp. 1662-1668
    • Huh, D.1
  • 24
    • 84923127772 scopus 로고    scopus 로고
    • A lung-on-a-chip array with an integrated bio-inspired respiration mechanism
    • 24 Stucki, A.O., et al. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 15 (2015), 1302–1310.
    • (2015) Lab Chip , vol.15 , pp. 1302-1310
    • Stucki, A.O.1
  • 25
    • 78751507903 scopus 로고    scopus 로고
    • Microscale 3D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model
    • 25 Sung, J.H., et al. Microscale 3D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip. 11 (2011), 389–392.
    • (2011) Lab Chip. , vol.11 , pp. 389-392
    • Sung, J.H.1
  • 26
    • 84941796999 scopus 로고    scopus 로고
    • 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip
    • 26 No, D-Y., et al. 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip 15 (2015), 3822–3837.
    • (2015) Lab Chip , vol.15 , pp. 3822-3837
    • No, D.-Y.1
  • 27
    • 84953273098 scopus 로고    scopus 로고
    • Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip
    • 27 Kim, H.J., et al. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl. Acad. Sci. U.S.A. 14 (2015), E7–E15.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.14 , pp. E7-E15
    • Kim, H.J.1
  • 28
    • 84938352078 scopus 로고    scopus 로고
    • Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure
    • 28 Bischel, L.L., et al. Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure. BMC Cancer, 15, 2015, 12.
    • (2015) BMC Cancer , vol.15 , pp. 12
    • Bischel, L.L.1
  • 29
    • 84903376044 scopus 로고    scopus 로고
    • Facile bench-top fabrication of enclosed circular microchannels provides 3D confined structure for growth of prostate epithelial cells
    • 29 Dolega, M.E., et al. Facile bench-top fabrication of enclosed circular microchannels provides 3D confined structure for growth of prostate epithelial cells. PLoS ONE, 9, 2014, e99416.
    • (2014) PLoS ONE , vol.9 , pp. e99416
    • Dolega, M.E.1
  • 30
    • 84939150266 scopus 로고    scopus 로고
    • Acellular human heart matrix: a critical step toward whole heart grafts
    • 30 Sánchez, P.L., et al. Acellular human heart matrix: a critical step toward whole heart grafts. Biomaterials 61 (2015), 279–289.
    • (2015) Biomaterials , vol.61 , pp. 279-289
    • Sánchez, P.L.1
  • 31
    • 84927646511 scopus 로고    scopus 로고
    • Evaluation of decellularization in umbilical cord artery
    • 31 Mallis, P., et al. Evaluation of decellularization in umbilical cord artery. Transplant. Proc. 46 (2014), 3232–3239.
    • (2014) Transplant. Proc. , vol.46 , pp. 3232-3239
    • Mallis, P.1
  • 32
    • 84954285814 scopus 로고    scopus 로고
    • Giving new life to old lungs: methods to produce and assess whole human paediatric bioengineered lungs
    • 32 Nichols, J.E., et al. Giving new life to old lungs: methods to produce and assess whole human paediatric bioengineered lungs. J. Tissue Eng. Regen. Med., 2016, 10.1002/term.2113.
    • (2016) J. Tissue Eng. Regen. Med.
    • Nichols, J.E.1
  • 33
    • 84938855249 scopus 로고    scopus 로고
    • Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation
    • 33 Mazza, G., et al. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci. Rep., 5, 2015, 13079.
    • (2015) Sci. Rep. , vol.5 , pp. 13079
    • Mazza, G.1
  • 34
    • 84958753499 scopus 로고    scopus 로고
    • Three-dimensional bioprinting in tissue engineering and regenerative medicine
    • 34 Gao, G., Cui, X., Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol. Lett. 38 (2016), 203–211.
    • (2016) Biotechnol. Lett. , vol.38 , pp. 203-211
    • Gao, G.1    Cui, X.2
  • 35
    • 84930926663 scopus 로고    scopus 로고
    • Bioprinting scale-up tissue and organ constructs for transplantation
    • 35 Ozbolat, I.T., Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 33 (2015), 395–400.
    • (2015) Trends Biotechnol. , vol.33 , pp. 395-400
    • Ozbolat, I.T.1
  • 36
    • 84885359750 scopus 로고    scopus 로고
    • Microwell fabrication methods and applications for cellular studies
    • 36 Sung-Hwan, K., et al. Microwell fabrication methods and applications for cellular studies. Biomedical Eng. Lett. 3 (2013), 131–137.
    • (2013) Biomedical Eng. Lett. , vol.3 , pp. 131-137
    • Sung-Hwan, K.1
  • 37
    • 76749114337 scopus 로고    scopus 로고
    • The application of 3D micropatterning of agarose substrate for cell culture and in situ comet assays
    • 37 Mercey, E., et al. The application of 3D micropatterning of agarose substrate for cell culture and in situ comet assays. Biomaterials 31 (2010), 3156–3165.
    • (2010) Biomaterials , vol.31 , pp. 3156-3165
    • Mercey, E.1
  • 38
    • 84860794165 scopus 로고    scopus 로고
    • Tissue deformation spatially modulates VEGF signaling and angiogenesis
    • 38 Rivron, N.C., et al. Tissue deformation spatially modulates VEGF signaling and angiogenesis. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 6886–6891.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 6886-6891
    • Rivron, N.C.1
  • 39
    • 84898603169 scopus 로고    scopus 로고
    • Microstamped Petri dishes for scanning electrochemical microscopy analysis of arrays of microtissues
    • 39 Sridhar, A., et al. Microstamped Petri dishes for scanning electrochemical microscopy analysis of arrays of microtissues. PLoS ONE, 9, 2014, e93618.
    • (2014) PLoS ONE , vol.9 , pp. e93618
    • Sridhar, A.1
  • 40
    • 78751543965 scopus 로고    scopus 로고
    • Microarrays for the scalable production of metabolically relevant tumor spheroids: a tool for modulating chemosensitivity traits
    • 40 Hardelauf, H., et al. Microarrays for the scalable production of metabolically relevant tumor spheroids: a tool for modulating chemosensitivity traits. Lab Chip 11 (2011), 419–428.
    • (2011) Lab Chip , vol.11 , pp. 419-428
    • Hardelauf, H.1
  • 41
    • 0037701271 scopus 로고    scopus 로고
    • Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types
    • 41 Kelm, J.M., et al. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng. 83 (2003), 173–180.
    • (2003) Biotechnol. Bioeng. , vol.83 , pp. 173-180
    • Kelm, J.M.1
  • 42
    • 84872301011 scopus 로고    scopus 로고
    • Multi-cell type human liver microtissues for hepatotoxicity testing
    • 42 Messner, S., et al. Multi-cell type human liver microtissues for hepatotoxicity testing. Arch. Toxicol. 87 (2013), 209–213.
    • (2013) Arch. Toxicol. , vol.87 , pp. 209-213
    • Messner, S.1
  • 43
    • 78751560396 scopus 로고    scopus 로고
    • High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array
    • 43 Tung, Y.C., et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136 (2011), 473–478.
    • (2011) Analyst , vol.136 , pp. 473-478
    • Tung, Y.C.1
  • 44
    • 85006213857 scopus 로고    scopus 로고
    • Three-dimensional microtissues essentially contribute to preclinical validations of therapeutic targets in breast cancer
    • 44 Falkenberg, N., et al. Three-dimensional microtissues essentially contribute to preclinical validations of therapeutic targets in breast cancer. Cancer Med. 5 (2016), 703–710.
    • (2016) Cancer Med. , vol.5 , pp. 703-710
    • Falkenberg, N.1
  • 45
    • 84932609325 scopus 로고    scopus 로고
    • Controlled 3D culture in matrigel microbeads to analyze clonal acinar development
    • 45 Dolega, M.E., et al. Controlled 3D culture in matrigel microbeads to analyze clonal acinar development. Biomaterials 52 (2015), 347–357.
    • (2015) Biomaterials , vol.52 , pp. 347-357
    • Dolega, M.E.1
  • 46
    • 62449135619 scopus 로고    scopus 로고
    • Microchips for cell-based assays
    • 46 Dufva, M., Microchips for cell-based assays. Methods Mol. Biol. 509 (2009), 135–144.
    • (2009) Methods Mol. Biol. , vol.509 , pp. 135-144
    • Dufva, M.1
  • 47
    • 84878243724 scopus 로고    scopus 로고
    • Metre-long cell-laden microfibres exhibit tissue morphologies and functions
    • 47 Hiroaki, O., et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 12 (2013), 584–590.
    • (2013) Nat. Mater. , vol.12 , pp. 584-590
    • Hiroaki, O.1
  • 48
    • 84964318207 scopus 로고    scopus 로고
    • Advancing tissue engineering: a tale of nano-, micro-, and macroscale integration
    • 48 Leijten, J., et al. Advancing tissue engineering: a tale of nano-, micro-, and macroscale integration. Small 2 (2016), 2130–2145.
    • (2016) Small , vol.2 , pp. 2130-2145
    • Leijten, J.1
  • 49
    • 84896284039 scopus 로고    scopus 로고
    • The present and future role of microfluidics in biomedical research
    • 49 Sackmann, E.K., et al. The present and future role of microfluidics in biomedical research. Nature 507 (2014), 181–189.
    • (2014) Nature , vol.507 , pp. 181-189
    • Sackmann, E.K.1
  • 50
    • 77952499476 scopus 로고    scopus 로고
    • Fundamentals of microfluidic cell culture in controlled microenvironments
    • 50 Young, E.W., Beebe, D.J., Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 39 (2010), 1036–1048.
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 1036-1048
    • Young, E.W.1    Beebe, D.J.2
  • 51
    • 84934942592 scopus 로고    scopus 로고
    • Microfluidic 3D cell culture: from tools to tissue models
    • 51 van Duinen, V., et al. Microfluidic 3D cell culture: from tools to tissue models. Curr. Op. Biotech. 35 (2015), 118–126.
    • (2015) Curr. Op. Biotech. , vol.35 , pp. 118-126
    • van Duinen, V.1
  • 52
    • 84882267983 scopus 로고    scopus 로고
    • Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine
    • 52 Harink, B., et al. Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine. Lab Chip 13 (2013), 3512–3528.
    • (2013) Lab Chip , vol.13 , pp. 3512-3528
    • Harink, B.1
  • 53
    • 70349318448 scopus 로고    scopus 로고
    • Microfluidic platform for controlling the differentiation of embryoid bodies
    • 53 Fung, W-To., et al. Microfluidic platform for controlling the differentiation of embryoid bodies. Lab Chip 9 (2009), 2591–2595.
    • (2009) Lab Chip , vol.9 , pp. 2591-2595
    • Fung, W.-T.1
  • 54
    • 80053914815 scopus 로고    scopus 로고
    • Microfluidic array for three-dimensional perfusion culture of human mammary epithelial cells
    • 54 Chen, S.Y., et al. Microfluidic array for three-dimensional perfusion culture of human mammary epithelial cells. Biomed. Microdevices 13 (2011), 753–758.
    • (2011) Biomed. Microdevices , vol.13 , pp. 753-758
    • Chen, S.Y.1
  • 55
    • 84948653850 scopus 로고    scopus 로고
    • Study of the chemotactic response of multicellular spheroids in a microfluidic device
    • 55 Ayuso, J.M., et al. Study of the chemotactic response of multicellular spheroids in a microfluidic device. PLoS ONE, 10, 2015, e0139515.
    • (2015) PLoS ONE , vol.10 , pp. e0139515
    • Ayuso, J.M.1
  • 56
    • 84915793469 scopus 로고    scopus 로고
    • A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs
    • 56 Kim, C., et al. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Lab Chip 15 (2015), 301–310.
    • (2015) Lab Chip , vol.15 , pp. 301-310
    • Kim, C.1
  • 57
    • 84988736194 scopus 로고    scopus 로고
    • Microfluidics: a new tool for modeling cancer–immune interactions
    • 57 Boussommier-Calleja, A., et al. Microfluidics: a new tool for modeling cancer–immune interactions. Trends Cancer 2 (2016), 1–19.
    • (2016) Trends Cancer , vol.2 , pp. 1-19
    • Boussommier-Calleja, A.1
  • 58
    • 84949943381 scopus 로고    scopus 로고
    • Emulsion technologies for multicellular tumor spheroid radiation assays
    • 58 McMillan, K.S., et al. Emulsion technologies for multicellular tumor spheroid radiation assays. Analyst 141 (2016), 100–110.
    • (2016) Analyst , vol.141 , pp. 100-110
    • McMillan, K.S.1
  • 59
    • 84956825948 scopus 로고    scopus 로고
    • Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform
    • 59 Sabhachandani, P., et al. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Lab Chip 16 (2016), 497–505.
    • (2016) Lab Chip , vol.16 , pp. 497-505
    • Sabhachandani, P.1
  • 60
    • 84947997510 scopus 로고    scopus 로고
    • Geometrically controlled preparation of various cell aggregates by droplet-based microfluidics
    • 60 Wang, Y., et al. Geometrically controlled preparation of various cell aggregates by droplet-based microfluidics. Anal. Methods 7 (2015), 10040–10051.
    • (2015) Anal. Methods , vol.7 , pp. 10040-10051
    • Wang, Y.1
  • 61
    • 84890589120 scopus 로고    scopus 로고
    • Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment
    • 61 Fai, C.H., et al. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci. Rep., 3, 2013, 3462.
    • (2013) Sci. Rep. , vol.3 , pp. 3462
    • Fai, C.H.1
  • 62
    • 84885390236 scopus 로고    scopus 로고
    • The modulation of attachment, growth and morphology of cancerous prostate cells by polyelectrolyte nanofilms
    • 62 Picollet-D'hahan, N., et al. The modulation of attachment, growth and morphology of cancerous prostate cells by polyelectrolyte nanofilms. Biomaterials 34 (2013), 10099–10108.
    • (2013) Biomaterials , vol.34 , pp. 10099-10108
    • Picollet-D'hahan, N.1
  • 63
    • 84930927716 scopus 로고    scopus 로고
    • Strategies for improving the physiological relevance of human engineered tissues
    • 63 Abbott, R.D., et al. Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol. 33 (2015), 401–407.
    • (2015) Trends Biotechnol. , vol.33 , pp. 401-407
    • Abbott, R.D.1
  • 64
    • 84905824686 scopus 로고    scopus 로고
    • Continuous microcarrier-based cell culture in a benchtop microfluidic bioreactor
    • 64 Abeille, F., et al. Continuous microcarrier-based cell culture in a benchtop microfluidic bioreactor. Lab Chip 14 (2014), 3510–3518.
    • (2014) Lab Chip , vol.14 , pp. 3510-3518
    • Abeille, F.1
  • 65
    • 84949946054 scopus 로고    scopus 로고
    • Modelling the tumour microenvironment in long-term microencapsulated 3D co-cultures recapitulates phenotypic features of disease progression
    • 65 Estrada, M.F., et al. Modelling the tumour microenvironment in long-term microencapsulated 3D co-cultures recapitulates phenotypic features of disease progression. Biomaterials 78 (2016), 50–61.
    • (2016) Biomaterials , vol.78 , pp. 50-61
    • Estrada, M.F.1
  • 66
    • 84910072170 scopus 로고    scopus 로고
    • 3D cell culture systems: advantages and applications
    • 66 Ravi, M., et al. 3D cell culture systems: advantages and applications. J. Cell. Physiol. 230 (2015), 16–26.
    • (2015) J. Cell. Physiol. , vol.230 , pp. 16-26
    • Ravi, M.1
  • 67
    • 84919952876 scopus 로고    scopus 로고
    • Hydrogels to model 3D in vitro microenvironment of tumor vascularization
    • 67 Song, H.H., et al. Hydrogels to model 3D in vitro microenvironment of tumor vascularization. Adv. Drug Deliv. Rev. 15 (2014), 19–29.
    • (2014) Adv. Drug Deliv. Rev. , vol.15 , pp. 19-29
    • Song, H.H.1
  • 68
    • 84949518771 scopus 로고    scopus 로고
    • Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues
    • 68 Maghdouri-White, Y., et al. Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues. Mater. Sci. Eng. C Mater. Biol. Appl. 59 (2016), 1168–1180.
    • (2016) Mater. Sci. Eng. C Mater. Biol. Appl. , vol.59 , pp. 1168-1180
    • Maghdouri-White, Y.1
  • 69
    • 84869495994 scopus 로고    scopus 로고
    • Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy
    • 69 Mehta, G., et al. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J. Control. Release 164 (2012), 192–204.
    • (2012) J. Control. Release , vol.164 , pp. 192-204
    • Mehta, G.1
  • 70
    • 84952639504 scopus 로고    scopus 로고
    • Fibrous scaffolds for building hearts and heart parts
    • 70 Capulli, A.K., et al. Fibrous scaffolds for building hearts and heart parts. Adv. Drug Deliv. Rev. 96 (2016), 83–102.
    • (2016) Adv. Drug Deliv. Rev. , vol.96 , pp. 83-102
    • Capulli, A.K.1
  • 71
    • 84953227804 scopus 로고    scopus 로고
    • 3D scaffolds in breast cancer research
    • 71 Girdhari, R., Weimin, L., 3D scaffolds in breast cancer research. Biomaterials 81 (2016), 135–156.
    • (2016) Biomaterials , vol.81 , pp. 135-156
    • Girdhari, R.1    Weimin, L.2
  • 72
    • 84947599454 scopus 로고    scopus 로고
    • Evaluating biomaterial- and microfluidic-based 3D tumor models
    • 72 Carvalho, M.R., et al. Evaluating biomaterial- and microfluidic-based 3D tumor models. Trends Biotechnol. 33 (2015), 667–678.
    • (2015) Trends Biotechnol. , vol.33 , pp. 667-678
    • Carvalho, M.R.1
  • 73
    • 84924066233 scopus 로고    scopus 로고
    • Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes
    • 73 Shepard Neiman, J.A., et al. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes. Biotechnol. Bioeng. 112 (2015), 777–787.
    • (2015) Biotechnol. Bioeng. , vol.112 , pp. 777-787
    • Shepard Neiman, J.A.1
  • 74
    • 84942747240 scopus 로고    scopus 로고
    • Hybrid tissue engineering scaffolds by combination of three-dimensional printing and cell photoencapsulation
    • 74 Markovic, M., et al. Hybrid tissue engineering scaffolds by combination of three-dimensional printing and cell photoencapsulation. J. Nanotechnol. Eng. Med. 6 (2015), 0210011–0210017.
    • (2015) J. Nanotechnol. Eng. Med. , vol.6 , pp. 0210011-0210017
    • Markovic, M.1
  • 75
    • 84959488124 scopus 로고    scopus 로고
    • Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications
    • 75 Loo, Y., Hauser, C.A.E., Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications. Biomed. Mater., 11, 2016, 014103.
    • (2016) Biomed. Mater. , vol.11 , pp. 014103
    • Loo, Y.1    Hauser, C.A.E.2
  • 77
    • 84867551443 scopus 로고    scopus 로고
    • Biomimetic membrane system composed of a composite interpenetrating hydrogel film and a lipid bilayer
    • 77 Stidder, B., et al. Biomimetic membrane system composed of a composite interpenetrating hydrogel film and a lipid bilayer. Adv. Funct. Mater. 22 (2012), 4259–4267.
    • (2012) Adv. Funct. Mater. , vol.22 , pp. 4259-4267
    • Stidder, B.1
  • 78
    • 84986841299 scopus 로고
    • Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces
    • 78 Decher, G., Hong, J., Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol. Chem. Macromol. Symp. 46 (1991), 321–327.
    • (1991) Makromol. Chem. Macromol. Symp. , vol.46 , pp. 321-327
    • Decher, G.1    Hong, J.2
  • 79
    • 84855995464 scopus 로고    scopus 로고
    • Layer-by-layer assembly through weak interactions and their biomedical applications
    • 79 Matsusaki, M., et al. Layer-by-layer assembly through weak interactions and their biomedical applications. Adv. Mater. Weinheim, 24, 2012, 454e74.
    • (2012) Adv. Mater. Weinheim , vol.24 , pp. 454e74
    • Matsusaki, M.1
  • 80
    • 84924296881 scopus 로고    scopus 로고
    • Assembly of cell-laden hydrogel fiber into non-liquefied and liquefied 3D spiral constructs by perfusion-based layer-by-layer technique
    • 80 Sher, P., et al. Assembly of cell-laden hydrogel fiber into non-liquefied and liquefied 3D spiral constructs by perfusion-based layer-by-layer technique. Biofabrication, 7, 2015, 011001.
    • (2015) Biofabrication , vol.7 , pp. 011001
    • Sher, P.1
  • 81
    • 58849128710 scopus 로고    scopus 로고
    • Novel engineered ion channel provides controllable ion permeability for polyelectrolyte microcapsules coated with a lipid membrane
    • 81 Battle, A.R., et al. Novel engineered ion channel provides controllable ion permeability for polyelectrolyte microcapsules coated with a lipid membrane. Adv. Funct. Mater. 19 (2009), 201–208.
    • (2009) Adv. Funct. Mater. , vol.19 , pp. 201-208
    • Battle, A.R.1
  • 82
    • 84924407340 scopus 로고    scopus 로고
    • Bioelectrodes modified with chitosan for long-term energy supply from the body
    • 82 El Ichi, S., et al. Bioelectrodes modified with chitosan for long-term energy supply from the body. Energ. Environ. Sci. 8 (2015), 1017–1026.
    • (2015) Energ. Environ. Sci. , vol.8 , pp. 1017-1026
    • El Ichi, S.1
  • 83
    • 84903143269 scopus 로고    scopus 로고
    • 3D tumor models: history, advances and future perspectives
    • 83 Benien, P., Swami, A., 3D tumor models: history, advances and future perspectives. Future Oncol. 10 (2014), 1311–1327.
    • (2014) Future Oncol. , vol.10 , pp. 1311-1327
    • Benien, P.1    Swami, A.2
  • 84
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • 84 Murphy, S.V., Atala, A., 3D bioprinting of tissues and organs. Nat. Biotechnol. 32 (2014), 773–785.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 85
    • 84884414984 scopus 로고    scopus 로고
    • Cerebral organoids model human brain development and microcephaly
    • 85 Lancaster, M.A., et al. Cerebral organoids model human brain development and microcephaly. Nature 501 (2013), 373–379.
    • (2013) Nature , vol.501 , pp. 373-379
    • Lancaster, M.A.1
  • 86
    • 84945283561 scopus 로고    scopus 로고
    • Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis
    • 86 Takasato, M., et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526 (2015), 564–569.
    • (2015) Nature , vol.526 , pp. 564-569
    • Takasato, M.1
  • 87
    • 63649097667 scopus 로고    scopus 로고
    • Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids
    • 87 Hsiao, A.Y., et al. Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30 (2009), 3020–3027.
    • (2009) Biomaterials , vol.30 , pp. 3020-3027
    • Hsiao, A.Y.1
  • 88
    • 84896787367 scopus 로고    scopus 로고
    • A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis
    • 88 Fu, C.Y., et al. A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis. Biofabrication, 6, 2014, 015009.
    • (2014) Biofabrication , vol.6 , pp. 015009
    • Fu, C.Y.1
  • 89
    • 65349141910 scopus 로고    scopus 로고
    • Inverted pattern formation of cell microarrays on poly(ethylene glycol) (PEG) gel patterned surface and construction of hepatocyte spheroids on unmodified PEG gel microdomains
    • 89 Yoshimoto, K., et al. Inverted pattern formation of cell microarrays on poly(ethylene glycol) (PEG) gel patterned surface and construction of hepatocyte spheroids on unmodified PEG gel microdomains. Lab Chip 9 (2009), 1286–1289.
    • (2009) Lab Chip , vol.9 , pp. 1286-1289
    • Yoshimoto, K.1
  • 90
    • 84882627623 scopus 로고    scopus 로고
    • Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation
    • 90 Kim, H.J., Ingber, D.E., Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol.(5), 2013, 1130–1140.
    • (2013) Integr. Biol. , Issue.5 , pp. 1130-1140
    • Kim, H.J.1    Ingber, D.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.