-
1
-
-
79961183237
-
Immunotherapy for metastatic solid cancers
-
1 Turcotte, S., Rosenberg, S.A., Immunotherapy for metastatic solid cancers. Adv. Surg. 45 (2011), 341–360.
-
(2011)
Adv. Surg.
, vol.45
, pp. 341-360
-
-
Turcotte, S.1
Rosenberg, S.A.2
-
2
-
-
84858766182
-
The blockade of immune checkpoints in cancer immunotherapy
-
2 Pardoll, D.M., The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12 (2012), 252–264.
-
(2012)
Nat. Rev. Cancer
, vol.12
, pp. 252-264
-
-
Pardoll, D.M.1
-
3
-
-
84655164923
-
Experimental mouse tumour models: what can be learnt about human cancer immunology?
-
3 Dranoff, G., Experimental mouse tumour models: what can be learnt about human cancer immunology?. Nat. Rev. Immunol. 12 (2011), 61–66.
-
(2011)
Nat. Rev. Immunol.
, vol.12
, pp. 61-66
-
-
Dranoff, G.1
-
4
-
-
33747117373
-
The origins and the future of microfluidics
-
4 Whitesides, G.M., The origins and the future of microfluidics. Nature 442 (2006), 368–373.
-
(2006)
Nature
, vol.442
, pp. 368-373
-
-
Whitesides, G.M.1
-
5
-
-
78149268198
-
Biological applications of microfluidic gradient devices
-
5 Kim, S., et al. Biological applications of microfluidic gradient devices. Integr. Biol., 2, 2010, 584.
-
(2010)
Integr. Biol.
, vol.2
, pp. 584
-
-
Kim, S.1
-
6
-
-
84889672208
-
A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis
-
6 Patra, B., et al. A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis. Biomicrofluidics, 7, 2013, 054114.
-
(2013)
Biomicrofluidics
, vol.7
, pp. 054114
-
-
Patra, B.1
-
7
-
-
84893487351
-
Implementation of microfluidic sandwich ELISA for superior detection of plant pathogens
-
7 Thaitrong, N., et al. Implementation of microfluidic sandwich ELISA for superior detection of plant pathogens. PLoS ONE, 8, 2013, e83231.
-
(2013)
PLoS ONE
, vol.8
, pp. e83231
-
-
Thaitrong, N.1
-
9
-
-
69549135426
-
Biological implications of polydimethylsiloxane-based microfluidic cell culture
-
9 Regehr, K.J., et al. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9 (2009), 2132–2139.
-
(2009)
Lab Chip
, vol.9
, pp. 2132-2139
-
-
Regehr, K.J.1
-
10
-
-
80053591722
-
High-resolution multiphoton imaging of tumors in vivo
-
10 Wyckoff, J., et al. High-resolution multiphoton imaging of tumors in vivo. Cold Spring Harb. Protoc. 2011 (2011), 1167–1184.
-
(2011)
Cold Spring Harb. Protoc.
, vol.2011
, pp. 1167-1184
-
-
Wyckoff, J.1
-
11
-
-
34648832906
-
Illuminating the metastatic process
-
11 Sahai, E., Illuminating the metastatic process. Nat. Rev. Cancer 7 (2007), 737–749.
-
(2007)
Nat. Rev. Cancer
, vol.7
, pp. 737-749
-
-
Sahai, E.1
-
12
-
-
0036674501
-
Dissemination and growth of cancer cells in metastatic sites
-
12 Chambers, A.F., et al. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2 (2002), 563–572.
-
(2002)
Nat. Rev. Cancer
, vol.2
, pp. 563-572
-
-
Chambers, A.F.1
-
13
-
-
84906659320
-
A spatiotemporally defined in vitro microenvironment for controllable signal delivery and drug screening
-
13 Kuo, C.T., et al. A spatiotemporally defined in vitro microenvironment for controllable signal delivery and drug screening. Analyst 139 (2014), 4846–4854.
-
(2014)
Analyst
, vol.139
, pp. 4846-4854
-
-
Kuo, C.T.1
-
14
-
-
84890148410
-
Modeling of cancer metastasis and drug resistance via biomimetic nano-cilia and microfluidics
-
14 Kuo, C.T., et al. Modeling of cancer metastasis and drug resistance via biomimetic nano-cilia and microfluidics. Biomaterials 35 (2014), 1562–1571.
-
(2014)
Biomaterials
, vol.35
, pp. 1562-1571
-
-
Kuo, C.T.1
-
15
-
-
66849138510
-
Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells
-
15 Song, J.W., et al. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS ONE, 4, 2009, e5756.
-
(2009)
PLoS ONE
, vol.4
, pp. e5756
-
-
Song, J.W.1
-
16
-
-
80054990773
-
Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis
-
16 Shin, M.K., et al. Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis. Lab Chip 11 (2011), 3880–3887.
-
(2011)
Lab Chip
, vol.11
, pp. 3880-3887
-
-
Shin, M.K.1
-
17
-
-
84864192564
-
A microfluidic-based device for study of transendothelial invasion of tumor aggregates in realtime
-
17 Zhang, Q., et al. A microfluidic-based device for study of transendothelial invasion of tumor aggregates in realtime. Lab Chip, 12, 2012, 2837.
-
(2012)
Lab Chip
, vol.12
, pp. 2837
-
-
Zhang, Q.1
-
18
-
-
84865293346
-
Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function
-
18 Zervantonakis, I.K., et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 13515–13520.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 13515-13520
-
-
Zervantonakis, I.K.1
-
19
-
-
84930911191
-
A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasation
-
19 Lee, H., et al. A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasation. Biomicrofluidics, 8, 2014, 054102.
-
(2014)
Biomicrofluidics
, vol.8
, pp. 054102
-
-
Lee, H.1
-
20
-
-
84874223528
-
In vitro model of tumor cell extravasation
-
20 Jeon, J.S., et al. In vitro model of tumor cell extravasation. PLoS ONE, 8, 2013, e56910.
-
(2013)
PLoS ONE
, vol.8
, pp. e56910
-
-
Jeon, J.S.1
-
21
-
-
84884688355
-
Mechanisms of tumor cell extravasation in an in vitro microvascular network platform
-
21 Chen, M.B., et al. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr. Biol. (Camb.) 5 (2013), 1262–1271.
-
(2013)
Integr. Biol. (Camb.)
, vol.5
, pp. 1262-1271
-
-
Chen, M.B.1
-
22
-
-
84938900912
-
A microfluidic model for organ-specific extravasation of circulating tumor cells
-
22 Riahi, R., et al. A microfluidic model for organ-specific extravasation of circulating tumor cells. Biomicrofluidics, 8, 2014, 024103.
-
(2014)
Biomicrofluidics
, vol.8
, pp. 024103
-
-
Riahi, R.1
-
23
-
-
84901622136
-
A three-dimensional in vitro model of tumor cell intravasation
-
23 Ehsan, S.M., et al. A three-dimensional in vitro model of tumor cell intravasation. Integr. Biol. (Camb.) 6 (2014), 603–610.
-
(2014)
Integr. Biol. (Camb.)
, vol.6
, pp. 603-610
-
-
Ehsan, S.M.1
-
24
-
-
84880332704
-
The perivascular niche regulates breast tumour dormancy
-
24 Ghajar, C.M., et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15 (2013), 807–817.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 807-817
-
-
Ghajar, C.M.1
-
25
-
-
84903752926
-
Control of perfusable microvascular network morphology using a multiculture microfluidic system
-
25 Whisler, J.A., et al. Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng. Part C Methods 20 (2014), 543–552.
-
(2014)
Tissue Eng. Part C Methods
, vol.20
, pp. 543-552
-
-
Whisler, J.A.1
-
26
-
-
84876704168
-
Engineering of functional, perfusable 3D microvascular networks on a chip
-
26 Kim, S., et al. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13 (2013), 1489–1500.
-
(2013)
Lab Chip
, vol.13
, pp. 1489-1500
-
-
Kim, S.1
-
27
-
-
84899125649
-
Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems
-
27 Jeon, J.S., et al. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integr. Biol. (Camb.) 6 (2014), 555–563.
-
(2014)
Integr. Biol. (Camb.)
, vol.6
, pp. 555-563
-
-
Jeon, J.S.1
-
28
-
-
84902080037
-
In vitro models of the metastatic cascade: from local invasion to extravasation
-
28 Bersini, S., et al. In vitro models of the metastatic cascade: from local invasion to extravasation. Drug Discov. Today 19 (2014), 735–742.
-
(2014)
Drug Discov. Today
, vol.19
, pp. 735-742
-
-
Bersini, S.1
-
29
-
-
63049104211
-
Microenvironmental regulation of metastasis
-
29 Joyce, J.A., Pollard, J.W., Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9 (2009), 239–252.
-
(2009)
Nat. Rev. Cancer
, vol.9
, pp. 239-252
-
-
Joyce, J.A.1
Pollard, J.W.2
-
30
-
-
53949093698
-
Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization
-
30 Fitzgerald, D.P., et al. Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin. Exp. Metastasis 25 (2008), 799–810.
-
(2008)
Clin. Exp. Metastasis
, vol.25
, pp. 799-810
-
-
Fitzgerald, D.P.1
-
31
-
-
0038481970
-
The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited
-
31 Fidler, I.J., The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 3 (2003), 453–458.
-
(2003)
Nat. Rev. Cancer
, vol.3
, pp. 453-458
-
-
Fidler, I.J.1
-
32
-
-
84891742591
-
A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone
-
32 Bersini, S., et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35 (2014), 2454–2461.
-
(2014)
Biomaterials
, vol.35
, pp. 2454-2461
-
-
Bersini, S.1
-
33
-
-
84921913471
-
Engineered in vitro disease models
-
33 Benam, K.H., et al. Engineered in vitro disease models. Annu. Rev. Pathol. Mech. Dis. 10 (2015), 195–262.
-
(2015)
Annu. Rev. Pathol. Mech. Dis.
, vol.10
, pp. 195-262
-
-
Benam, K.H.1
-
34
-
-
77954038080
-
Reconstituting organ-level lung functions on a chip
-
34 Huh, D., et al. Reconstituting organ-level lung functions on a chip. Science 328 (2010), 1662–1668.
-
(2010)
Science
, vol.328
, pp. 1662-1668
-
-
Huh, D.1
-
35
-
-
84891128326
-
The importance of animal models in tumor immunity and immunotherapy
-
35 Budhu, S., et al. The importance of animal models in tumor immunity and immunotherapy. Curr. Opin. Genet. Dev. 24 (2014), 46–51.
-
(2014)
Curr. Opin. Genet. Dev.
, vol.24
, pp. 46-51
-
-
Budhu, S.1
-
36
-
-
84890473452
-
Bacteriology: a caring culture
-
36 DeWeerdt, S., Bacteriology: a caring culture. Nature 504 (2013), S4–S5.
-
(2013)
Nature
, vol.504
, pp. S4-S5
-
-
DeWeerdt, S.1
-
37
-
-
84923027892
-
Immune cell promotion of metastasis
-
37 Kitamura, T., et al. Immune cell promotion of metastasis. Nat. Rev. Immunol. 15 (2015), 73–86.
-
(2015)
Nat. Rev. Immunol.
, vol.15
, pp. 73-86
-
-
Kitamura, T.1
-
38
-
-
55549130240
-
Specificity in cancer immunotherapy
-
38 Schietinger, A., et al. Specificity in cancer immunotherapy. Semin. Immunol. 20 (2008), 276–285.
-
(2008)
Semin. Immunol.
, vol.20
, pp. 276-285
-
-
Schietinger, A.1
-
39
-
-
77950950894
-
Macrophage diversity enhances tumor progression and metastasis
-
39 Qian, B-Z., Pollard, J.W., Macrophage diversity enhances tumor progression and metastasis. Cell 141 (2010), 39–51.
-
(2010)
Cell
, vol.141
, pp. 39-51
-
-
Qian, B.-Z.1
Pollard, J.W.2
-
40
-
-
84858760109
-
Combining immunotherapy and targeted therapies in cancer treatment
-
40 Vanneman, M., Dranoff, G., Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 12 (2012), 237–251.
-
(2012)
Nat. Rev. Cancer
, vol.12
, pp. 237-251
-
-
Vanneman, M.1
Dranoff, G.2
-
41
-
-
84876424760
-
Macrophage regulation of tumor responses to anticancer therapies
-
41 De Palma, M., Lewis, C.E., Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23 (2013), 277–286.
-
(2013)
Cancer Cell
, vol.23
, pp. 277-286
-
-
De Palma, M.1
Lewis, C.E.2
-
42
-
-
84941779973
-
Perivascular M2 macrophages stimulate tumor relapse after chemotherapy
-
42 Hughes, R., et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 75 (2015), 3479–3491.
-
(2015)
Cancer Res.
, vol.75
, pp. 3479-3491
-
-
Hughes, R.1
-
43
-
-
7044269092
-
Chemokines: role in inflammation and immune surveillance
-
43 Moser, B., Willimann, K., Chemokines: role in inflammation and immune surveillance. Ann. Rheum. Dis. 63:Suppl. 2 (2004), ii84–ii89.
-
(2004)
Ann. Rheum. Dis.
, vol.63
, pp. ii84-ii89
-
-
Moser, B.1
Willimann, K.2
-
44
-
-
84924225988
-
Infection and immunity on a chip: a compartmentalised microfluidic platform to monitor immune cell behaviour in real time
-
44 Gopalakrishnan, N., et al. Infection and immunity on a chip: a compartmentalised microfluidic platform to monitor immune cell behaviour in real time. Lab Chip 15 (2015), 1481–1487.
-
(2015)
Lab Chip
, vol.15
, pp. 1481-1487
-
-
Gopalakrishnan, N.1
-
45
-
-
84895548187
-
Microfluidic single-cell analysis for systems immunology
-
45 Junkin, M., Tay, S., Microfluidic single-cell analysis for systems immunology. Lab Chip 14 (2014), 1246–1260.
-
(2014)
Lab Chip
, vol.14
, pp. 1246-1260
-
-
Junkin, M.1
Tay, S.2
-
46
-
-
84919631446
-
“In vitro” 3D models of tumor–immune system interaction
-
46 Hirt, C., et al. “In vitro” 3D models of tumor–immune system interaction. Adv. Drug Deliv. Rev. 79–80 (2014), 145–154.
-
(2014)
Adv. Drug Deliv. Rev.
, vol.79-80
, pp. 145-154
-
-
Hirt, C.1
-
47
-
-
48149100933
-
New dimensions in tumor immunology: what does 3D culture reveal?
-
47 Feder-Mengus, C., et al. New dimensions in tumor immunology: what does 3D culture reveal?. Trends Mol. Med. 14 (2008), 333–340.
-
(2008)
Trends Mol. Med.
, vol.14
, pp. 333-340
-
-
Feder-Mengus, C.1
-
48
-
-
84923828979
-
Cancer-driven dynamics of immune cells in a microfluidic environment
-
48 Agliari, E., et al. Cancer-driven dynamics of immune cells in a microfluidic environment. Sci. Rep., 4, 2014, 6639.
-
(2014)
Sci. Rep.
, vol.4
, pp. 6639
-
-
Agliari, E.1
-
49
-
-
84870895812
-
Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment
-
49 Businaro, L., et al. Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. Lab Chip 13 (2012), 229–239.
-
(2012)
Lab Chip
, vol.13
, pp. 229-239
-
-
Businaro, L.1
-
50
-
-
84902578200
-
A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells
-
50 Mattei, F., et al. A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells. J. Immunotoxicol. 11 (2014), 337–346.
-
(2014)
J. Immunotoxicol.
, vol.11
, pp. 337-346
-
-
Mattei, F.1
-
51
-
-
84863027093
-
The migration speed of cancer cells influenced by macrophages and myofibroblasts co-cultured in a microfluidic chip
-
51 Hsu, T-H., et al. The migration speed of cancer cells influenced by macrophages and myofibroblasts co-cultured in a microfluidic chip. Integr. Biol., 4, 2012, 177.
-
(2012)
Integr. Biol.
, vol.4
, pp. 177
-
-
Hsu, T.-H.1
-
52
-
-
67649364409
-
Engineering microscale cellular niches for three-dimensional multicellular co-cultures
-
52 Huang, C.P., et al. Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9 (2009), 1740–1748.
-
(2009)
Lab Chip
, vol.9
, pp. 1740-1748
-
-
Huang, C.P.1
-
53
-
-
30144443269
-
Paradoxical roles of the immune system during cancer development
-
53 de Visser, K.E., et al. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 6 (2006), 24–37.
-
(2006)
Nat. Rev. Cancer
, vol.6
, pp. 24-37
-
-
de Visser, K.E.1
-
54
-
-
84864654660
-
Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape
-
54 Bidwell, B.N., et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat. Med. 18 (2012), 1224–1231.
-
(2012)
Nat. Med.
, vol.18
, pp. 1224-1231
-
-
Bidwell, B.N.1
-
55
-
-
77953225810
-
Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma
-
55 Eyles, J., et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Invest. 120 (2010), 2030–2039.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 2030-2039
-
-
Eyles, J.1
-
56
-
-
84897954522
-
The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells
-
56 Paolino, M., et al. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 507 (2014), 508–512.
-
(2014)
Nature
, vol.507
, pp. 508-512
-
-
Paolino, M.1
-
57
-
-
80052566377
-
Tumor entrained neutrophils inhibit seeding in the premetastatic lung
-
57 Granot, Z., et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20 (2011), 300–314.
-
(2011)
Cancer Cell
, vol.20
, pp. 300-314
-
-
Granot, Z.1
-
58
-
-
0022357902
-
Macrophages and metastasis – a biological approach to cancer therapy
-
58 Fidler, I.J., Macrophages and metastasis – a biological approach to cancer therapy. Cancer Res. 45 (1985), 4714–4726.
-
(1985)
Cancer Res.
, vol.45
, pp. 4714-4726
-
-
Fidler, I.J.1
-
59
-
-
84860135764
-
Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma
-
59 Edris, B., et al. Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 6656–6661.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 6656-6661
-
-
Edris, B.1
-
60
-
-
84905014848
-
Platelets guide the formation of early metastatic niches
-
60 Labelle, M., et al. Platelets guide the formation of early metastatic niches. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), E3053–E3061.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. E3053-E3061
-
-
Labelle, M.1
-
61
-
-
81255205399
-
Direct signaling between platelets and cancer cells induces an epithelial–mesenchymal-like transition and promotes metastasis
-
61 Labelle, M., et al. Direct signaling between platelets and cancer cells induces an epithelial–mesenchymal-like transition and promotes metastasis. Cancer Cell 20 (2011), 576–590.
-
(2011)
Cancer Cell
, vol.20
, pp. 576-590
-
-
Labelle, M.1
-
62
-
-
84947763610
-
Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1
-
62 Vacchelli, E., et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350 (2015), 972–978.
-
(2015)
Science
, vol.350
, pp. 972-978
-
-
Vacchelli, E.1
-
63
-
-
0034194578
-
A critical step in metastasis: in vivo analysis of intravasation at the primary tumor
-
63 Wyckoff, J.B., et al. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 60 (2000), 2504–2511.
-
(2000)
Cancer Res.
, vol.60
, pp. 2504-2511
-
-
Wyckoff, J.B.1
-
64
-
-
84947788223
-
A bladder cancer microenvironment simulation system based on a microfluidic co-culture model
-
64 Liu, P.F., et al. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Oncotarget 6 (2015), 37695–37705.
-
(2015)
Oncotarget
, vol.6
, pp. 37695-37705
-
-
Liu, P.F.1
-
65
-
-
84890743170
-
Emerging microfluidic tools for functional cellular immunophenotyping: a new potential paradigm for immune status characterization
-
65 Chen, W., et al. Emerging microfluidic tools for functional cellular immunophenotyping: a new potential paradigm for immune status characterization. Front. Oncol., 3, 2013, 98.
-
(2013)
Front. Oncol.
, vol.3
, pp. 98
-
-
Chen, W.1
-
66
-
-
84921689178
-
In vitro micro-physiological models for translational immunology
-
66 Ramadan, Q., Gijs, M.A.M., In vitro micro-physiological models for translational immunology. Lab Chip 15 (2015), 614–636.
-
(2015)
Lab Chip
, vol.15
, pp. 614-636
-
-
Ramadan, Q.1
Gijs, M.A.M.2
-
67
-
-
33750476278
-
T cell chemotaxis in a simple microfluidic device
-
67 Lin, F., Butcher, E.C., T cell chemotaxis in a simple microfluidic device. Lab Chip 6 (2006), 1462–1469.
-
(2006)
Lab Chip
, vol.6
, pp. 1462-1469
-
-
Lin, F.1
Butcher, E.C.2
-
68
-
-
84930000528
-
Neutrophil migration under spatially-varying chemoattractant gradient profiles
-
68 Halilovic, I., et al. Neutrophil migration under spatially-varying chemoattractant gradient profiles. Biomed. Microdevices 17 (2015), 1–7.
-
(2015)
Biomed. Microdevices
, vol.17
, pp. 1-7
-
-
Halilovic, I.1
-
69
-
-
84865146944
-
‘Slings’ enable neutrophil rolling at high shear
-
69 Sundd, P., et al. ‘Slings’ enable neutrophil rolling at high shear. Nature 488 (2012), 399–403.
-
(2012)
Nature
, vol.488
, pp. 399-403
-
-
Sundd, P.1
-
70
-
-
84873707878
-
A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils
-
70 Han, S., et al. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Lab Chip, 12, 2012, 3861.
-
(2012)
Lab Chip
, vol.12
, pp. 3861
-
-
Han, S.1
-
71
-
-
84864475933
-
Inflammatory mimetic microfluidic chip by immobilization of cell adhesion molecules for T cell adhesion
-
71 Kim, S.K., et al. Inflammatory mimetic microfluidic chip by immobilization of cell adhesion molecules for T cell adhesion. Analyst, 137, 2012, 4062.
-
(2012)
Analyst
, vol.137
, pp. 4062
-
-
Kim, S.K.1
-
72
-
-
84883418408
-
A standalone perfusion platform for drug testing and target validation in micro-vessel networks
-
72 Zhang, B., et al. A standalone perfusion platform for drug testing and target validation in micro-vessel networks. Biomicrofluidics 7 (2013), 1–13.
-
(2013)
Biomicrofluidics
, vol.7
, pp. 1-13
-
-
Zhang, B.1
-
73
-
-
79953286432
-
A microfluidic membrane device to mimic critical components of the vascular microenvironment
-
73 Srigunapalan, S., et al. A microfluidic membrane device to mimic critical components of the vascular microenvironment. Biomicrofluidics 5 (2011), 1–9.
-
(2011)
Biomicrofluidics
, vol.5
, pp. 1-9
-
-
Srigunapalan, S.1
-
74
-
-
84907818816
-
Human airway musculature on a chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation
-
74 Nesmith, A.P., et al. Human airway musculature on a chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation. Lab Chip 14 (2014), 3925–3936.
-
(2014)
Lab Chip
, vol.14
, pp. 3925-3936
-
-
Nesmith, A.P.1
-
75
-
-
84862207235
-
Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow
-
75 Kim, H.J., et al. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip, 12, 2012, 2165.
-
(2012)
Lab Chip
, vol.12
, pp. 2165
-
-
Kim, H.J.1
-
76
-
-
79958122357
-
A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells
-
76 Ma, C., et al. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat. Med. 17 (2011), 738–743.
-
(2011)
Nat. Med.
, vol.17
, pp. 738-743
-
-
Ma, C.1
-
77
-
-
77956430960
-
Clinical microfluidics for neutrophil genomics and proteomics
-
77 Kotz, K.T., et al. Clinical microfluidics for neutrophil genomics and proteomics. Nat. Med. 16 (2010), 1042–1047.
-
(2010)
Nat. Med.
, vol.16
, pp. 1042-1047
-
-
Kotz, K.T.1
-
78
-
-
56549095872
-
A microdevice for multiplexed detection of T-cell-secreted cytokines
-
78 Zhu, H., et al. A microdevice for multiplexed detection of T-cell-secreted cytokines. Lab Chip 8 (2008), 2197–2205.
-
(2008)
Lab Chip
, vol.8
, pp. 2197-2205
-
-
Zhu, H.1
-
79
-
-
84880291819
-
Surface-micromachined microfiltration membranes for efficient isolation and functional immunophenotyping of subpopulations of immune cells
-
79 Chen, W., et al. Surface-micromachined microfiltration membranes for efficient isolation and functional immunophenotyping of subpopulations of immune cells. Adv. Healthc. Mater. 2 (2013), 965–975.
-
(2013)
Adv. Healthc. Mater.
, vol.2
, pp. 965-975
-
-
Chen, W.1
-
80
-
-
84930216531
-
Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines
-
80 Lee Szeto, G., et al. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines. Sci. Rep., 5, 2015, 10276.
-
(2015)
Sci. Rep.
, vol.5
, pp. 10276
-
-
Lee Szeto, G.1
-
81
-
-
84874309411
-
Isolation and retrieval of circulating tumor cells using centrifugal forces
-
81 Hou, H.W., et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep., 3, 2013, 1259.
-
(2013)
Sci. Rep.
, vol.3
, pp. 1259
-
-
Hou, H.W.1
-
82
-
-
84991521860
-
Toward the broad adoption of 3D tumor models in the cancer drug pipeline
-
82 Cox, M.C., et al. Toward the broad adoption of 3D tumor models in the cancer drug pipeline. ACS Biomater. Sci. Eng. 1 (2015), 877–894.
-
(2015)
ACS Biomater. Sci. Eng.
, vol.1
, pp. 877-894
-
-
Cox, M.C.1
-
83
-
-
84934942592
-
Microfluidic 3D cell culture: from tools to tissue models
-
83 van Duinen, V., et al. Microfluidic 3D cell culture: from tools to tissue models. Curr. Opin. Biotechnol. 35 (2015), 118–126.
-
(2015)
Curr. Opin. Biotechnol.
, vol.35
, pp. 118-126
-
-
van Duinen, V.1
-
84
-
-
84896284039
-
The present and future role of microfluidics in biomedical research
-
84 Sackmann, E.K., et al. The present and future role of microfluidics in biomedical research. Nature 507 (2014), 181–189.
-
(2014)
Nature
, vol.507
, pp. 181-189
-
-
Sackmann, E.K.1
-
85
-
-
84871485133
-
The initial hours of metastasis: the importance of cooperative host–tumor cell interactions during hematogenous dissemination
-
85 Labelle, M., Hynes, R.O., The initial hours of metastasis: the importance of cooperative host–tumor cell interactions during hematogenous dissemination. Cancer Discov. 2 (2012), 1091–1099.
-
(2012)
Cancer Discov.
, vol.2
, pp. 1091-1099
-
-
Labelle, M.1
Hynes, R.O.2
-
86
-
-
84874688993
-
Chip in a lab: microfluidics for next generation life science research
-
86 Streets, A.M., Huang, Y., Chip in a lab: microfluidics for next generation life science research. Biomicrofluidics, 7, 2013, 11302.
-
(2013)
Biomicrofluidics
, vol.7
, pp. 11302
-
-
Streets, A.M.1
Huang, Y.2
-
87
-
-
80054725681
-
Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs
-
87 Chen, Q., et al. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20 (2011), 538–549.
-
(2011)
Cancer Cell
, vol.20
, pp. 538-549
-
-
Chen, Q.1
-
89
-
-
84919659079
-
Lessons from patient-derived xenografts for better in vitro modeling of human cancer
-
89 Choi, S.Y.C., et al. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv. Drug Deliv. Rev. 79–80 (2014), 222–237.
-
(2014)
Adv. Drug Deliv. Rev.
, vol.79-80
, pp. 222-237
-
-
Choi, S.Y.C.1
-
90
-
-
79751468871
-
Zebrafish models for cancer
-
90 Liu, S., Leach, S.D., Zebrafish models for cancer. Annu. Rev. Pathol. 6 (2011), 71–93.
-
(2011)
Annu. Rev. Pathol.
, vol.6
, pp. 71-93
-
-
Liu, S.1
Leach, S.D.2
-
91
-
-
84865358470
-
Zebrafish xenografts as a tool for in vivo studies on human cancer
-
91 Konantz, M., et al. Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann. N. Y. Acad. Sci. 1266 (2012), 124–137.
-
(2012)
Ann. N. Y. Acad. Sci.
, vol.1266
, pp. 124-137
-
-
Konantz, M.1
-
92
-
-
56749097952
-
Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis
-
92 Deryugina, E.I., Quigley, J.P., Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Cell 130 (2009), 1119–1130.
-
(2009)
Cell
, vol.130
, pp. 1119-1130
-
-
Deryugina, E.I.1
Quigley, J.P.2
-
93
-
-
84922581123
-
Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis
-
93 Leong, H.S., et al. Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep. 8 (2014), 1558–1570.
-
(2014)
Cell Rep.
, vol.8
, pp. 1558-1570
-
-
Leong, H.S.1
-
94
-
-
84919488684
-
Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer drug development
-
94 Unger, C., et al. Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer drug development. Adv. Drug Deliv. Rev. 79–80 (2014), 50–67.
-
(2014)
Adv. Drug Deliv. Rev.
, vol.79-80
, pp. 50-67
-
-
Unger, C.1
-
95
-
-
68749109536
-
A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth
-
95 Qian, B., et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE, 4, 2009, e6562.
-
(2009)
PLoS ONE
, vol.4
, pp. e6562
-
-
Qian, B.1
-
96
-
-
84873248433
-
In vitro three-dimensional (3D) models in cancer research: an update
-
96 Kimlin, L.C., et al. In vitro three-dimensional (3D) models in cancer research: an update. Mol. Carcinog. 52 (2013), 167–182.
-
(2013)
Mol. Carcinog.
, vol.52
, pp. 167-182
-
-
Kimlin, L.C.1
-
97
-
-
84878029262
-
Microfluidic platforms for mechanobiology
-
97 Polacheck, W.J., et al. Microfluidic platforms for mechanobiology. Lab Chip 13 (2013), 2252–2267.
-
(2013)
Lab Chip
, vol.13
, pp. 2252-2267
-
-
Polacheck, W.J.1
-
98
-
-
34547581758
-
An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture
-
98 Lee, P.J., et al. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 97 (2007), 1340–1346.
-
(2007)
Biotechnol. Bioeng.
, vol.97
, pp. 1340-1346
-
-
Lee, P.J.1
-
99
-
-
84879892445
-
Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts
-
99 Shi, M., et al. Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts. Lab Chip 13 (2013), 3008–3021.
-
(2013)
Lab Chip
, vol.13
, pp. 3008-3021
-
-
Shi, M.1
-
100
-
-
77950671531
-
Micropatterned 3-dimensional hydrogel system to study human endothelial–mesenchymal stem cell interactions
-
100 Trkov, S., et al. Micropatterned 3-dimensional hydrogel system to study human endothelial–mesenchymal stem cell interactions. J. Tissue Eng. Regen. Med. 4 (2011), 205–215.
-
(2011)
J. Tissue Eng. Regen. Med.
, vol.4
, pp. 205-215
-
-
Trkov, S.1
-
101
-
-
79951474125
-
Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells
-
101 Jang, K-J., et al. Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr. Biol. 3 (2011), 134–141.
-
(2011)
Integr. Biol.
, vol.3
, pp. 134-141
-
-
Jang, K.-J.1
-
102
-
-
81355146382
-
From 3D cell culture to organs-on-chips
-
102 Huh, D., et al. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21 (2011), 745–754.
-
(2011)
Trends Cell Biol.
, vol.21
, pp. 745-754
-
-
Huh, D.1
-
103
-
-
79960608623
-
Interstitial flow influences direction of tumor cell migration through competing mechanisms
-
103 Polacheck, W.J., et al. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 11115–11120.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 11115-11120
-
-
Polacheck, W.J.1
-
104
-
-
84879608414
-
Extracellular matrix heterogeneity regulates three-dimensional morphologies of breast adenocarcinoma cell invasion
-
104 Shin, Y., et al. Extracellular matrix heterogeneity regulates three-dimensional morphologies of breast adenocarcinoma cell invasion. Adv. Healthc. Mater. 2 (2013), 790–794.
-
(2013)
Adv. Healthc. Mater.
, vol.2
, pp. 790-794
-
-
Shin, Y.1
-
105
-
-
58249092233
-
Neurite growth in 3D collagen gels with gradients of mechanical properties
-
105 Sundararaghavan, H.G., et al. Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol. Bioeng. 102 (2009), 632–643.
-
(2009)
Biotechnol. Bioeng.
, vol.102
, pp. 632-643
-
-
Sundararaghavan, H.G.1
-
106
-
-
67651172783
-
Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices
-
106 Sung, K.E., et al. Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices. Biomaterials 30 (2009), 4833–4841.
-
(2009)
Biomaterials
, vol.30
, pp. 4833-4841
-
-
Sung, K.E.1
-
107
-
-
79953731991
-
Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects
-
107 Sung, K.E., et al. Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr. Biol. (Camb.) 3 (2011), 439–450.
-
(2011)
Integr. Biol. (Camb.)
, vol.3
, pp. 439-450
-
-
Sung, K.E.1
-
108
-
-
84938352078
-
Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure
-
108 Bischel, L.L., et al. Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure. BMC Cancer 15 (2015), 1–10.
-
(2015)
BMC Cancer
, vol.15
, pp. 1-10
-
-
Bischel, L.L.1
-
109
-
-
84908122789
-
A microfluidic device to study cancer metastasis under chronic and intermittent hypoxia
-
109 Acosta, M.A., et al. A microfluidic device to study cancer metastasis under chronic and intermittent hypoxia. Biomicrofluidics, 8, 2014, 054117.
-
(2014)
Biomicrofluidics
, vol.8
, pp. 054117
-
-
Acosta, M.A.1
-
110
-
-
34047246527
-
Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors
-
110 Wyckoff, J.B., et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67 (2007), 2649–2656.
-
(2007)
Cancer Res.
, vol.67
, pp. 2649-2656
-
-
Wyckoff, J.B.1
-
111
-
-
84929175779
-
An in vitro model of the tumor–lymphatic microenvironment with simultaneous transendothelial and luminal flows reveals mechanisms of flow enhanced invasion
-
111 Pisano, M., et al. An in vitro model of the tumor–lymphatic microenvironment with simultaneous transendothelial and luminal flows reveals mechanisms of flow enhanced invasion. Integr. Biol. 7 (2015), 525–533.
-
(2015)
Integr. Biol.
, vol.7
, pp. 525-533
-
-
Pisano, M.1
-
112
-
-
84908090381
-
Cooperative actions of p21WAF1 and p53 induce Slug protein degradation and suppress cell invasion
-
112 Kim, J., et al. Cooperative actions of p21WAF1 and p53 induce Slug protein degradation and suppress cell invasion. EMBO Rep. 15 (2014), 1062–1068.
-
(2014)
EMBO Rep.
, vol.15
, pp. 1062-1068
-
-
Kim, J.1
-
113
-
-
34547105289
-
Multi-step microfluidic device for studying cancer metastasis
-
113 Chaw, K.C., et al. Multi-step microfluidic device for studying cancer metastasis. Lab Chip 7 (2007), 1041–1047.
-
(2007)
Lab Chip
, vol.7
, pp. 1041-1047
-
-
Chaw, K.C.1
-
114
-
-
4344589420
-
Rapid apoptosis in the pulmonary vasculature distinguishes non-metastatic from metastatic melanoma cells
-
114 Kim, J., et al. Rapid apoptosis in the pulmonary vasculature distinguishes non-metastatic from metastatic melanoma cells. Cancer Lett. 213 (2004), 203–212.
-
(2004)
Cancer Lett.
, vol.213
, pp. 203-212
-
-
Kim, J.1
-
115
-
-
0035138203
-
Apoptosis: an early event in metastatic inefficiency apoptosis
-
115 Wong, C.W., et al. Apoptosis: an early event in metastatic inefficiency apoptosis. Cancer Res. 61 (2001), 333–338.
-
(2001)
Cancer Res.
, vol.61
, pp. 333-338
-
-
Wong, C.W.1
|