-
1
-
-
84939825735
-
Life in 3D is never flat: 3D models to optimise drug delivery
-
1 Fitzgerald, K.A., et al. Life in 3D is never flat: 3D models to optimise drug delivery. J. Control. Release 215 (2015), 39–54.
-
(2015)
J. Control. Release
, vol.215
, pp. 39-54
-
-
Fitzgerald, K.A.1
-
2
-
-
84874700631
-
Three-dimensional cell culture: the missing link in drug discovery
-
2 Breslin, S., O'Driscoll, L., Three-dimensional cell culture: the missing link in drug discovery. Drug Discov. Today 18 (2013), 240–249.
-
(2013)
Drug Discov. Today
, vol.18
, pp. 240-249
-
-
Breslin, S.1
O'Driscoll, L.2
-
3
-
-
84921957467
-
Three-dimensional in vitro tumor models for cancer research and drug evaluation
-
3 Xu, X., et al. Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol. Adv. 32 (2014), 1256–1268.
-
(2014)
Biotechnol. Adv.
, vol.32
, pp. 1256-1268
-
-
Xu, X.1
-
4
-
-
67649331462
-
Three-dimensional culture models of mammary gland
-
4 Campbell, J.J., Watson, C.J., Three-dimensional culture models of mammary gland. Organogenesis 5 (2009), 43–49.
-
(2009)
Organogenesis
, vol.5
, pp. 43-49
-
-
Campbell, J.J.1
Watson, C.J.2
-
5
-
-
84863898664
-
Microfluidic 3D cell culture: potential application for tissue-based bioassays
-
5 Li, X.J., et al. Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 4 (2012), 1509–1525.
-
(2012)
Bioanalysis
, vol.4
, pp. 1509-1525
-
-
Li, X.J.1
-
6
-
-
84899966772
-
The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer
-
6 Weigelt, B., et al. The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Adv. Drug Deliv. Rev. 69-70 (2014), 42–51.
-
(2014)
Adv. Drug Deliv. Rev.
, vol.69-70
, pp. 42-51
-
-
Weigelt, B.1
-
7
-
-
0036636095
-
Opinion: Building epithelial architecture: insights from three-dimensional culture models
-
7 O'Brien, L.E., et al. Opinion: Building epithelial architecture: insights from three-dimensional culture models. Nat. Rev. Mol. Cell Biol. 3 (2002), 531–537.
-
(2002)
Nat. Rev. Mol. Cell Biol.
, vol.3
, pp. 531-537
-
-
O'Brien, L.E.1
-
8
-
-
79959867881
-
Exploitation of physical and chemical constraints for three-dimensional microtissue construction in microfluidics
-
8 Choudhury, D., et al. Exploitation of physical and chemical constraints for three-dimensional microtissue construction in microfluidics. Biomicrofluidics, 5, 2011, 022203.
-
(2011)
Biomicrofluidics
, vol.5
, pp. 022203
-
-
Choudhury, D.1
-
9
-
-
84878115127
-
Structural and molecular interrogation of intact biological systems
-
9 Chung, K., Structural and molecular interrogation of intact biological systems. Nature 497 (2013), 332–337.
-
(2013)
Nature
, vol.497
, pp. 332-337
-
-
Chung, K.1
-
10
-
-
79953311537
-
Translating microtechnologies into tissue engineering, pharmacology and cancer research
-
10 Picollet-D'hahan, N., et al. Translating microtechnologies into tissue engineering, pharmacology and cancer research. Biotech Int., 2010 http://www.biotech-online.com/featured-articles/translating-microtechnologies-into-tissue-engineering-pharmacology-and-cancer-research/trackback/1/.
-
(2010)
Biotech Int.
-
-
Picollet-D'hahan, N.1
-
11
-
-
84918800066
-
A medium throughput device to study the effects of combinations of surface strains and fluid-flow shear stresses on cells
-
11 Sinha, R., et al. A medium throughput device to study the effects of combinations of surface strains and fluid-flow shear stresses on cells. Lab Chip 15 (2015), 429–435.
-
(2015)
Lab Chip
, vol.15
, pp. 429-435
-
-
Sinha, R.1
-
12
-
-
84962320853
-
Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues
-
12 Marsano, A., et al. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16 (2016), 599–610.
-
(2016)
Lab Chip
, vol.16
, pp. 599-610
-
-
Marsano, A.1
-
13
-
-
84957603856
-
On-chip construction of liver lobule-like microtissue and its application for adverse drug reaction assay
-
13 Ma, C., et al. On-chip construction of liver lobule-like microtissue and its application for adverse drug reaction assay. Anal. Chem. 88 (2016), 1719–1727.
-
(2016)
Anal. Chem.
, vol.88
, pp. 1719-1727
-
-
Ma, C.1
-
14
-
-
81355146382
-
From 3D cell culture to organs-on-chips
-
14 Huh, D., et al. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21 (2011), 745–754.
-
(2011)
Trends Cell Biol.
, vol.21
, pp. 745-754
-
-
Huh, D.1
-
15
-
-
84940491425
-
Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology
-
15 Caplin, J.D., et al. Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology. Adv. Healthc. Mater. 4 (2015), 1426–1450.
-
(2015)
Adv. Healthc. Mater.
, vol.4
, pp. 1426-1450
-
-
Caplin, J.D.1
-
16
-
-
84891930814
-
Physiologically relevant organs on chips
-
16 Yum, K., et al. Physiologically relevant organs on chips. Biotechnol. J. 9 (2014), 16–27.
-
(2014)
Biotechnol. J.
, vol.9
, pp. 16-27
-
-
Yum, K.1
-
17
-
-
84905754409
-
Microfluidic organs-on-chips
-
17 Bhatia, S.N., Ingber, D.E., Microfluidic organs-on-chips. Nat. Biotech. 32 (2014), 760–772.
-
(2014)
Nat. Biotech.
, vol.32
, pp. 760-772
-
-
Bhatia, S.N.1
Ingber, D.E.2
-
18
-
-
84926408953
-
Organs-on-chips at the frontiers of drug discovery
-
18 Esch, E.W., et al. Organs-on-chips at the frontiers of drug discovery. Nature 14 (2015), 248–260.
-
(2015)
Nature
, vol.14
, pp. 248-260
-
-
Esch, E.W.1
-
19
-
-
84874894377
-
Microfabricated mammalian organ systems and their integration into models of whole animals and humans
-
19 Sung, J.H., et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 13 (2013), 1201–1212.
-
(2013)
Lab Chip
, vol.13
, pp. 1201-1212
-
-
Sung, J.H.1
-
20
-
-
84934926656
-
Tissue engineering: organs from the lab
-
20 Marx, V., Tissue engineering: organs from the lab. Nature 522 (2015), 373–377.
-
(2015)
Nature
, vol.522
, pp. 373-377
-
-
Marx, V.1
-
21
-
-
84926218880
-
Artificial organs: honey, I shrunk the lungs
-
21 Eisenstein, M., Artificial organs: honey, I shrunk the lungs. Nature 519 (2015), S16–S18.
-
(2015)
Nature
, vol.519
, pp. S16-S18
-
-
Eisenstein, M.1
-
22
-
-
37649009647
-
Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems
-
22 Huh, D., et al. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl. Acad. Sci. U.S.A. 104 (2007), 18886–18891.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 18886-18891
-
-
Huh, D.1
-
23
-
-
77954038080
-
Reconstituting organ-level lung functions on a chip
-
23 Huh, D., et al. Reconstituting organ-level lung functions on a chip. Science 328 (2010), 1662–1668.
-
(2010)
Science
, vol.328
, pp. 1662-1668
-
-
Huh, D.1
-
24
-
-
84923127772
-
A lung-on-a-chip array with an integrated bio-inspired respiration mechanism
-
24 Stucki, A.O., et al. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 15 (2015), 1302–1310.
-
(2015)
Lab Chip
, vol.15
, pp. 1302-1310
-
-
Stucki, A.O.1
-
25
-
-
78751507903
-
Microscale 3D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model
-
25 Sung, J.H., et al. Microscale 3D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip. 11 (2011), 389–392.
-
(2011)
Lab Chip.
, vol.11
, pp. 389-392
-
-
Sung, J.H.1
-
26
-
-
84941796999
-
3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip
-
26 No, D-Y., et al. 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip 15 (2015), 3822–3837.
-
(2015)
Lab Chip
, vol.15
, pp. 3822-3837
-
-
No, D.-Y.1
-
27
-
-
84953273098
-
Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip
-
27 Kim, H.J., et al. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl. Acad. Sci. U.S.A. 14 (2015), E7–E15.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.14
, pp. E7-E15
-
-
Kim, H.J.1
-
28
-
-
84938352078
-
Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure
-
28 Bischel, L.L., et al. Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure. BMC Cancer, 15, 2015, 12.
-
(2015)
BMC Cancer
, vol.15
, pp. 12
-
-
Bischel, L.L.1
-
29
-
-
84903376044
-
Facile bench-top fabrication of enclosed circular microchannels provides 3D confined structure for growth of prostate epithelial cells
-
29 Dolega, M.E., et al. Facile bench-top fabrication of enclosed circular microchannels provides 3D confined structure for growth of prostate epithelial cells. PLoS ONE, 9, 2014, e99416.
-
(2014)
PLoS ONE
, vol.9
, pp. e99416
-
-
Dolega, M.E.1
-
30
-
-
84939150266
-
Acellular human heart matrix: a critical step toward whole heart grafts
-
30 Sánchez, P.L., et al. Acellular human heart matrix: a critical step toward whole heart grafts. Biomaterials 61 (2015), 279–289.
-
(2015)
Biomaterials
, vol.61
, pp. 279-289
-
-
Sánchez, P.L.1
-
31
-
-
84927646511
-
Evaluation of decellularization in umbilical cord artery
-
31 Mallis, P., et al. Evaluation of decellularization in umbilical cord artery. Transplant. Proc. 46 (2014), 3232–3239.
-
(2014)
Transplant. Proc.
, vol.46
, pp. 3232-3239
-
-
Mallis, P.1
-
32
-
-
84954285814
-
Giving new life to old lungs: methods to produce and assess whole human paediatric bioengineered lungs
-
32 Nichols, J.E., et al. Giving new life to old lungs: methods to produce and assess whole human paediatric bioengineered lungs. J. Tissue Eng. Regen. Med., 2016, 10.1002/term.2113.
-
(2016)
J. Tissue Eng. Regen. Med.
-
-
Nichols, J.E.1
-
33
-
-
84938855249
-
Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation
-
33 Mazza, G., et al. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci. Rep., 5, 2015, 13079.
-
(2015)
Sci. Rep.
, vol.5
, pp. 13079
-
-
Mazza, G.1
-
34
-
-
84958753499
-
Three-dimensional bioprinting in tissue engineering and regenerative medicine
-
34 Gao, G., Cui, X., Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol. Lett. 38 (2016), 203–211.
-
(2016)
Biotechnol. Lett.
, vol.38
, pp. 203-211
-
-
Gao, G.1
Cui, X.2
-
35
-
-
84930926663
-
Bioprinting scale-up tissue and organ constructs for transplantation
-
35 Ozbolat, I.T., Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 33 (2015), 395–400.
-
(2015)
Trends Biotechnol.
, vol.33
, pp. 395-400
-
-
Ozbolat, I.T.1
-
36
-
-
84885359750
-
Microwell fabrication methods and applications for cellular studies
-
36 Sung-Hwan, K., et al. Microwell fabrication methods and applications for cellular studies. Biomedical Eng. Lett. 3 (2013), 131–137.
-
(2013)
Biomedical Eng. Lett.
, vol.3
, pp. 131-137
-
-
Sung-Hwan, K.1
-
37
-
-
76749114337
-
The application of 3D micropatterning of agarose substrate for cell culture and in situ comet assays
-
37 Mercey, E., et al. The application of 3D micropatterning of agarose substrate for cell culture and in situ comet assays. Biomaterials 31 (2010), 3156–3165.
-
(2010)
Biomaterials
, vol.31
, pp. 3156-3165
-
-
Mercey, E.1
-
38
-
-
84860794165
-
Tissue deformation spatially modulates VEGF signaling and angiogenesis
-
38 Rivron, N.C., et al. Tissue deformation spatially modulates VEGF signaling and angiogenesis. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 6886–6891.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 6886-6891
-
-
Rivron, N.C.1
-
39
-
-
84898603169
-
Microstamped Petri dishes for scanning electrochemical microscopy analysis of arrays of microtissues
-
39 Sridhar, A., et al. Microstamped Petri dishes for scanning electrochemical microscopy analysis of arrays of microtissues. PLoS ONE, 9, 2014, e93618.
-
(2014)
PLoS ONE
, vol.9
, pp. e93618
-
-
Sridhar, A.1
-
40
-
-
78751543965
-
Microarrays for the scalable production of metabolically relevant tumor spheroids: a tool for modulating chemosensitivity traits
-
40 Hardelauf, H., et al. Microarrays for the scalable production of metabolically relevant tumor spheroids: a tool for modulating chemosensitivity traits. Lab Chip 11 (2011), 419–428.
-
(2011)
Lab Chip
, vol.11
, pp. 419-428
-
-
Hardelauf, H.1
-
41
-
-
0037701271
-
Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types
-
41 Kelm, J.M., et al. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng. 83 (2003), 173–180.
-
(2003)
Biotechnol. Bioeng.
, vol.83
, pp. 173-180
-
-
Kelm, J.M.1
-
42
-
-
84872301011
-
Multi-cell type human liver microtissues for hepatotoxicity testing
-
42 Messner, S., et al. Multi-cell type human liver microtissues for hepatotoxicity testing. Arch. Toxicol. 87 (2013), 209–213.
-
(2013)
Arch. Toxicol.
, vol.87
, pp. 209-213
-
-
Messner, S.1
-
43
-
-
78751560396
-
High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array
-
43 Tung, Y.C., et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136 (2011), 473–478.
-
(2011)
Analyst
, vol.136
, pp. 473-478
-
-
Tung, Y.C.1
-
44
-
-
85006213857
-
Three-dimensional microtissues essentially contribute to preclinical validations of therapeutic targets in breast cancer
-
44 Falkenberg, N., et al. Three-dimensional microtissues essentially contribute to preclinical validations of therapeutic targets in breast cancer. Cancer Med. 5 (2016), 703–710.
-
(2016)
Cancer Med.
, vol.5
, pp. 703-710
-
-
Falkenberg, N.1
-
45
-
-
84932609325
-
Controlled 3D culture in matrigel microbeads to analyze clonal acinar development
-
45 Dolega, M.E., et al. Controlled 3D culture in matrigel microbeads to analyze clonal acinar development. Biomaterials 52 (2015), 347–357.
-
(2015)
Biomaterials
, vol.52
, pp. 347-357
-
-
Dolega, M.E.1
-
46
-
-
62449135619
-
Microchips for cell-based assays
-
46 Dufva, M., Microchips for cell-based assays. Methods Mol. Biol. 509 (2009), 135–144.
-
(2009)
Methods Mol. Biol.
, vol.509
, pp. 135-144
-
-
Dufva, M.1
-
47
-
-
84878243724
-
Metre-long cell-laden microfibres exhibit tissue morphologies and functions
-
47 Hiroaki, O., et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 12 (2013), 584–590.
-
(2013)
Nat. Mater.
, vol.12
, pp. 584-590
-
-
Hiroaki, O.1
-
48
-
-
84964318207
-
Advancing tissue engineering: a tale of nano-, micro-, and macroscale integration
-
48 Leijten, J., et al. Advancing tissue engineering: a tale of nano-, micro-, and macroscale integration. Small 2 (2016), 2130–2145.
-
(2016)
Small
, vol.2
, pp. 2130-2145
-
-
Leijten, J.1
-
49
-
-
84896284039
-
The present and future role of microfluidics in biomedical research
-
49 Sackmann, E.K., et al. The present and future role of microfluidics in biomedical research. Nature 507 (2014), 181–189.
-
(2014)
Nature
, vol.507
, pp. 181-189
-
-
Sackmann, E.K.1
-
50
-
-
77952499476
-
Fundamentals of microfluidic cell culture in controlled microenvironments
-
50 Young, E.W., Beebe, D.J., Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 39 (2010), 1036–1048.
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 1036-1048
-
-
Young, E.W.1
Beebe, D.J.2
-
51
-
-
84934942592
-
Microfluidic 3D cell culture: from tools to tissue models
-
51 van Duinen, V., et al. Microfluidic 3D cell culture: from tools to tissue models. Curr. Op. Biotech. 35 (2015), 118–126.
-
(2015)
Curr. Op. Biotech.
, vol.35
, pp. 118-126
-
-
van Duinen, V.1
-
52
-
-
84882267983
-
Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine
-
52 Harink, B., et al. Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine. Lab Chip 13 (2013), 3512–3528.
-
(2013)
Lab Chip
, vol.13
, pp. 3512-3528
-
-
Harink, B.1
-
53
-
-
70349318448
-
Microfluidic platform for controlling the differentiation of embryoid bodies
-
53 Fung, W-To., et al. Microfluidic platform for controlling the differentiation of embryoid bodies. Lab Chip 9 (2009), 2591–2595.
-
(2009)
Lab Chip
, vol.9
, pp. 2591-2595
-
-
Fung, W.-T.1
-
54
-
-
80053914815
-
Microfluidic array for three-dimensional perfusion culture of human mammary epithelial cells
-
54 Chen, S.Y., et al. Microfluidic array for three-dimensional perfusion culture of human mammary epithelial cells. Biomed. Microdevices 13 (2011), 753–758.
-
(2011)
Biomed. Microdevices
, vol.13
, pp. 753-758
-
-
Chen, S.Y.1
-
55
-
-
84948653850
-
Study of the chemotactic response of multicellular spheroids in a microfluidic device
-
55 Ayuso, J.M., et al. Study of the chemotactic response of multicellular spheroids in a microfluidic device. PLoS ONE, 10, 2015, e0139515.
-
(2015)
PLoS ONE
, vol.10
, pp. e0139515
-
-
Ayuso, J.M.1
-
56
-
-
84915793469
-
A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs
-
56 Kim, C., et al. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Lab Chip 15 (2015), 301–310.
-
(2015)
Lab Chip
, vol.15
, pp. 301-310
-
-
Kim, C.1
-
57
-
-
84988736194
-
Microfluidics: a new tool for modeling cancer–immune interactions
-
57 Boussommier-Calleja, A., et al. Microfluidics: a new tool for modeling cancer–immune interactions. Trends Cancer 2 (2016), 1–19.
-
(2016)
Trends Cancer
, vol.2
, pp. 1-19
-
-
Boussommier-Calleja, A.1
-
58
-
-
84949943381
-
Emulsion technologies for multicellular tumor spheroid radiation assays
-
58 McMillan, K.S., et al. Emulsion technologies for multicellular tumor spheroid radiation assays. Analyst 141 (2016), 100–110.
-
(2016)
Analyst
, vol.141
, pp. 100-110
-
-
McMillan, K.S.1
-
59
-
-
84956825948
-
Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform
-
59 Sabhachandani, P., et al. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Lab Chip 16 (2016), 497–505.
-
(2016)
Lab Chip
, vol.16
, pp. 497-505
-
-
Sabhachandani, P.1
-
60
-
-
84947997510
-
Geometrically controlled preparation of various cell aggregates by droplet-based microfluidics
-
60 Wang, Y., et al. Geometrically controlled preparation of various cell aggregates by droplet-based microfluidics. Anal. Methods 7 (2015), 10040–10051.
-
(2015)
Anal. Methods
, vol.7
, pp. 10040-10051
-
-
Wang, Y.1
-
61
-
-
84890589120
-
Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment
-
61 Fai, C.H., et al. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci. Rep., 3, 2013, 3462.
-
(2013)
Sci. Rep.
, vol.3
, pp. 3462
-
-
Fai, C.H.1
-
62
-
-
84885390236
-
The modulation of attachment, growth and morphology of cancerous prostate cells by polyelectrolyte nanofilms
-
62 Picollet-D'hahan, N., et al. The modulation of attachment, growth and morphology of cancerous prostate cells by polyelectrolyte nanofilms. Biomaterials 34 (2013), 10099–10108.
-
(2013)
Biomaterials
, vol.34
, pp. 10099-10108
-
-
Picollet-D'hahan, N.1
-
63
-
-
84930927716
-
Strategies for improving the physiological relevance of human engineered tissues
-
63 Abbott, R.D., et al. Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol. 33 (2015), 401–407.
-
(2015)
Trends Biotechnol.
, vol.33
, pp. 401-407
-
-
Abbott, R.D.1
-
64
-
-
84905824686
-
Continuous microcarrier-based cell culture in a benchtop microfluidic bioreactor
-
64 Abeille, F., et al. Continuous microcarrier-based cell culture in a benchtop microfluidic bioreactor. Lab Chip 14 (2014), 3510–3518.
-
(2014)
Lab Chip
, vol.14
, pp. 3510-3518
-
-
Abeille, F.1
-
65
-
-
84949946054
-
Modelling the tumour microenvironment in long-term microencapsulated 3D co-cultures recapitulates phenotypic features of disease progression
-
65 Estrada, M.F., et al. Modelling the tumour microenvironment in long-term microencapsulated 3D co-cultures recapitulates phenotypic features of disease progression. Biomaterials 78 (2016), 50–61.
-
(2016)
Biomaterials
, vol.78
, pp. 50-61
-
-
Estrada, M.F.1
-
66
-
-
84910072170
-
3D cell culture systems: advantages and applications
-
66 Ravi, M., et al. 3D cell culture systems: advantages and applications. J. Cell. Physiol. 230 (2015), 16–26.
-
(2015)
J. Cell. Physiol.
, vol.230
, pp. 16-26
-
-
Ravi, M.1
-
67
-
-
84919952876
-
Hydrogels to model 3D in vitro microenvironment of tumor vascularization
-
67 Song, H.H., et al. Hydrogels to model 3D in vitro microenvironment of tumor vascularization. Adv. Drug Deliv. Rev. 15 (2014), 19–29.
-
(2014)
Adv. Drug Deliv. Rev.
, vol.15
, pp. 19-29
-
-
Song, H.H.1
-
68
-
-
84949518771
-
Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues
-
68 Maghdouri-White, Y., et al. Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues. Mater. Sci. Eng. C Mater. Biol. Appl. 59 (2016), 1168–1180.
-
(2016)
Mater. Sci. Eng. C Mater. Biol. Appl.
, vol.59
, pp. 1168-1180
-
-
Maghdouri-White, Y.1
-
69
-
-
84869495994
-
Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy
-
69 Mehta, G., et al. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J. Control. Release 164 (2012), 192–204.
-
(2012)
J. Control. Release
, vol.164
, pp. 192-204
-
-
Mehta, G.1
-
70
-
-
84952639504
-
Fibrous scaffolds for building hearts and heart parts
-
70 Capulli, A.K., et al. Fibrous scaffolds for building hearts and heart parts. Adv. Drug Deliv. Rev. 96 (2016), 83–102.
-
(2016)
Adv. Drug Deliv. Rev.
, vol.96
, pp. 83-102
-
-
Capulli, A.K.1
-
71
-
-
84953227804
-
3D scaffolds in breast cancer research
-
71 Girdhari, R., Weimin, L., 3D scaffolds in breast cancer research. Biomaterials 81 (2016), 135–156.
-
(2016)
Biomaterials
, vol.81
, pp. 135-156
-
-
Girdhari, R.1
Weimin, L.2
-
72
-
-
84947599454
-
Evaluating biomaterial- and microfluidic-based 3D tumor models
-
72 Carvalho, M.R., et al. Evaluating biomaterial- and microfluidic-based 3D tumor models. Trends Biotechnol. 33 (2015), 667–678.
-
(2015)
Trends Biotechnol.
, vol.33
, pp. 667-678
-
-
Carvalho, M.R.1
-
73
-
-
84924066233
-
Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes
-
73 Shepard Neiman, J.A., et al. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes. Biotechnol. Bioeng. 112 (2015), 777–787.
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 777-787
-
-
Shepard Neiman, J.A.1
-
74
-
-
84942747240
-
Hybrid tissue engineering scaffolds by combination of three-dimensional printing and cell photoencapsulation
-
74 Markovic, M., et al. Hybrid tissue engineering scaffolds by combination of three-dimensional printing and cell photoencapsulation. J. Nanotechnol. Eng. Med. 6 (2015), 0210011–0210017.
-
(2015)
J. Nanotechnol. Eng. Med.
, vol.6
, pp. 0210011-0210017
-
-
Markovic, M.1
-
75
-
-
84959488124
-
Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications
-
75 Loo, Y., Hauser, C.A.E., Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications. Biomed. Mater., 11, 2016, 014103.
-
(2016)
Biomed. Mater.
, vol.11
, pp. 014103
-
-
Loo, Y.1
Hauser, C.A.E.2
-
77
-
-
84867551443
-
Biomimetic membrane system composed of a composite interpenetrating hydrogel film and a lipid bilayer
-
77 Stidder, B., et al. Biomimetic membrane system composed of a composite interpenetrating hydrogel film and a lipid bilayer. Adv. Funct. Mater. 22 (2012), 4259–4267.
-
(2012)
Adv. Funct. Mater.
, vol.22
, pp. 4259-4267
-
-
Stidder, B.1
-
78
-
-
84986841299
-
Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces
-
78 Decher, G., Hong, J., Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol. Chem. Macromol. Symp. 46 (1991), 321–327.
-
(1991)
Makromol. Chem. Macromol. Symp.
, vol.46
, pp. 321-327
-
-
Decher, G.1
Hong, J.2
-
79
-
-
84855995464
-
Layer-by-layer assembly through weak interactions and their biomedical applications
-
79 Matsusaki, M., et al. Layer-by-layer assembly through weak interactions and their biomedical applications. Adv. Mater. Weinheim, 24, 2012, 454e74.
-
(2012)
Adv. Mater. Weinheim
, vol.24
, pp. 454e74
-
-
Matsusaki, M.1
-
80
-
-
84924296881
-
Assembly of cell-laden hydrogel fiber into non-liquefied and liquefied 3D spiral constructs by perfusion-based layer-by-layer technique
-
80 Sher, P., et al. Assembly of cell-laden hydrogel fiber into non-liquefied and liquefied 3D spiral constructs by perfusion-based layer-by-layer technique. Biofabrication, 7, 2015, 011001.
-
(2015)
Biofabrication
, vol.7
, pp. 011001
-
-
Sher, P.1
-
81
-
-
58849128710
-
Novel engineered ion channel provides controllable ion permeability for polyelectrolyte microcapsules coated with a lipid membrane
-
81 Battle, A.R., et al. Novel engineered ion channel provides controllable ion permeability for polyelectrolyte microcapsules coated with a lipid membrane. Adv. Funct. Mater. 19 (2009), 201–208.
-
(2009)
Adv. Funct. Mater.
, vol.19
, pp. 201-208
-
-
Battle, A.R.1
-
82
-
-
84924407340
-
Bioelectrodes modified with chitosan for long-term energy supply from the body
-
82 El Ichi, S., et al. Bioelectrodes modified with chitosan for long-term energy supply from the body. Energ. Environ. Sci. 8 (2015), 1017–1026.
-
(2015)
Energ. Environ. Sci.
, vol.8
, pp. 1017-1026
-
-
El Ichi, S.1
-
83
-
-
84903143269
-
3D tumor models: history, advances and future perspectives
-
83 Benien, P., Swami, A., 3D tumor models: history, advances and future perspectives. Future Oncol. 10 (2014), 1311–1327.
-
(2014)
Future Oncol.
, vol.10
, pp. 1311-1327
-
-
Benien, P.1
Swami, A.2
-
84
-
-
84905725612
-
3D bioprinting of tissues and organs
-
84 Murphy, S.V., Atala, A., 3D bioprinting of tissues and organs. Nat. Biotechnol. 32 (2014), 773–785.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 773-785
-
-
Murphy, S.V.1
Atala, A.2
-
85
-
-
84884414984
-
Cerebral organoids model human brain development and microcephaly
-
85 Lancaster, M.A., et al. Cerebral organoids model human brain development and microcephaly. Nature 501 (2013), 373–379.
-
(2013)
Nature
, vol.501
, pp. 373-379
-
-
Lancaster, M.A.1
-
86
-
-
84945283561
-
Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis
-
86 Takasato, M., et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526 (2015), 564–569.
-
(2015)
Nature
, vol.526
, pp. 564-569
-
-
Takasato, M.1
-
87
-
-
63649097667
-
Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids
-
87 Hsiao, A.Y., et al. Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30 (2009), 3020–3027.
-
(2009)
Biomaterials
, vol.30
, pp. 3020-3027
-
-
Hsiao, A.Y.1
-
88
-
-
84896787367
-
A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis
-
88 Fu, C.Y., et al. A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis. Biofabrication, 6, 2014, 015009.
-
(2014)
Biofabrication
, vol.6
, pp. 015009
-
-
Fu, C.Y.1
-
89
-
-
65349141910
-
Inverted pattern formation of cell microarrays on poly(ethylene glycol) (PEG) gel patterned surface and construction of hepatocyte spheroids on unmodified PEG gel microdomains
-
89 Yoshimoto, K., et al. Inverted pattern formation of cell microarrays on poly(ethylene glycol) (PEG) gel patterned surface and construction of hepatocyte spheroids on unmodified PEG gel microdomains. Lab Chip 9 (2009), 1286–1289.
-
(2009)
Lab Chip
, vol.9
, pp. 1286-1289
-
-
Yoshimoto, K.1
-
90
-
-
84882627623
-
Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation
-
90 Kim, H.J., Ingber, D.E., Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol.(5), 2013, 1130–1140.
-
(2013)
Integr. Biol.
, Issue.5
, pp. 1130-1140
-
-
Kim, H.J.1
Ingber, D.E.2
|