메뉴 건너뛰기




Volumn 2, Issue 1, 2016, Pages 6-19

Microfluidics: A New Tool for Modeling Cancer–Immune Interactions

Author keywords

drug screening; immunotherapy; metastatic cancer; microfluidics

Indexed keywords

CANCER CELL; CANCER IMMUNOLOGY; CANCER IMMUNOTHERAPY; CANCER RESEARCH; CELL INTERACTION; EXPERIMENTAL MODEL; HUMAN; IMMUNOCOMPETENT CELL; IN VITRO STUDY; IN VIVO STUDY; METASTASIS; MICROFLUIDICS; MOLECULAR INTERACTION; NONHUMAN; PRIORITY JOURNAL; REVIEW; TUMOR MICROENVIRONMENT;

EID: 84988736194     PISSN: 24058033     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trecan.2015.12.003     Document Type: Review
Times cited : (168)

References (115)
  • 1
    • 79961183237 scopus 로고    scopus 로고
    • Immunotherapy for metastatic solid cancers
    • 1 Turcotte, S., Rosenberg, S.A., Immunotherapy for metastatic solid cancers. Adv. Surg. 45 (2011), 341–360.
    • (2011) Adv. Surg. , vol.45 , pp. 341-360
    • Turcotte, S.1    Rosenberg, S.A.2
  • 2
    • 84858766182 scopus 로고    scopus 로고
    • The blockade of immune checkpoints in cancer immunotherapy
    • 2 Pardoll, D.M., The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12 (2012), 252–264.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 252-264
    • Pardoll, D.M.1
  • 3
    • 84655164923 scopus 로고    scopus 로고
    • Experimental mouse tumour models: what can be learnt about human cancer immunology?
    • 3 Dranoff, G., Experimental mouse tumour models: what can be learnt about human cancer immunology?. Nat. Rev. Immunol. 12 (2011), 61–66.
    • (2011) Nat. Rev. Immunol. , vol.12 , pp. 61-66
    • Dranoff, G.1
  • 4
    • 33747117373 scopus 로고    scopus 로고
    • The origins and the future of microfluidics
    • 4 Whitesides, G.M., The origins and the future of microfluidics. Nature 442 (2006), 368–373.
    • (2006) Nature , vol.442 , pp. 368-373
    • Whitesides, G.M.1
  • 5
    • 78149268198 scopus 로고    scopus 로고
    • Biological applications of microfluidic gradient devices
    • 5 Kim, S., et al. Biological applications of microfluidic gradient devices. Integr. Biol., 2, 2010, 584.
    • (2010) Integr. Biol. , vol.2 , pp. 584
    • Kim, S.1
  • 6
    • 84889672208 scopus 로고    scopus 로고
    • A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis
    • 6 Patra, B., et al. A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis. Biomicrofluidics, 7, 2013, 054114.
    • (2013) Biomicrofluidics , vol.7 , pp. 054114
    • Patra, B.1
  • 7
    • 84893487351 scopus 로고    scopus 로고
    • Implementation of microfluidic sandwich ELISA for superior detection of plant pathogens
    • 7 Thaitrong, N., et al. Implementation of microfluidic sandwich ELISA for superior detection of plant pathogens. PLoS ONE, 8, 2013, e83231.
    • (2013) PLoS ONE , vol.8 , pp. e83231
    • Thaitrong, N.1
  • 9
    • 69549135426 scopus 로고    scopus 로고
    • Biological implications of polydimethylsiloxane-based microfluidic cell culture
    • 9 Regehr, K.J., et al. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9 (2009), 2132–2139.
    • (2009) Lab Chip , vol.9 , pp. 2132-2139
    • Regehr, K.J.1
  • 10
    • 80053591722 scopus 로고    scopus 로고
    • High-resolution multiphoton imaging of tumors in vivo
    • 10 Wyckoff, J., et al. High-resolution multiphoton imaging of tumors in vivo. Cold Spring Harb. Protoc. 2011 (2011), 1167–1184.
    • (2011) Cold Spring Harb. Protoc. , vol.2011 , pp. 1167-1184
    • Wyckoff, J.1
  • 11
    • 34648832906 scopus 로고    scopus 로고
    • Illuminating the metastatic process
    • 11 Sahai, E., Illuminating the metastatic process. Nat. Rev. Cancer 7 (2007), 737–749.
    • (2007) Nat. Rev. Cancer , vol.7 , pp. 737-749
    • Sahai, E.1
  • 12
    • 0036674501 scopus 로고    scopus 로고
    • Dissemination and growth of cancer cells in metastatic sites
    • 12 Chambers, A.F., et al. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2 (2002), 563–572.
    • (2002) Nat. Rev. Cancer , vol.2 , pp. 563-572
    • Chambers, A.F.1
  • 13
    • 84906659320 scopus 로고    scopus 로고
    • A spatiotemporally defined in vitro microenvironment for controllable signal delivery and drug screening
    • 13 Kuo, C.T., et al. A spatiotemporally defined in vitro microenvironment for controllable signal delivery and drug screening. Analyst 139 (2014), 4846–4854.
    • (2014) Analyst , vol.139 , pp. 4846-4854
    • Kuo, C.T.1
  • 14
    • 84890148410 scopus 로고    scopus 로고
    • Modeling of cancer metastasis and drug resistance via biomimetic nano-cilia and microfluidics
    • 14 Kuo, C.T., et al. Modeling of cancer metastasis and drug resistance via biomimetic nano-cilia and microfluidics. Biomaterials 35 (2014), 1562–1571.
    • (2014) Biomaterials , vol.35 , pp. 1562-1571
    • Kuo, C.T.1
  • 15
    • 66849138510 scopus 로고    scopus 로고
    • Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells
    • 15 Song, J.W., et al. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS ONE, 4, 2009, e5756.
    • (2009) PLoS ONE , vol.4 , pp. e5756
    • Song, J.W.1
  • 16
    • 80054990773 scopus 로고    scopus 로고
    • Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis
    • 16 Shin, M.K., et al. Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis. Lab Chip 11 (2011), 3880–3887.
    • (2011) Lab Chip , vol.11 , pp. 3880-3887
    • Shin, M.K.1
  • 17
    • 84864192564 scopus 로고    scopus 로고
    • A microfluidic-based device for study of transendothelial invasion of tumor aggregates in realtime
    • 17 Zhang, Q., et al. A microfluidic-based device for study of transendothelial invasion of tumor aggregates in realtime. Lab Chip, 12, 2012, 2837.
    • (2012) Lab Chip , vol.12 , pp. 2837
    • Zhang, Q.1
  • 18
    • 84865293346 scopus 로고    scopus 로고
    • Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function
    • 18 Zervantonakis, I.K., et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 13515–13520.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 13515-13520
    • Zervantonakis, I.K.1
  • 19
    • 84930911191 scopus 로고    scopus 로고
    • A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasation
    • 19 Lee, H., et al. A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasation. Biomicrofluidics, 8, 2014, 054102.
    • (2014) Biomicrofluidics , vol.8 , pp. 054102
    • Lee, H.1
  • 20
    • 84874223528 scopus 로고    scopus 로고
    • In vitro model of tumor cell extravasation
    • 20 Jeon, J.S., et al. In vitro model of tumor cell extravasation. PLoS ONE, 8, 2013, e56910.
    • (2013) PLoS ONE , vol.8 , pp. e56910
    • Jeon, J.S.1
  • 21
    • 84884688355 scopus 로고    scopus 로고
    • Mechanisms of tumor cell extravasation in an in vitro microvascular network platform
    • 21 Chen, M.B., et al. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr. Biol. (Camb.) 5 (2013), 1262–1271.
    • (2013) Integr. Biol. (Camb.) , vol.5 , pp. 1262-1271
    • Chen, M.B.1
  • 22
    • 84938900912 scopus 로고    scopus 로고
    • A microfluidic model for organ-specific extravasation of circulating tumor cells
    • 22 Riahi, R., et al. A microfluidic model for organ-specific extravasation of circulating tumor cells. Biomicrofluidics, 8, 2014, 024103.
    • (2014) Biomicrofluidics , vol.8 , pp. 024103
    • Riahi, R.1
  • 23
    • 84901622136 scopus 로고    scopus 로고
    • A three-dimensional in vitro model of tumor cell intravasation
    • 23 Ehsan, S.M., et al. A three-dimensional in vitro model of tumor cell intravasation. Integr. Biol. (Camb.) 6 (2014), 603–610.
    • (2014) Integr. Biol. (Camb.) , vol.6 , pp. 603-610
    • Ehsan, S.M.1
  • 24
    • 84880332704 scopus 로고    scopus 로고
    • The perivascular niche regulates breast tumour dormancy
    • 24 Ghajar, C.M., et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15 (2013), 807–817.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 807-817
    • Ghajar, C.M.1
  • 25
    • 84903752926 scopus 로고    scopus 로고
    • Control of perfusable microvascular network morphology using a multiculture microfluidic system
    • 25 Whisler, J.A., et al. Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng. Part C Methods 20 (2014), 543–552.
    • (2014) Tissue Eng. Part C Methods , vol.20 , pp. 543-552
    • Whisler, J.A.1
  • 26
    • 84876704168 scopus 로고    scopus 로고
    • Engineering of functional, perfusable 3D microvascular networks on a chip
    • 26 Kim, S., et al. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13 (2013), 1489–1500.
    • (2013) Lab Chip , vol.13 , pp. 1489-1500
    • Kim, S.1
  • 27
    • 84899125649 scopus 로고    scopus 로고
    • Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems
    • 27 Jeon, J.S., et al. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integr. Biol. (Camb.) 6 (2014), 555–563.
    • (2014) Integr. Biol. (Camb.) , vol.6 , pp. 555-563
    • Jeon, J.S.1
  • 28
    • 84902080037 scopus 로고    scopus 로고
    • In vitro models of the metastatic cascade: from local invasion to extravasation
    • 28 Bersini, S., et al. In vitro models of the metastatic cascade: from local invasion to extravasation. Drug Discov. Today 19 (2014), 735–742.
    • (2014) Drug Discov. Today , vol.19 , pp. 735-742
    • Bersini, S.1
  • 29
    • 63049104211 scopus 로고    scopus 로고
    • Microenvironmental regulation of metastasis
    • 29 Joyce, J.A., Pollard, J.W., Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9 (2009), 239–252.
    • (2009) Nat. Rev. Cancer , vol.9 , pp. 239-252
    • Joyce, J.A.1    Pollard, J.W.2
  • 30
    • 53949093698 scopus 로고    scopus 로고
    • Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization
    • 30 Fitzgerald, D.P., et al. Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin. Exp. Metastasis 25 (2008), 799–810.
    • (2008) Clin. Exp. Metastasis , vol.25 , pp. 799-810
    • Fitzgerald, D.P.1
  • 31
    • 0038481970 scopus 로고    scopus 로고
    • The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited
    • 31 Fidler, I.J., The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 3 (2003), 453–458.
    • (2003) Nat. Rev. Cancer , vol.3 , pp. 453-458
    • Fidler, I.J.1
  • 32
    • 84891742591 scopus 로고    scopus 로고
    • A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone
    • 32 Bersini, S., et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35 (2014), 2454–2461.
    • (2014) Biomaterials , vol.35 , pp. 2454-2461
    • Bersini, S.1
  • 33
    • 84921913471 scopus 로고    scopus 로고
    • Engineered in vitro disease models
    • 33 Benam, K.H., et al. Engineered in vitro disease models. Annu. Rev. Pathol. Mech. Dis. 10 (2015), 195–262.
    • (2015) Annu. Rev. Pathol. Mech. Dis. , vol.10 , pp. 195-262
    • Benam, K.H.1
  • 34
    • 77954038080 scopus 로고    scopus 로고
    • Reconstituting organ-level lung functions on a chip
    • 34 Huh, D., et al. Reconstituting organ-level lung functions on a chip. Science 328 (2010), 1662–1668.
    • (2010) Science , vol.328 , pp. 1662-1668
    • Huh, D.1
  • 35
    • 84891128326 scopus 로고    scopus 로고
    • The importance of animal models in tumor immunity and immunotherapy
    • 35 Budhu, S., et al. The importance of animal models in tumor immunity and immunotherapy. Curr. Opin. Genet. Dev. 24 (2014), 46–51.
    • (2014) Curr. Opin. Genet. Dev. , vol.24 , pp. 46-51
    • Budhu, S.1
  • 36
    • 84890473452 scopus 로고    scopus 로고
    • Bacteriology: a caring culture
    • 36 DeWeerdt, S., Bacteriology: a caring culture. Nature 504 (2013), S4–S5.
    • (2013) Nature , vol.504 , pp. S4-S5
    • DeWeerdt, S.1
  • 37
    • 84923027892 scopus 로고    scopus 로고
    • Immune cell promotion of metastasis
    • 37 Kitamura, T., et al. Immune cell promotion of metastasis. Nat. Rev. Immunol. 15 (2015), 73–86.
    • (2015) Nat. Rev. Immunol. , vol.15 , pp. 73-86
    • Kitamura, T.1
  • 38
    • 55549130240 scopus 로고    scopus 로고
    • Specificity in cancer immunotherapy
    • 38 Schietinger, A., et al. Specificity in cancer immunotherapy. Semin. Immunol. 20 (2008), 276–285.
    • (2008) Semin. Immunol. , vol.20 , pp. 276-285
    • Schietinger, A.1
  • 39
    • 77950950894 scopus 로고    scopus 로고
    • Macrophage diversity enhances tumor progression and metastasis
    • 39 Qian, B-Z., Pollard, J.W., Macrophage diversity enhances tumor progression and metastasis. Cell 141 (2010), 39–51.
    • (2010) Cell , vol.141 , pp. 39-51
    • Qian, B.-Z.1    Pollard, J.W.2
  • 40
    • 84858760109 scopus 로고    scopus 로고
    • Combining immunotherapy and targeted therapies in cancer treatment
    • 40 Vanneman, M., Dranoff, G., Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 12 (2012), 237–251.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 237-251
    • Vanneman, M.1    Dranoff, G.2
  • 41
    • 84876424760 scopus 로고    scopus 로고
    • Macrophage regulation of tumor responses to anticancer therapies
    • 41 De Palma, M., Lewis, C.E., Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23 (2013), 277–286.
    • (2013) Cancer Cell , vol.23 , pp. 277-286
    • De Palma, M.1    Lewis, C.E.2
  • 42
    • 84941779973 scopus 로고    scopus 로고
    • Perivascular M2 macrophages stimulate tumor relapse after chemotherapy
    • 42 Hughes, R., et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 75 (2015), 3479–3491.
    • (2015) Cancer Res. , vol.75 , pp. 3479-3491
    • Hughes, R.1
  • 43
    • 7044269092 scopus 로고    scopus 로고
    • Chemokines: role in inflammation and immune surveillance
    • 43 Moser, B., Willimann, K., Chemokines: role in inflammation and immune surveillance. Ann. Rheum. Dis. 63:Suppl. 2 (2004), ii84–ii89.
    • (2004) Ann. Rheum. Dis. , vol.63 , pp. ii84-ii89
    • Moser, B.1    Willimann, K.2
  • 44
    • 84924225988 scopus 로고    scopus 로고
    • Infection and immunity on a chip: a compartmentalised microfluidic platform to monitor immune cell behaviour in real time
    • 44 Gopalakrishnan, N., et al. Infection and immunity on a chip: a compartmentalised microfluidic platform to monitor immune cell behaviour in real time. Lab Chip 15 (2015), 1481–1487.
    • (2015) Lab Chip , vol.15 , pp. 1481-1487
    • Gopalakrishnan, N.1
  • 45
    • 84895548187 scopus 로고    scopus 로고
    • Microfluidic single-cell analysis for systems immunology
    • 45 Junkin, M., Tay, S., Microfluidic single-cell analysis for systems immunology. Lab Chip 14 (2014), 1246–1260.
    • (2014) Lab Chip , vol.14 , pp. 1246-1260
    • Junkin, M.1    Tay, S.2
  • 46
    • 84919631446 scopus 로고    scopus 로고
    • “In vitro” 3D models of tumor–immune system interaction
    • 46 Hirt, C., et al. “In vitro” 3D models of tumor–immune system interaction. Adv. Drug Deliv. Rev. 79–80 (2014), 145–154.
    • (2014) Adv. Drug Deliv. Rev. , vol.79-80 , pp. 145-154
    • Hirt, C.1
  • 47
    • 48149100933 scopus 로고    scopus 로고
    • New dimensions in tumor immunology: what does 3D culture reveal?
    • 47 Feder-Mengus, C., et al. New dimensions in tumor immunology: what does 3D culture reveal?. Trends Mol. Med. 14 (2008), 333–340.
    • (2008) Trends Mol. Med. , vol.14 , pp. 333-340
    • Feder-Mengus, C.1
  • 48
    • 84923828979 scopus 로고    scopus 로고
    • Cancer-driven dynamics of immune cells in a microfluidic environment
    • 48 Agliari, E., et al. Cancer-driven dynamics of immune cells in a microfluidic environment. Sci. Rep., 4, 2014, 6639.
    • (2014) Sci. Rep. , vol.4 , pp. 6639
    • Agliari, E.1
  • 49
    • 84870895812 scopus 로고    scopus 로고
    • Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment
    • 49 Businaro, L., et al. Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. Lab Chip 13 (2012), 229–239.
    • (2012) Lab Chip , vol.13 , pp. 229-239
    • Businaro, L.1
  • 50
    • 84902578200 scopus 로고    scopus 로고
    • A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells
    • 50 Mattei, F., et al. A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells. J. Immunotoxicol. 11 (2014), 337–346.
    • (2014) J. Immunotoxicol. , vol.11 , pp. 337-346
    • Mattei, F.1
  • 51
    • 84863027093 scopus 로고    scopus 로고
    • The migration speed of cancer cells influenced by macrophages and myofibroblasts co-cultured in a microfluidic chip
    • 51 Hsu, T-H., et al. The migration speed of cancer cells influenced by macrophages and myofibroblasts co-cultured in a microfluidic chip. Integr. Biol., 4, 2012, 177.
    • (2012) Integr. Biol. , vol.4 , pp. 177
    • Hsu, T.-H.1
  • 52
    • 67649364409 scopus 로고    scopus 로고
    • Engineering microscale cellular niches for three-dimensional multicellular co-cultures
    • 52 Huang, C.P., et al. Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9 (2009), 1740–1748.
    • (2009) Lab Chip , vol.9 , pp. 1740-1748
    • Huang, C.P.1
  • 53
    • 30144443269 scopus 로고    scopus 로고
    • Paradoxical roles of the immune system during cancer development
    • 53 de Visser, K.E., et al. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 6 (2006), 24–37.
    • (2006) Nat. Rev. Cancer , vol.6 , pp. 24-37
    • de Visser, K.E.1
  • 54
    • 84864654660 scopus 로고    scopus 로고
    • Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape
    • 54 Bidwell, B.N., et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat. Med. 18 (2012), 1224–1231.
    • (2012) Nat. Med. , vol.18 , pp. 1224-1231
    • Bidwell, B.N.1
  • 55
    • 77953225810 scopus 로고    scopus 로고
    • Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma
    • 55 Eyles, J., et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Invest. 120 (2010), 2030–2039.
    • (2010) J. Clin. Invest. , vol.120 , pp. 2030-2039
    • Eyles, J.1
  • 56
    • 84897954522 scopus 로고    scopus 로고
    • The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells
    • 56 Paolino, M., et al. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 507 (2014), 508–512.
    • (2014) Nature , vol.507 , pp. 508-512
    • Paolino, M.1
  • 57
    • 80052566377 scopus 로고    scopus 로고
    • Tumor entrained neutrophils inhibit seeding in the premetastatic lung
    • 57 Granot, Z., et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20 (2011), 300–314.
    • (2011) Cancer Cell , vol.20 , pp. 300-314
    • Granot, Z.1
  • 58
    • 0022357902 scopus 로고
    • Macrophages and metastasis – a biological approach to cancer therapy
    • 58 Fidler, I.J., Macrophages and metastasis – a biological approach to cancer therapy. Cancer Res. 45 (1985), 4714–4726.
    • (1985) Cancer Res. , vol.45 , pp. 4714-4726
    • Fidler, I.J.1
  • 59
    • 84860135764 scopus 로고    scopus 로고
    • Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma
    • 59 Edris, B., et al. Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 6656–6661.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 6656-6661
    • Edris, B.1
  • 60
    • 84905014848 scopus 로고    scopus 로고
    • Platelets guide the formation of early metastatic niches
    • 60 Labelle, M., et al. Platelets guide the formation of early metastatic niches. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), E3053–E3061.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E3053-E3061
    • Labelle, M.1
  • 61
    • 81255205399 scopus 로고    scopus 로고
    • Direct signaling between platelets and cancer cells induces an epithelial–mesenchymal-like transition and promotes metastasis
    • 61 Labelle, M., et al. Direct signaling between platelets and cancer cells induces an epithelial–mesenchymal-like transition and promotes metastasis. Cancer Cell 20 (2011), 576–590.
    • (2011) Cancer Cell , vol.20 , pp. 576-590
    • Labelle, M.1
  • 62
    • 84947763610 scopus 로고    scopus 로고
    • Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1
    • 62 Vacchelli, E., et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350 (2015), 972–978.
    • (2015) Science , vol.350 , pp. 972-978
    • Vacchelli, E.1
  • 63
    • 0034194578 scopus 로고    scopus 로고
    • A critical step in metastasis: in vivo analysis of intravasation at the primary tumor
    • 63 Wyckoff, J.B., et al. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 60 (2000), 2504–2511.
    • (2000) Cancer Res. , vol.60 , pp. 2504-2511
    • Wyckoff, J.B.1
  • 64
    • 84947788223 scopus 로고    scopus 로고
    • A bladder cancer microenvironment simulation system based on a microfluidic co-culture model
    • 64 Liu, P.F., et al. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Oncotarget 6 (2015), 37695–37705.
    • (2015) Oncotarget , vol.6 , pp. 37695-37705
    • Liu, P.F.1
  • 65
    • 84890743170 scopus 로고    scopus 로고
    • Emerging microfluidic tools for functional cellular immunophenotyping: a new potential paradigm for immune status characterization
    • 65 Chen, W., et al. Emerging microfluidic tools for functional cellular immunophenotyping: a new potential paradigm for immune status characterization. Front. Oncol., 3, 2013, 98.
    • (2013) Front. Oncol. , vol.3 , pp. 98
    • Chen, W.1
  • 66
    • 84921689178 scopus 로고    scopus 로고
    • In vitro micro-physiological models for translational immunology
    • 66 Ramadan, Q., Gijs, M.A.M., In vitro micro-physiological models for translational immunology. Lab Chip 15 (2015), 614–636.
    • (2015) Lab Chip , vol.15 , pp. 614-636
    • Ramadan, Q.1    Gijs, M.A.M.2
  • 67
    • 33750476278 scopus 로고    scopus 로고
    • T cell chemotaxis in a simple microfluidic device
    • 67 Lin, F., Butcher, E.C., T cell chemotaxis in a simple microfluidic device. Lab Chip 6 (2006), 1462–1469.
    • (2006) Lab Chip , vol.6 , pp. 1462-1469
    • Lin, F.1    Butcher, E.C.2
  • 68
    • 84930000528 scopus 로고    scopus 로고
    • Neutrophil migration under spatially-varying chemoattractant gradient profiles
    • 68 Halilovic, I., et al. Neutrophil migration under spatially-varying chemoattractant gradient profiles. Biomed. Microdevices 17 (2015), 1–7.
    • (2015) Biomed. Microdevices , vol.17 , pp. 1-7
    • Halilovic, I.1
  • 69
    • 84865146944 scopus 로고    scopus 로고
    • ‘Slings’ enable neutrophil rolling at high shear
    • 69 Sundd, P., et al. ‘Slings’ enable neutrophil rolling at high shear. Nature 488 (2012), 399–403.
    • (2012) Nature , vol.488 , pp. 399-403
    • Sundd, P.1
  • 70
    • 84873707878 scopus 로고    scopus 로고
    • A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils
    • 70 Han, S., et al. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Lab Chip, 12, 2012, 3861.
    • (2012) Lab Chip , vol.12 , pp. 3861
    • Han, S.1
  • 71
    • 84864475933 scopus 로고    scopus 로고
    • Inflammatory mimetic microfluidic chip by immobilization of cell adhesion molecules for T cell adhesion
    • 71 Kim, S.K., et al. Inflammatory mimetic microfluidic chip by immobilization of cell adhesion molecules for T cell adhesion. Analyst, 137, 2012, 4062.
    • (2012) Analyst , vol.137 , pp. 4062
    • Kim, S.K.1
  • 72
    • 84883418408 scopus 로고    scopus 로고
    • A standalone perfusion platform for drug testing and target validation in micro-vessel networks
    • 72 Zhang, B., et al. A standalone perfusion platform for drug testing and target validation in micro-vessel networks. Biomicrofluidics 7 (2013), 1–13.
    • (2013) Biomicrofluidics , vol.7 , pp. 1-13
    • Zhang, B.1
  • 73
    • 79953286432 scopus 로고    scopus 로고
    • A microfluidic membrane device to mimic critical components of the vascular microenvironment
    • 73 Srigunapalan, S., et al. A microfluidic membrane device to mimic critical components of the vascular microenvironment. Biomicrofluidics 5 (2011), 1–9.
    • (2011) Biomicrofluidics , vol.5 , pp. 1-9
    • Srigunapalan, S.1
  • 74
    • 84907818816 scopus 로고    scopus 로고
    • Human airway musculature on a chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation
    • 74 Nesmith, A.P., et al. Human airway musculature on a chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation. Lab Chip 14 (2014), 3925–3936.
    • (2014) Lab Chip , vol.14 , pp. 3925-3936
    • Nesmith, A.P.1
  • 75
    • 84862207235 scopus 로고    scopus 로고
    • Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow
    • 75 Kim, H.J., et al. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip, 12, 2012, 2165.
    • (2012) Lab Chip , vol.12 , pp. 2165
    • Kim, H.J.1
  • 76
    • 79958122357 scopus 로고    scopus 로고
    • A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells
    • 76 Ma, C., et al. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat. Med. 17 (2011), 738–743.
    • (2011) Nat. Med. , vol.17 , pp. 738-743
    • Ma, C.1
  • 77
    • 77956430960 scopus 로고    scopus 로고
    • Clinical microfluidics for neutrophil genomics and proteomics
    • 77 Kotz, K.T., et al. Clinical microfluidics for neutrophil genomics and proteomics. Nat. Med. 16 (2010), 1042–1047.
    • (2010) Nat. Med. , vol.16 , pp. 1042-1047
    • Kotz, K.T.1
  • 78
    • 56549095872 scopus 로고    scopus 로고
    • A microdevice for multiplexed detection of T-cell-secreted cytokines
    • 78 Zhu, H., et al. A microdevice for multiplexed detection of T-cell-secreted cytokines. Lab Chip 8 (2008), 2197–2205.
    • (2008) Lab Chip , vol.8 , pp. 2197-2205
    • Zhu, H.1
  • 79
    • 84880291819 scopus 로고    scopus 로고
    • Surface-micromachined microfiltration membranes for efficient isolation and functional immunophenotyping of subpopulations of immune cells
    • 79 Chen, W., et al. Surface-micromachined microfiltration membranes for efficient isolation and functional immunophenotyping of subpopulations of immune cells. Adv. Healthc. Mater. 2 (2013), 965–975.
    • (2013) Adv. Healthc. Mater. , vol.2 , pp. 965-975
    • Chen, W.1
  • 80
    • 84930216531 scopus 로고    scopus 로고
    • Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines
    • 80 Lee Szeto, G., et al. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines. Sci. Rep., 5, 2015, 10276.
    • (2015) Sci. Rep. , vol.5 , pp. 10276
    • Lee Szeto, G.1
  • 81
    • 84874309411 scopus 로고    scopus 로고
    • Isolation and retrieval of circulating tumor cells using centrifugal forces
    • 81 Hou, H.W., et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep., 3, 2013, 1259.
    • (2013) Sci. Rep. , vol.3 , pp. 1259
    • Hou, H.W.1
  • 82
    • 84991521860 scopus 로고    scopus 로고
    • Toward the broad adoption of 3D tumor models in the cancer drug pipeline
    • 82 Cox, M.C., et al. Toward the broad adoption of 3D tumor models in the cancer drug pipeline. ACS Biomater. Sci. Eng. 1 (2015), 877–894.
    • (2015) ACS Biomater. Sci. Eng. , vol.1 , pp. 877-894
    • Cox, M.C.1
  • 83
    • 84934942592 scopus 로고    scopus 로고
    • Microfluidic 3D cell culture: from tools to tissue models
    • 83 van Duinen, V., et al. Microfluidic 3D cell culture: from tools to tissue models. Curr. Opin. Biotechnol. 35 (2015), 118–126.
    • (2015) Curr. Opin. Biotechnol. , vol.35 , pp. 118-126
    • van Duinen, V.1
  • 84
    • 84896284039 scopus 로고    scopus 로고
    • The present and future role of microfluidics in biomedical research
    • 84 Sackmann, E.K., et al. The present and future role of microfluidics in biomedical research. Nature 507 (2014), 181–189.
    • (2014) Nature , vol.507 , pp. 181-189
    • Sackmann, E.K.1
  • 85
    • 84871485133 scopus 로고    scopus 로고
    • The initial hours of metastasis: the importance of cooperative host–tumor cell interactions during hematogenous dissemination
    • 85 Labelle, M., Hynes, R.O., The initial hours of metastasis: the importance of cooperative host–tumor cell interactions during hematogenous dissemination. Cancer Discov. 2 (2012), 1091–1099.
    • (2012) Cancer Discov. , vol.2 , pp. 1091-1099
    • Labelle, M.1    Hynes, R.O.2
  • 86
    • 84874688993 scopus 로고    scopus 로고
    • Chip in a lab: microfluidics for next generation life science research
    • 86 Streets, A.M., Huang, Y., Chip in a lab: microfluidics for next generation life science research. Biomicrofluidics, 7, 2013, 11302.
    • (2013) Biomicrofluidics , vol.7 , pp. 11302
    • Streets, A.M.1    Huang, Y.2
  • 87
    • 80054725681 scopus 로고    scopus 로고
    • Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs
    • 87 Chen, Q., et al. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20 (2011), 538–549.
    • (2011) Cancer Cell , vol.20 , pp. 538-549
    • Chen, Q.1
  • 89
    • 84919659079 scopus 로고    scopus 로고
    • Lessons from patient-derived xenografts for better in vitro modeling of human cancer
    • 89 Choi, S.Y.C., et al. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv. Drug Deliv. Rev. 79–80 (2014), 222–237.
    • (2014) Adv. Drug Deliv. Rev. , vol.79-80 , pp. 222-237
    • Choi, S.Y.C.1
  • 90
    • 79751468871 scopus 로고    scopus 로고
    • Zebrafish models for cancer
    • 90 Liu, S., Leach, S.D., Zebrafish models for cancer. Annu. Rev. Pathol. 6 (2011), 71–93.
    • (2011) Annu. Rev. Pathol. , vol.6 , pp. 71-93
    • Liu, S.1    Leach, S.D.2
  • 91
    • 84865358470 scopus 로고    scopus 로고
    • Zebrafish xenografts as a tool for in vivo studies on human cancer
    • 91 Konantz, M., et al. Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann. N. Y. Acad. Sci. 1266 (2012), 124–137.
    • (2012) Ann. N. Y. Acad. Sci. , vol.1266 , pp. 124-137
    • Konantz, M.1
  • 92
    • 56749097952 scopus 로고    scopus 로고
    • Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis
    • 92 Deryugina, E.I., Quigley, J.P., Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Cell 130 (2009), 1119–1130.
    • (2009) Cell , vol.130 , pp. 1119-1130
    • Deryugina, E.I.1    Quigley, J.P.2
  • 93
    • 84922581123 scopus 로고    scopus 로고
    • Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis
    • 93 Leong, H.S., et al. Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep. 8 (2014), 1558–1570.
    • (2014) Cell Rep. , vol.8 , pp. 1558-1570
    • Leong, H.S.1
  • 94
    • 84919488684 scopus 로고    scopus 로고
    • Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer drug development
    • 94 Unger, C., et al. Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer drug development. Adv. Drug Deliv. Rev. 79–80 (2014), 50–67.
    • (2014) Adv. Drug Deliv. Rev. , vol.79-80 , pp. 50-67
    • Unger, C.1
  • 95
    • 68749109536 scopus 로고    scopus 로고
    • A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth
    • 95 Qian, B., et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE, 4, 2009, e6562.
    • (2009) PLoS ONE , vol.4 , pp. e6562
    • Qian, B.1
  • 96
    • 84873248433 scopus 로고    scopus 로고
    • In vitro three-dimensional (3D) models in cancer research: an update
    • 96 Kimlin, L.C., et al. In vitro three-dimensional (3D) models in cancer research: an update. Mol. Carcinog. 52 (2013), 167–182.
    • (2013) Mol. Carcinog. , vol.52 , pp. 167-182
    • Kimlin, L.C.1
  • 97
    • 84878029262 scopus 로고    scopus 로고
    • Microfluidic platforms for mechanobiology
    • 97 Polacheck, W.J., et al. Microfluidic platforms for mechanobiology. Lab Chip 13 (2013), 2252–2267.
    • (2013) Lab Chip , vol.13 , pp. 2252-2267
    • Polacheck, W.J.1
  • 98
    • 34547581758 scopus 로고    scopus 로고
    • An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture
    • 98 Lee, P.J., et al. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 97 (2007), 1340–1346.
    • (2007) Biotechnol. Bioeng. , vol.97 , pp. 1340-1346
    • Lee, P.J.1
  • 99
    • 84879892445 scopus 로고    scopus 로고
    • Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts
    • 99 Shi, M., et al. Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts. Lab Chip 13 (2013), 3008–3021.
    • (2013) Lab Chip , vol.13 , pp. 3008-3021
    • Shi, M.1
  • 100
    • 77950671531 scopus 로고    scopus 로고
    • Micropatterned 3-dimensional hydrogel system to study human endothelial–mesenchymal stem cell interactions
    • 100 Trkov, S., et al. Micropatterned 3-dimensional hydrogel system to study human endothelial–mesenchymal stem cell interactions. J. Tissue Eng. Regen. Med. 4 (2011), 205–215.
    • (2011) J. Tissue Eng. Regen. Med. , vol.4 , pp. 205-215
    • Trkov, S.1
  • 101
    • 79951474125 scopus 로고    scopus 로고
    • Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells
    • 101 Jang, K-J., et al. Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr. Biol. 3 (2011), 134–141.
    • (2011) Integr. Biol. , vol.3 , pp. 134-141
    • Jang, K.-J.1
  • 102
    • 81355146382 scopus 로고    scopus 로고
    • From 3D cell culture to organs-on-chips
    • 102 Huh, D., et al. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21 (2011), 745–754.
    • (2011) Trends Cell Biol. , vol.21 , pp. 745-754
    • Huh, D.1
  • 103
    • 79960608623 scopus 로고    scopus 로고
    • Interstitial flow influences direction of tumor cell migration through competing mechanisms
    • 103 Polacheck, W.J., et al. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 11115–11120.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 11115-11120
    • Polacheck, W.J.1
  • 104
    • 84879608414 scopus 로고    scopus 로고
    • Extracellular matrix heterogeneity regulates three-dimensional morphologies of breast adenocarcinoma cell invasion
    • 104 Shin, Y., et al. Extracellular matrix heterogeneity regulates three-dimensional morphologies of breast adenocarcinoma cell invasion. Adv. Healthc. Mater. 2 (2013), 790–794.
    • (2013) Adv. Healthc. Mater. , vol.2 , pp. 790-794
    • Shin, Y.1
  • 105
    • 58249092233 scopus 로고    scopus 로고
    • Neurite growth in 3D collagen gels with gradients of mechanical properties
    • 105 Sundararaghavan, H.G., et al. Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol. Bioeng. 102 (2009), 632–643.
    • (2009) Biotechnol. Bioeng. , vol.102 , pp. 632-643
    • Sundararaghavan, H.G.1
  • 106
    • 67651172783 scopus 로고    scopus 로고
    • Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices
    • 106 Sung, K.E., et al. Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices. Biomaterials 30 (2009), 4833–4841.
    • (2009) Biomaterials , vol.30 , pp. 4833-4841
    • Sung, K.E.1
  • 107
    • 79953731991 scopus 로고    scopus 로고
    • Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects
    • 107 Sung, K.E., et al. Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr. Biol. (Camb.) 3 (2011), 439–450.
    • (2011) Integr. Biol. (Camb.) , vol.3 , pp. 439-450
    • Sung, K.E.1
  • 108
    • 84938352078 scopus 로고    scopus 로고
    • Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure
    • 108 Bischel, L.L., et al. Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure. BMC Cancer 15 (2015), 1–10.
    • (2015) BMC Cancer , vol.15 , pp. 1-10
    • Bischel, L.L.1
  • 109
    • 84908122789 scopus 로고    scopus 로고
    • A microfluidic device to study cancer metastasis under chronic and intermittent hypoxia
    • 109 Acosta, M.A., et al. A microfluidic device to study cancer metastasis under chronic and intermittent hypoxia. Biomicrofluidics, 8, 2014, 054117.
    • (2014) Biomicrofluidics , vol.8 , pp. 054117
    • Acosta, M.A.1
  • 110
    • 34047246527 scopus 로고    scopus 로고
    • Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors
    • 110 Wyckoff, J.B., et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67 (2007), 2649–2656.
    • (2007) Cancer Res. , vol.67 , pp. 2649-2656
    • Wyckoff, J.B.1
  • 111
    • 84929175779 scopus 로고    scopus 로고
    • An in vitro model of the tumor–lymphatic microenvironment with simultaneous transendothelial and luminal flows reveals mechanisms of flow enhanced invasion
    • 111 Pisano, M., et al. An in vitro model of the tumor–lymphatic microenvironment with simultaneous transendothelial and luminal flows reveals mechanisms of flow enhanced invasion. Integr. Biol. 7 (2015), 525–533.
    • (2015) Integr. Biol. , vol.7 , pp. 525-533
    • Pisano, M.1
  • 112
    • 84908090381 scopus 로고    scopus 로고
    • Cooperative actions of p21WAF1 and p53 induce Slug protein degradation and suppress cell invasion
    • 112 Kim, J., et al. Cooperative actions of p21WAF1 and p53 induce Slug protein degradation and suppress cell invasion. EMBO Rep. 15 (2014), 1062–1068.
    • (2014) EMBO Rep. , vol.15 , pp. 1062-1068
    • Kim, J.1
  • 113
    • 34547105289 scopus 로고    scopus 로고
    • Multi-step microfluidic device for studying cancer metastasis
    • 113 Chaw, K.C., et al. Multi-step microfluidic device for studying cancer metastasis. Lab Chip 7 (2007), 1041–1047.
    • (2007) Lab Chip , vol.7 , pp. 1041-1047
    • Chaw, K.C.1
  • 114
    • 4344589420 scopus 로고    scopus 로고
    • Rapid apoptosis in the pulmonary vasculature distinguishes non-metastatic from metastatic melanoma cells
    • 114 Kim, J., et al. Rapid apoptosis in the pulmonary vasculature distinguishes non-metastatic from metastatic melanoma cells. Cancer Lett. 213 (2004), 203–212.
    • (2004) Cancer Lett. , vol.213 , pp. 203-212
    • Kim, J.1
  • 115
    • 0035138203 scopus 로고    scopus 로고
    • Apoptosis: an early event in metastatic inefficiency apoptosis
    • 115 Wong, C.W., et al. Apoptosis: an early event in metastatic inefficiency apoptosis. Cancer Res. 61 (2001), 333–338.
    • (2001) Cancer Res. , vol.61 , pp. 333-338
    • Wong, C.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.