-
1
-
-
78650267994
-
Bioprinting is coming of age: report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09)
-
Guillemot F., et al. Bioprinting is coming of age: report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09). Biofabrication 2010, 2:010201.
-
(2010)
Biofabrication
, vol.2
, pp. 010201
-
-
Guillemot, F.1
-
2
-
-
84905706925
-
Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink
-
Xu C., et al. Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink. Langmuir 2014, 30:9130-9138.
-
(2014)
Langmuir
, vol.30
, pp. 9130-9138
-
-
Xu, C.1
-
3
-
-
84924351834
-
A hybrid bioprinting approach for scale-up tissue fabrication
-
Yu Y., et al. A hybrid bioprinting approach for scale-up tissue fabrication. J. Manuf. Sci. E-T. 2014, 136:061013.
-
(2014)
J. Manuf. Sci. E-T.
, vol.136
, pp. 061013
-
-
Yu, Y.1
-
4
-
-
84903964392
-
Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets
-
Gurkan U.A., et al. Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets. Mol. Pharmaceutics 2014, 11:2151-2159.
-
(2014)
Mol. Pharmaceutics
, vol.11
, pp. 2151-2159
-
-
Gurkan, U.A.1
-
5
-
-
83755195479
-
Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine
-
Guillemot F., et al. Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine. MRS Bull. 2011, 36:1015-1019.
-
(2011)
MRS Bull.
, vol.36
, pp. 1015-1019
-
-
Guillemot, F.1
-
6
-
-
84924411549
-
Bioprinting technology: a current state-of-the-art review
-
Dababneh A.B., Ozbolat I.T. Bioprinting technology: a current state-of-the-art review. J. Manuf. Sci. E-T. 2014, 136:061016.
-
(2014)
J. Manuf. Sci. E-T.
, vol.136
, pp. 061016
-
-
Dababneh, A.B.1
Ozbolat, I.T.2
-
7
-
-
84869419897
-
Engineering complex tissues
-
160rv112
-
Atala A., et al. Engineering complex tissues. Sci. Transl. Med. 2012, 4:160rv112.
-
(2012)
Sci. Transl. Med.
, vol.4
-
-
Atala, A.1
-
8
-
-
84862648665
-
Additive manufacturing of tissues and organs
-
Melchels F.P.W., et al. Additive manufacturing of tissues and organs. Prog. Polym. Sci. 2012, 37:1079-1104.
-
(2012)
Prog. Polym. Sci.
, vol.37
, pp. 1079-1104
-
-
Melchels, F.P.W.1
-
9
-
-
84880237098
-
Bioprinting toward organ fabrication: challenges and future trends
-
Ozbolat I.T., Yin Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans. Biomed. Eng. 2013, 60:691-699.
-
(2013)
IEEE Trans. Biomed. Eng.
, vol.60
, pp. 691-699
-
-
Ozbolat, I.T.1
Yin, Y.2
-
11
-
-
84872681726
-
Evaluation of hydrogels for bio-printing applications
-
Murphy S.V., et al. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A 2013, 101A:272-284.
-
(2013)
J. Biomed. Mater. Res. A
, vol.101A
, pp. 272-284
-
-
Murphy, S.V.1
-
12
-
-
84905725612
-
3D bioprinting of tissues and organs
-
Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nat. Biotech. 2014, 32:773-785.
-
(2014)
Nat. Biotech.
, vol.32
, pp. 773-785
-
-
Murphy, S.V.1
Atala, A.2
-
13
-
-
84869131568
-
Printing and prototyping of tissues and scaffolds
-
Derby B. Printing and prototyping of tissues and scaffolds. Science 2012, 338:921-926.
-
(2012)
Science
, vol.338
, pp. 921-926
-
-
Derby, B.1
-
14
-
-
84903737158
-
Creating perfused functional vascular channels using 3D bio-printing technology
-
Lee V.K., et al. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 2014, 35:8092-8102.
-
(2014)
Biomaterials
, vol.35
, pp. 8092-8102
-
-
Lee, V.K.1
-
15
-
-
84930926102
-
Bioprinting: 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
-
Kolesky D.B., et al. Bioprinting: 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 2014, 26:2966.
-
(2014)
Adv. Mater.
, vol.26
, pp. 2966
-
-
Kolesky, D.B.1
-
16
-
-
84877736127
-
Characterization of printable cellular micro-fluidic channels for tissue engineering
-
Zhang Y., et al. Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication 2013, 5:024004.
-
(2013)
Biofabrication
, vol.5
, pp. 024004
-
-
Zhang, Y.1
-
17
-
-
84938066460
-
Direct bioprinting of vessel-like tubular microfluidic channels
-
Zhang Y., et al. Direct bioprinting of vessel-like tubular microfluidic channels. J. Nanotechnol. Eng. Med. 2013, 4:021001.
-
(2013)
J. Nanotechnol. Eng. Med.
, vol.4
, pp. 021001
-
-
Zhang, Y.1
-
18
-
-
84896353618
-
In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits
-
Dolati F., et al. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits. Nanotechnology 2014, 25:145101.
-
(2014)
Nanotechnology
, vol.25
, pp. 145101
-
-
Dolati, F.1
-
19
-
-
69249208450
-
Scaffold-free vascular tissue engineering using bioprinting
-
Norotte C., et al. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009, 30:5910-5917.
-
(2009)
Biomaterials
, vol.30
, pp. 5910-5917
-
-
Norotte, C.1
-
20
-
-
84901915693
-
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
-
Bertassoni L.E., et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 2014, 14:2202-2211.
-
(2014)
Lab Chip
, vol.14
, pp. 2202-2211
-
-
Bertassoni, L.E.1
-
21
-
-
84906938147
-
Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology
-
Lee V., et al. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell. Mol. Bioeng. 2014, 1-13.
-
(2014)
Cell. Mol. Bioeng.
, pp. 1-13
-
-
Lee, V.1
-
22
-
-
84866355664
-
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
-
Miller J.S., et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 2012, 11:768-774.
-
(2012)
Nat. Mater.
, vol.11
, pp. 768-774
-
-
Miller, J.S.1
-
23
-
-
84865293346
-
Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function
-
Zervantonakis I.K., et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:13515-13520.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 13515-13520
-
-
Zervantonakis, I.K.1
-
24
-
-
57349147751
-
Fibrin gels and their clinical and bioengineering applications
-
Janmey P.A., et al. Fibrin gels and their clinical and bioengineering applications. J. R. Soc. Interface 2009, 6:1-10.
-
(2009)
J. R. Soc. Interface
, vol.6
, pp. 1-10
-
-
Janmey, P.A.1
-
25
-
-
84901622136
-
A three-dimensional in vitro model of tumor cell intravasation
-
Ehsan S.M., et al. A three-dimensional in vitro model of tumor cell intravasation. Integr. Biol. 2014, 6:603-610.
-
(2014)
Integr. Biol.
, vol.6
, pp. 603-610
-
-
Ehsan, S.M.1
-
26
-
-
60549108145
-
Organ printing: tissue spheroids as building blocks
-
Mironov V., et al. Organ printing: tissue spheroids as building blocks. Biomaterials 2009, 30:2164-2174.
-
(2009)
Biomaterials
, vol.30
, pp. 2164-2174
-
-
Mironov, V.1
-
27
-
-
84888369158
-
Development of 'Multi-arm Bioprinter' for hybrid biofabrication of tissue engineering constructs
-
Ozbolat I.T., et al. Development of 'Multi-arm Bioprinter' for hybrid biofabrication of tissue engineering constructs. Robot. Comput. Integr. Manuf. 2014, 30:295-304.
-
(2014)
Robot. Comput. Integr. Manuf.
, vol.30
, pp. 295-304
-
-
Ozbolat, I.T.1
-
28
-
-
79959348117
-
Decellularized tissue-engineered blood vessel as an arterial conduit
-
Quint C., et al. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:9214-9219.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 9214-9219
-
-
Quint, C.1
-
29
-
-
34548182241
-
Tissue engineering with the aid of inkjet printers
-
Campbell P.G., Weiss L.E. Tissue engineering with the aid of inkjet printers. Expert Opin. Biol. Ther. 2007, 7:1123-1127.
-
(2007)
Expert Opin. Biol. Ther.
, vol.7
, pp. 1123-1127
-
-
Campbell, P.G.1
Weiss, L.E.2
-
30
-
-
84873046124
-
Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds
-
Skardal A., et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med. 2012, 1:792-802.
-
(2012)
Stem Cells Transl. Med.
, vol.1
, pp. 792-802
-
-
Skardal, A.1
-
31
-
-
77951245659
-
In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice
-
Keriquel V., et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2010, 2:014101.
-
(2010)
Biofabrication
, vol.2
, pp. 014101
-
-
Keriquel, V.1
-
32
-
-
84861826955
-
Direct human cartilage repair using three-dimensional bioprinting technology
-
Cui X., et al. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. Part A 2012, 18:1304-1312.
-
(2012)
Tissue Eng. Part A
, vol.18
, pp. 1304-1312
-
-
Cui, X.1
-
33
-
-
84911805552
-
Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds
-
Temple J.P., et al. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J. Biomed. Mater. Res. A 2014, 102:4317-4325.
-
(2014)
J. Biomed. Mater. Res. A
, vol.102
, pp. 4317-4325
-
-
Temple, J.P.1
-
34
-
-
58149218412
-
Inkjet-mediated gene transfection into living cells combined with targeted delivery
-
Xu T., et al. Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng. Part A 2008, 15:95-101.
-
(2008)
Tissue Eng. Part A
, vol.15
, pp. 95-101
-
-
Xu, T.1
-
35
-
-
84865330310
-
Gene delivery to bone
-
Evans C.H. Gene delivery to bone. Adv. Drug Deliv. Rev. 2012, 64:1331-1340.
-
(2012)
Adv. Drug Deliv. Rev.
, vol.64
, pp. 1331-1340
-
-
Evans, C.H.1
|