-
1
-
-
79952284127
-
Hallmarks of cancer: The next generation
-
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
2
-
-
84943246936
-
Metabolic reprogramming: The emerging concept and associated therapeutic strategies
-
Yoshida GJ. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res 2015;34:111.
-
(2015)
J Exp Clin Cancer Res
, vol.34
, pp. 111
-
-
Yoshida, G.J.1
-
3
-
-
80054046029
-
Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
-
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011;27:441-64.
-
(2011)
Annu Rev Cell Dev Biol
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
5
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science 1956;123:309-14.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
6
-
-
79953705886
-
Choosing between glycolysis and oxidative phosphorylation: A tumor's dilemma?
-
Jose C, Bellance N, Rossignol R. Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma? Biochim Biophys Acta 2011;1807:552-61.
-
(2011)
Biochim Biophys Acta
, vol.1807
, pp. 552-561
-
-
Jose, C.1
Bellance, N.2
Rossignol, R.3
-
7
-
-
80052242132
-
Targeting cancer metabolism: A therapeutic window opens
-
Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011;10:671-84.
-
(2011)
Nat Rev Drug Discov
, vol.10
, pp. 671-684
-
-
Vander Heiden, M.G.1
-
8
-
-
84888798201
-
Tumor glycolysis as a target for cancer therapy: Progress and prospects
-
Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 2013;12:152.
-
(2013)
Mol Cancer
, vol.12
, pp. 152
-
-
Ganapathy-Kanniappan, S.1
Geschwind, J.F.2
-
9
-
-
84954044571
-
Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression
-
Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci 2016;73:377-92.
-
(2016)
Cell Mol Life Sci
, vol.73
, pp. 377-392
-
-
Li, Z.1
Zhang, H.2
-
10
-
-
82355169681
-
Glycolysis inhibition by 2-deoxy-D-glucose reverts the metastatic phenotype in vitro and in vivo
-
Sottnik JL, Lori JC, Rose BJ, Thamm DH. Glycolysis inhibition by 2-deoxy-D-glucose reverts the metastatic phenotype in vitro and in vivo. Clin Exp Metastasis 2011;28:865-75.
-
(2011)
Clin Exp Metastasis
, vol.28
, pp. 865-875
-
-
Sottnik, J.L.1
Lori, J.C.2
Rose, B.J.3
Thamm, D.H.4
-
12
-
-
84876115558
-
Metabolic symbiosis in cancer: Refocusing the Warburg lens
-
Nakajima EC, Van Houten B. Metabolic symbiosis in cancer: refocusing the Warburg lens. Mol Carcinog 2013;52:329-37.
-
(2013)
Mol Carcinog
, vol.52
, pp. 329-337
-
-
Nakajima, E.C.1
Van Houten, B.2
-
14
-
-
0037093411
-
Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells
-
Guppy M, Leedman P, Zu X, Russell V. Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. Biochem J 2002;364:309-15.
-
(2002)
Biochem J
, vol.364
, pp. 309-315
-
-
Guppy, M.1
Leedman, P.2
Zu, X.3
Russell, V.4
-
15
-
-
84920814046
-
Emerging concepts in bioenergetics and cancer research: Metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy
-
Obre E, Rossignol R. Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. Int J Biochem Cell Biol 2015;59:167-81.
-
(2015)
Int J Biochem Cell Biol
, vol.59
, pp. 167-181
-
-
Obre, E.1
Rossignol, R.2
-
16
-
-
84957439277
-
TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions
-
Martinez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, et al. TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol Cell 2016;61:199-209.
-
(2016)
Mol Cell
, vol.61
, pp. 199-209
-
-
Martinez-Reyes, I.1
Diebold, L.P.2
Kong, H.3
Schieber, M.4
Huang, H.5
Hensley, C.T.6
-
17
-
-
44449147036
-
Tumor cell metabolism: Cancer's Achilles' heel
-
Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 2008;13:472-82.
-
(2008)
Cancer Cell
, vol.13
, pp. 472-482
-
-
Kroemer, G.1
Pouyssegur, J.2
-
18
-
-
84927133194
-
Targeting mitochondria metabolism for cancer therapy
-
Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 2015;11:9-15.
-
(2015)
Nat Chem Biol
, vol.11
, pp. 9-15
-
-
Weinberg, S.E.1
Chandel, N.S.2
-
19
-
-
84883542202
-
Potential applications for biguanides in oncology
-
Pollak M. Potential applications for biguanides in oncology. J Clin Invest 2013;123:3693-700.
-
(2013)
J Clin Invest
, vol.123
, pp. 3693-3700
-
-
Pollak, M.1
-
20
-
-
84902110574
-
Overcoming drug development bottlenecks with repurposing: Repurposing biguanides to target energy metabolism for cancer treatment
-
Pollak M. Overcoming drug development bottlenecks with repurposing: repurposing biguanides to target energy metabolism for cancer treatment. Nat Med 2014;20:591-3.
-
(2014)
Nat Med
, vol.20
, pp. 591-593
-
-
Pollak, M.1
-
21
-
-
27944477029
-
Inhibition of insulin-like growth factor-1 receptor signaling enhances growth-inhibitory and proapoptotic effects of gefitinib (Iressa) in human breast cancer cells
-
Camirand A, Zakikhani M, Young F, Pollak M. Inhibition of insulin-like growth factor-1 receptor signaling enhances growth-inhibitory and proapoptotic effects of gefitinib (Iressa) in human breast cancer cells. Breast Cancer Res 2005;7:R570-9.
-
(2005)
Breast Cancer Res
, vol.7
, pp. R570-R579
-
-
Camirand, A.1
Zakikhani, M.2
Young, F.3
Pollak, M.4
-
22
-
-
44849099894
-
The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level
-
Ben Sahra I, Laurent K, Loubat A, Giorgetti-Peraldi S, Colosetti P, Auberger P, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 2008;27:3576-86.
-
(2008)
Oncogene
, vol.27
, pp. 3576-3586
-
-
Ben Sahra, I.1
Laurent, K.2
Loubat, A.3
Giorgetti-Peraldi, S.4
Colosetti, P.5
Auberger, P.6
-
23
-
-
34547114031
-
Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth
-
Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 2007;67:6745-52.
-
(2007)
Cancer Res
, vol.67
, pp. 6745-6752
-
-
Buzzai, M.1
Jones, R.G.2
Amaravadi, R.K.3
Lum, J.J.4
DeBerardinis, R.J.5
Zhao, F.6
-
24
-
-
84953322856
-
Metformin antagonizes cancer cell proliferation by suppressing mitochondrial-dependent biosynthesis
-
Griss T, Vincent EE, Egnatchik R, Chen J, Ma EH, Faubert B, et al. Metformin antagonizes cancer cell proliferation by suppressing mitochondrial-dependent biosynthesis. PLoS Biol 2015;13:e1002309.
-
(2015)
PLoS Biol
, vol.13
-
-
Griss, T.1
Vincent, E.E.2
Egnatchik, R.3
Chen, J.4
Ma, E.H.5
Faubert, B.6
-
26
-
-
84900468450
-
Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis
-
Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife 2014;3:e02242.
-
(2014)
Elife
, vol.3
-
-
Wheaton, W.W.1
Weinberg, S.E.2
Hamanaka, R.B.3
Soberanes, S.4
Sullivan, L.B.5
Anso, E.6
-
27
-
-
84897537717
-
Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides
-
Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B, et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 2014;508:108-12.
-
(2014)
Nature
, vol.508
, pp. 108-112
-
-
Birsoy, K.1
Possemato, R.2
Lorbeer, F.K.3
Bayraktar, E.C.4
Thiru, P.5
Yucel, B.6
-
28
-
-
84899617427
-
Switch of glycolysis to gluconeogenesis by dexamethasone for treatment of hepatocarcinoma
-
Ma R, Zhang W, Tang K, Zhang H, Zhang Y, Li D, et al. Switch of glycolysis to gluconeogenesis by dexamethasone for treatment of hepatocarcinoma. Nat Commun 2013;4:2508.
-
(2013)
Nat Commun
, vol.4
, pp. 2508
-
-
Ma, R.1
Zhang, W.2
Tang, K.3
Zhang, H.4
Zhang, Y.5
Li, D.6
-
29
-
-
75349106751
-
GLUT1 as a therapeutic target in hepatocellular carcinoma
-
Amann T, Hellerbrand C. GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opin Ther Targets 2009;13:1411-27.
-
(2009)
Expert Opin Ther Targets
, vol.13
, pp. 1411-1427
-
-
Amann, T.1
Hellerbrand, C.2
-
30
-
-
77953848895
-
Glutamine synthetase as an early marker for hepatocellular carcinoma based on proteomic analysis of resected small hepatocellular carcinomas
-
Long J, Lang ZW, Wang HG, Wang TL, Wang BE, Liu SQ. Glutamine synthetase as an early marker for hepatocellular carcinoma based on proteomic analysis of resected small hepatocellular carcinomas. Hepatobiliary Pancreat Dis Int 2010;9:296-305.
-
(2010)
Hepatobiliary Pancreat Dis Int
, vol.9
, pp. 296-305
-
-
Long, J.1
Lang, Z.W.2
Wang, H.G.3
Wang, T.L.4
Wang, B.E.5
Liu, S.Q.6
-
31
-
-
79952312698
-
Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma
-
Calvisi DF, Wang C, Ho C, Ladu S, Lee SA, Mattu S, et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology 2011;140:1071-83.
-
(2011)
Gastroenterology
, vol.140
, pp. 1071-1083
-
-
Calvisi, D.F.1
Wang, C.2
Ho, C.3
Ladu, S.4
Lee, S.A.5
Mattu, S.6
-
32
-
-
0032125565
-
GLUT1 glucose transporter expression in colorectal carcinoma: A marker for poor prognosis
-
Haber RS, Rathan A, Weiser KR, Pritsker A, Itzkowitz SH, Bodian C, et al. GLUT1 glucose transporter expression in colorectal carcinoma: a marker for poor prognosis. Cancer 1998;83:34-40.
-
(1998)
Cancer
, vol.83
, pp. 34-40
-
-
Haber, R.S.1
Rathan, A.2
Weiser, K.R.3
Pritsker, A.4
Itzkowitz, S.H.5
Bodian, C.6
-
33
-
-
85020143222
-
Glycolysis gene expression analysis and selective metabolic advantage in the clinical progression of colorectal cancer
-
Mar 1. [Epub ahead of print]
-
Graziano F, Ruzzo A, Giacomini E, Ricciardi T, Aprile G, Loupakis F, et al. Glycolysis gene expression analysis and selective metabolic advantage in the clinical progression of colorectal cancer. Pharmacogenomics J 2016 Mar 1. [Epub ahead of print].
-
(2016)
Pharmacogenomics J
-
-
Graziano, F.1
Ruzzo, A.2
Giacomini, E.3
Ricciardi, T.4
Aprile, G.5
Loupakis, F.6
-
34
-
-
85012964579
-
Expression of pyruvate kinase M2 in human colorectal cancer and its prognostic value
-
Cui R, Shi XY. Expression of pyruvate kinase M2 in human colorectal cancer and its prognostic value. Int J Clin Exp Pathol 2015;8:11393-9.
-
(2015)
Int J Clin Exp Pathol
, vol.8
, pp. 11393-11399
-
-
Cui, R.1
Shi, X.Y.2
-
35
-
-
84865689783
-
A significant role of lipogenic enzymes in colorectal cancer
-
Notarnicola M, Messa C, Caruso MG. A significant role of lipogenic enzymes in colorectal cancer. Anticancer Res 2012;32:2585-90.
-
(2012)
Anticancer Res
, vol.32
, pp. 2585-2590
-
-
Notarnicola, M.1
Messa, C.2
Caruso, M.G.3
-
36
-
-
84899512958
-
Expression of glutaminase is upregulated in colorectal cancer and of clinical significance
-
Huang F, Zhang Q, Ma H, Lv Q, Zhang T. Expression of glutaminase is upregulated in colorectal cancer and of clinical significance. Int J Clin Exp Pathol 2014;7:1093-100.
-
(2014)
Int J Clin Exp Pathol
, vol.7
, pp. 1093-1100
-
-
Huang, F.1
Zhang, Q.2
Ma, H.3
Lv, Q.4
Zhang, T.5
-
37
-
-
79955725303
-
Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines
-
Hussien R, Brooks GA. Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol Genomics 2011;43:255-64.
-
(2011)
Physiol Genomics
, vol.43
, pp. 255-264
-
-
Hussien, R.1
Brooks, G.A.2
-
38
-
-
84906282434
-
Expression of the hypoxia-inducible monocarboxylate transporter MCT4 is increased in triple negative breast cancer and correlates independently with clinical outcome
-
Doyen J, Trastour C, Ettore F, Peyrottes I, Toussant N, Gal J, et al. Expression of the hypoxia-inducible monocarboxylate transporter MCT4 is increased in triple negative breast cancer and correlates independently with clinical outcome. Biochem Biophys Res Commun 2014;451:54-61.
-
(2014)
Biochem Biophys Res Commun
, vol.451
, pp. 54-61
-
-
Doyen, J.1
Trastour, C.2
Ettore, F.3
Peyrottes, I.4
Toussant, N.5
Gal, J.6
-
39
-
-
84883613147
-
Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype
-
Choi J, Kim do H, Jung WH, Koo JS. Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype. Breast Cancer Res 2013;15:R78.
-
(2013)
Breast Cancer Res
, vol.15
, pp. R78
-
-
Choi, J.1
Kim Do, H.2
Jung, W.H.3
Koo, J.S.4
-
40
-
-
84885378901
-
Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target
-
Timmerman LA, Holton T, Yuneva M, Louie RJ, Padro M, Daemen A, et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 2013;24:450-65.
-
(2013)
Cancer Cell
, vol.24
, pp. 450-465
-
-
Timmerman, L.A.1
Holton, T.2
Yuneva, M.3
Louie, R.J.4
Padro, M.5
Daemen, A.6
-
41
-
-
84964312498
-
Metabolic characterization of triple negative breast cancer
-
Cao MD, Lamichhane S, Lundgren S, Bofin A, Fjosne H, Giskeodegard GF, et al. Metabolic characterization of triple negative breast cancer. BMC Cancer 2014;14:941.
-
(2014)
BMC Cancer
, vol.14
, pp. 941
-
-
Cao, M.D.1
Lamichhane, S.2
Lundgren, S.3
Bofin, A.4
Fjosne, H.5
Giskeodegard, G.F.6
-
42
-
-
80052338863
-
Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia
-
Kung HN, Marks JR, Chi JT. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet 2011;7:e1002229.
-
(2011)
PLoS Genet
, vol.7
-
-
Kung, H.N.1
Marks, J.R.2
Chi, J.T.3
-
43
-
-
78650513640
-
Degree of tumor FDG uptake correlates with proliferation index in triple negative breast cancer
-
Tchou J, Sonnad SS, Bergey MR, Basu S, Tomaszewski J, Alavi A, et al. Degree of tumor FDG uptake correlates with proliferation index in triple negative breast cancer. Mol Imaging Biol 2010;12:657-62.
-
(2010)
Mol Imaging Biol
, vol.12
, pp. 657-662
-
-
Tchou, J.1
Sonnad, S.S.2
Bergey, M.R.3
Basu, S.4
Tomaszewski, J.5
Alavi, A.6
-
44
-
-
84874635096
-
Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression
-
Santidrian AF, Matsuno-Yagi A, Ritland M, Seo BB, LeBoeuf SE, Gay LJ, et al. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J Clin Invest 2013;123:1068-81.
-
(2013)
J Clin Invest
, vol.123
, pp. 1068-1081
-
-
Santidrian, A.F.1
Matsuno-Yagi, A.2
Ritland, M.3
Seo, B.B.4
LeBoeuf, S.E.5
Gay, L.J.6
-
45
-
-
84943392673
-
PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer
-
Dupuy F, Tabariès S, Andrzejewski S, Dong Z, Blagih J, Annis MG, et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab 2015;22:577-89.
-
(2015)
Cell Metab
, vol.22
, pp. 577-589
-
-
Dupuy, F.1
Tabariès, S.2
Andrzejewski, S.3
Dong, Z.4
Blagih, J.5
Annis, M.G.6
-
46
-
-
84963957265
-
Metabolic plasticity of metastatic breast cancer cells: Adaptation to changes in the microenvironment
-
Simoes RV, Serganova IS, Kruchevsky N, Leftin A, Shestov AA, Thaler HT, et al. Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment. Neoplasia 2015;17:671-84.
-
(2015)
Neoplasia
, vol.17
, pp. 671-684
-
-
Simoes, R.V.1
Serganova, I.S.2
Kruchevsky, N.3
Leftin, A.4
Shestov, A.A.5
Thaler, H.T.6
-
47
-
-
20444484872
-
Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer
-
Costello LC, Franklin RB, Feng P. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion 2005;5:143-53.
-
(2005)
Mitochondrion
, vol.5
, pp. 143-153
-
-
Costello, L.C.1
Franklin, R.B.2
Feng, P.3
-
48
-
-
77955458963
-
The combination of metformin and 2-deoxyglucose inhibits autophagy and induces AMPK-dependent apoptosis in prostate cancer cells
-
Ben Sahra I, Tanti JF, Bost F. The combination of metformin and 2-deoxyglucose inhibits autophagy and induces AMPK-dependent apoptosis in prostate cancer cells. Autophagy 2010;6:670-1.
-
(2010)
Autophagy
, vol.6
, pp. 670-671
-
-
Ben Sahra, I.1
Tanti, J.F.2
Bost, F.3
-
49
-
-
78751584772
-
The potential of FDG-PET/CT for detecting prostate cancer in patients with an elevated serum PSA level
-
Minamimoto R, Uemura H, Sano F, Terao H, Nagashima Y, Yamanaka S, et al. The potential of FDG-PET/CT for detecting prostate cancer in patients with an elevated serum PSA level. Ann Nucl Med 2011;25:21-7.
-
(2011)
Ann Nucl Med
, vol.25
, pp. 21-27
-
-
Minamimoto, R.1
Uemura, H.2
Sano, F.3
Terao, H.4
Nagashima, Y.5
Yamanaka, S.6
-
50
-
-
84937469514
-
A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: A role for monocarboxylate transporters as metabolic targets for therapy
-
Pertega-Gomes N, Felisbino S, Massie CE, Vizcaino JR, Coelho R, Sandi C, et al. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J Pathol 2015;236:517-30.
-
(2015)
J Pathol
, vol.236
, pp. 517-530
-
-
Pertega-Gomes, N.1
Felisbino, S.2
Massie, C.E.3
Vizcaino, J.R.4
Coelho, R.5
Sandi, C.6
-
51
-
-
84901597401
-
A lactate shuttle system between tumour and stromal cells is associated with poor prognosis in prostate cancer
-
Pertega-Gomes N, Vizcaino JR, Attig J, Jurmeister S, Lopes C, Baltazar F. A lactate shuttle system between tumour and stromal cells is associated with poor prognosis in prostate cancer. BMC Cancer 2014;14:352.
-
(2014)
BMC Cancer
, vol.14
, pp. 352
-
-
Pertega-Gomes, N.1
Vizcaino, J.R.2
Attig, J.3
Jurmeister, S.4
Lopes, C.5
Baltazar, F.6
-
52
-
-
84926618078
-
Lipid catabolism via CPT1 as a therapeutic target for prostate cancer
-
Schlaepfer IR, Rider L, Rodrigues LU, Gijon MA, Pac CT, Romero L, et al. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol Cancer Ther 2014;13:2361-71.
-
(2014)
Mol Cancer Ther
, vol.13
, pp. 2361-2371
-
-
Schlaepfer, I.R.1
Rider, L.2
Rodrigues, L.U.3
Gijon, M.A.4
Pac, C.T.5
Romero, L.6
-
53
-
-
38949208937
-
1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer
-
Vavere AL, Kridel SJ, Wheeler FB, Lewis JS. 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med 2008;49:327-34.
-
(2008)
J Nucl Med
, vol.49
, pp. 327-334
-
-
Vavere, A.L.1
Kridel, S.J.2
Wheeler, F.B.3
Lewis, J.S.4
-
55
-
-
57449097020
-
Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice
-
Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 2008;118:3930-42.
-
(2008)
J Clin Invest
, vol.118
, pp. 3930-3942
-
-
Sonveaux, P.1
Vegran, F.2
Schroeder, T.3
Wergin, M.C.4
Verrax, J.5
Rabbani, Z.N.6
-
56
-
-
84940878452
-
Functional screening identifies MCT4 as a key regulator of breast cancer cell metabolism and survival
-
Baenke F, Dubuis S, Brault C, Weigelt B, Dankworth B, Griffiths B, et al. Functional screening identifies MCT4 as a key regulator of breast cancer cell metabolism and survival. J Pathol 2015;237:152-65.
-
(2015)
J Pathol
, vol.237
, pp. 152-165
-
-
Baenke, F.1
Dubuis, S.2
Brault, C.3
Weigelt, B.4
Dankworth, B.5
Griffiths, B.6
-
57
-
-
84959115930
-
MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4
-
Hong CS, Graham NA, Gu W, Espindola Camacho C, Mah V, Maresh EL, et al. MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4. Cell Rep 2016;14:1590-601.
-
(2016)
Cell Rep
, vol.14
, pp. 1590-1601
-
-
Hong, C.S.1
Graham, N.A.2
Gu, W.3
Espindola Camacho, C.4
Mah, V.5
Maresh, E.L.6
-
58
-
-
84946829132
-
Metabolic plasticity of cancer stem cells
-
Luo M, Wicha MS. Metabolic plasticity of cancer stem cells. Oncotarget 2015;6:35141-2.
-
(2015)
Oncotarget
, vol.6
, pp. 35141-35142
-
-
Luo, M.1
Wicha, M.S.2
-
59
-
-
84911861458
-
Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function
-
Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 2014;514:628-32.
-
(2014)
Nature
, vol.514
, pp. 628-632
-
-
Viale, A.1
Pettazzoni, P.2
Lyssiotis, C.A.3
Ying, H.4
Sanchez, N.5
Marchesini, M.6
-
60
-
-
84887444879
-
Microenvironmental regulation of tumor progression and metastasis
-
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013;19:1423-37.
-
(2013)
Nat Med
, vol.19
, pp. 1423-1437
-
-
Quail, D.F.1
Joyce, J.A.2
-
61
-
-
74849087878
-
The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma
-
Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 2009;8:3984-4001.
-
(2009)
Cell Cycle
, vol.8
, pp. 3984-4001
-
-
Pavlides, S.1
Whitaker-Menezes, D.2
Castello-Cros, R.3
Flomenberg, N.4
Witkiewicz, A.K.5
Frank, P.G.6
-
62
-
-
77956419439
-
Ketones and lactate "fuel" tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism
-
Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, et al. Ketones and lactate "fuel" tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 2010;9:3506-14.
-
(2010)
Cell Cycle
, vol.9
, pp. 3506-3514
-
-
Bonuccelli, G.1
Tsirigos, A.2
Whitaker-Menezes, D.3
Pavlides, S.4
Pestell, R.G.5
Chiavarina, B.6
-
63
-
-
84897544161
-
Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth
-
Martinez-Outschoorn UE, Lisanti MP, Sotgia F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol 2014;25:47-60.
-
(2014)
Semin Cancer Biol
, vol.25
, pp. 47-60
-
-
Martinez-Outschoorn, U.E.1
Lisanti, M.P.2
Sotgia, F.3
-
64
-
-
84944273587
-
Metabolic reprogramming of the tumour microenvironment
-
Xing Y, Zhao S, Zhou BP, Mi J. Metabolic reprogramming of the tumour microenvironment. FEBS J 2015;282:3892-8.
-
(2015)
FEBS J
, vol.282
, pp. 3892-3898
-
-
Xing, Y.1
Zhao, S.2
Zhou, B.P.3
Mi, J.4
-
65
-
-
33847377377
-
Tumor acidity, chemoresistance and proton pump inhibitors
-
De Milito A, Fais S. Tumor acidity, chemoresistance and proton pump inhibitors. Fut Oncol 2005;1:779-86.
-
(2005)
Fut Oncol
, vol.1
, pp. 779-786
-
-
De Milito, A.1
Fais, S.2
-
66
-
-
84858710602
-
Using the "reverse Warburg effect" to identify high-risk breast cancer patients: Stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers
-
Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, Philp NJ, Lin Z, Gandara R, et al. Using the "reverse Warburg effect" to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 2012;11:1108-17.
-
(2012)
Cell Cycle
, vol.11
, pp. 1108-1117
-
-
Witkiewicz, A.K.1
Whitaker-Menezes, D.2
Dasgupta, A.3
Philp, N.J.4
Lin, Z.5
Gandara, R.6
-
67
-
-
26244432793
-
Proliferating fibroblasts at the invading tumour edge of colorectal adenocarcinomas are associated with endogenous markers of hypoxia, acidity, and oxidative stress
-
Sivridis E, Giatromanolaki A, Koukourakis MI. Proliferating fibroblasts at the invading tumour edge of colorectal adenocarcinomas are associated with endogenous markers of hypoxia, acidity, and oxidative stress. J Clin Pathol 2005;58:1033-8.
-
(2005)
J Clin Pathol
, vol.58
, pp. 1033-1038
-
-
Sivridis, E.1
Giatromanolaki, A.2
Koukourakis, M.I.3
-
68
-
-
81255157465
-
Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth
-
Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 2011;17:1498-503.
-
(2011)
Nat Med
, vol.17
, pp. 1498-1503
-
-
Nieman, K.M.1
Kenny, H.A.2
Penicka, C.V.3
Ladanyi, A.4
Buell-Gutbrod, R.5
Zillhardt, M.R.6
-
69
-
-
84941655289
-
Metabolic reprogramming of immune cells in cancer progression
-
Biswas SK. Metabolic reprogramming of immune cells in cancer progression. Immunity 2015;43:435-49.
-
(2015)
Immunity
, vol.43
, pp. 435-449
-
-
Biswas, S.K.1
-
70
-
-
84862016400
-
The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism
-
Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 2012;15:813-26.
-
(2012)
Cell Metab
, vol.15
, pp. 813-826
-
-
Haschemi, A.1
Kosma, P.2
Gille, L.3
Evans, C.R.4
Burant, C.F.5
Starkl, P.6
-
71
-
-
84941344937
-
Metabolic competition in the tumor microenvironment is a driver of cancer progression
-
Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015;162:1229-41.
-
(2015)
Cell
, vol.162
, pp. 1229-1241
-
-
Chang, C.H.1
Qiu, J.2
O'Sullivan, D.3
Buck, M.D.4
Noguchi, T.5
Curtis, J.D.6
-
72
-
-
84941366350
-
Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses
-
Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 2015;162:1217-28.
-
(2015)
Cell
, vol.162
, pp. 1217-1228
-
-
Ho, P.C.1
Bihuniak, J.D.2
Macintyre, A.N.3
Staron, M.4
Liu, X.5
Amezquita, R.6
-
73
-
-
79953147370
-
A perspective on cancer cell metastasis
-
Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011;331:1559-64.
-
(2011)
Science
, vol.331
, pp. 1559-1564
-
-
Chaffer, C.L.1
Weinberg, R.A.2
-
74
-
-
37349079197
-
Systemic spread is an early step in breast cancer
-
Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, et al. Systemic spread is an early step in breast cancer. Cancer Cell 2008;13:58-68.
-
(2008)
Cancer Cell
, vol.13
, pp. 58-68
-
-
Husemann, Y.1
Geigl, J.B.2
Schubert, F.3
Musiani, P.4
Meyer, M.5
Burghart, E.6
-
75
-
-
63049102497
-
Parallel progression of primary tumours and metastases
-
Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer 2009;9:302-12.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 302-312
-
-
Klein, C.A.1
-
76
-
-
84949623613
-
Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers
-
McCreery MQ, Halliwill KD, Chin D, Delrosario R, Hirst G, Vuong P, et al. Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers. Nat Med 2015;21:1514-20.
-
(2015)
Nat Med
, vol.21
, pp. 1514-1520
-
-
McCreery, M.Q.1
Halliwill, K.D.2
Chin, D.3
Delrosario, R.4
Hirst, G.5
Vuong, P.6
-
77
-
-
84946215072
-
Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets
-
Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A, Jones RT, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov 2015;5:1164-77.
-
(2015)
Cancer Discov
, vol.5
, pp. 1164-1177
-
-
Brastianos, P.K.1
Carter, S.L.2
Santagata, S.3
Cahill, D.P.4
Taylor-Weiner, A.5
Jones, R.T.6
-
78
-
-
84945566252
-
Epithelial-mesenchymal plasticity: A central regulator of cancer progression
-
Ye X, Weinberg RA. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol 2015;25:675-86.
-
(2015)
Trends Cell Biol
, vol.25
, pp. 675-686
-
-
Ye, X.1
Weinberg, R.A.2
-
79
-
-
84930008414
-
Epithelial-mesenchymal transition induces similar metabolic alterations in two independent breast cancer cell lines
-
Kondaveeti Y, Guttilla Reed IK, White BA. Epithelial-mesenchymal transition induces similar metabolic alterations in two independent breast cancer cell lines. Cancer Lett 2015;364:44-58.
-
(2015)
Cancer Lett
, vol.364
, pp. 44-58
-
-
Kondaveeti, Y.1
Guttilla Reed, I.K.2
White, B.A.3
-
80
-
-
84952329026
-
EMT-induced metabolite signature identifies poor clinical outcome
-
Bhowmik SK, Ramirez-Pena E, Arnold JM, Putluri V, Sphyris N, Michailidis G, et al. EMT-induced metabolite signature identifies poor clinical outcome. Oncotarget 2015;6:42651-60.
-
(2015)
Oncotarget
, vol.6
, pp. 42651-42660
-
-
Bhowmik, S.K.1
Ramirez-Pena, E.2
Arnold, J.M.3
Putluri, V.4
Sphyris, N.5
Michailidis, G.6
-
81
-
-
84920616812
-
PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis
-
LeBleu VS, O'Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 2014;16:992-1003, 1-15.
-
(2014)
Nat Cell Biol
, vol.16
-
-
LeBleu, V.S.1
O'Connell, J.T.2
Gonzalez Herrera, K.N.3
Wikman, H.4
Pantel, K.5
Haigis, M.C.6
-
82
-
-
33749999530
-
Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators
-
St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006;127:397-408.
-
(2006)
Cell
, vol.127
, pp. 397-408
-
-
St-Pierre, J.1
Drori, S.2
Uldry, M.3
Silvaggi, J.M.4
Rhee, J.5
Jager, S.6
-
83
-
-
84946903513
-
Oxidative stress inhibits distant metastasis by human melanoma cells
-
Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 2015;527:186-91.
-
(2015)
Nature
, vol.527
, pp. 186-191
-
-
Piskounova, E.1
Agathocleous, M.2
Murphy, M.M.3
Hu, Z.4
Huddlestun, S.E.5
Zhao, Z.6
-
84
-
-
77951242628
-
Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model
-
Lu X, Bennet B, Mu E, Rabinowitz J, Kang Y. Metabolomic changes accompanying transformation and acquisition of metastatic potential in a syngeneic mouse mammary tumor model. J Biol Chem 2010;285:9317-21.
-
(2010)
J Biol Chem
, vol.285
, pp. 9317-9321
-
-
Lu, X.1
Bennet, B.2
Mu, E.3
Rabinowitz, J.4
Kang, Y.5
-
85
-
-
84920802831
-
A mitochondrial switch promotes tumor metastasis
-
Porporato PE, Payen VL, Perez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T, et al. A mitochondrial switch promotes tumor metastasis. Cell Rep 2014;8:754-66.
-
(2014)
Cell Rep
, vol.8
, pp. 754-766
-
-
Porporato, P.E.1
Payen, V.L.2
Perez-Escuredo, J.3
De Saedeleer, C.J.4
Danhier, P.5
Copetti, T.6
-
86
-
-
84959467603
-
Pyruvate and metabolic flexibility: Illuminating a path toward selective cancer therapies
-
Olson KA, Schell JC, Rutter J. Pyruvate and metabolic flexibility: illuminating a path toward selective cancer therapies. Trends Biochem Sci 2016;41:219-30.
-
(2016)
Trends Biochem Sci
, vol.41
, pp. 219-230
-
-
Olson, K.A.1
Schell, J.C.2
Rutter, J.3
-
87
-
-
84861354408
-
Glucose oxidation modulates anoikis and tumor metastasis
-
Kamarajugadda S, Stemboroski L, Cai Q, Simpson NE, Nayak S, Tan M, et al. Glucose oxidation modulates anoikis and tumor metastasis. Mol Cell Biol 2012;32:1893-907.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 1893-1907
-
-
Kamarajugadda, S.1
Stemboroski, L.2
Cai, Q.3
Simpson, N.E.4
Nayak, S.5
Tan, M.6
-
88
-
-
78650722178
-
Anticancer drugs that target metabolism: Is dichloroacetate the new paradigm?
-
Papandreou I, Goliasova T, Denko NC. Anticancer drugs that target metabolism: Is dichloroacetate the new paradigm? Int J Cancer 2011;128:1001-8.
-
(2011)
Int J Cancer
, vol.128
, pp. 1001-1008
-
-
Papandreou, I.1
Goliasova, T.2
Denko, N.C.3
-
89
-
-
53049103850
-
Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer
-
Michelakis ED, Webster L, Mackey JR. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 2008;99:989-94.
-
(2008)
Br J Cancer
, vol.99
, pp. 989-994
-
-
Michelakis, E.D.1
Webster, L.2
Mackey, J.R.3
-
90
-
-
84920135306
-
The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism
-
Lu J, Tan M, Cai Q. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 2015;356(2 Pt A):156-64.
-
(2015)
Cancer Lett
, vol.356
, Issue.2
, pp. 156-164
-
-
Lu, J.1
Tan, M.2
Cai, Q.3
-
91
-
-
84932618651
-
Pyruvate dehydrogenase kinases: Therapeutic targets for diabetes and cancers
-
Jeoung NH. Pyruvate dehydrogenase kinases: therapeutic targets for diabetes and cancers. Diabetes Metab J 2015;39:188-97.
-
(2015)
Diabetes Metab J
, vol.39
, pp. 188-197
-
-
Jeoung, N.H.1
-
92
-
-
84954368509
-
The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents
-
Saunier E, Benelli C, Bortoli S. The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents. Int J Cancer 2016;138:809-17.
-
(2016)
Int J Cancer
, vol.138
, pp. 809-817
-
-
Saunier, E.1
Benelli, C.2
Bortoli, S.3
-
93
-
-
84941023027
-
Development of pyruvate dehydrogenase kinase inhibitors in medicinal chemistry with particular emphasis as anticancer agents
-
Zhang SL, Hu X, Zhang W, Yao H, Tam KY. Development of pyruvate dehydrogenase kinase inhibitors in medicinal chemistry with particular emphasis as anticancer agents. Drug Discov Today 2015;20:1112-9.
-
(2015)
Drug Discov Today
, vol.20
, pp. 1112-1119
-
-
Zhang, S.L.1
Hu, X.2
Zhang, W.3
Yao, H.4
Tam, K.Y.5
-
94
-
-
84863011452
-
The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type
-
Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 2012;15:157-70.
-
(2012)
Cell Metab
, vol.15
, pp. 157-170
-
-
Yuneva, M.O.1
Fan, T.W.2
Allen, T.D.3
Higashi, R.M.4
Ferraris, D.V.5
Tsukamoto, T.6
-
95
-
-
84961289605
-
Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain
-
Chen J, Lee HJ, Wu X, Huo L, Kim SJ, Xu L, et al. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain. Cancer Res 2015;75:554-65.
-
(2015)
Cancer Res
, vol.75
, pp. 554-565
-
-
Chen, J.1
Lee, H.J.2
Wu, X.3
Huo, L.4
Kim, S.J.5
Xu, L.6
-
96
-
-
84919903877
-
Acetate is a bioenergetic substrate for human glioblastoma and brain metastases
-
Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 2014;159:1603-14.
-
(2014)
Cell
, vol.159
, pp. 1603-1614
-
-
Mashimo, T.1
Pichumani, K.2
Vemireddy, V.3
Hatanpaa, K.J.4
Singh, D.K.5
Sirasanagandla, S.6
-
97
-
-
84922161741
-
Extracellular metabolic energetics can promote cancer progression
-
Loo JM, Scherl A, Nguyen A, Man FY, Weinberg E, Zeng Z, et al. Extracellular metabolic energetics can promote cancer progression. Cell 2015;160:393-406.
-
(2015)
Cell
, vol.160
, pp. 393-406
-
-
Loo, J.M.1
Scherl, A.2
Nguyen, A.3
Man, F.Y.4
Weinberg, E.5
Zeng, Z.6
-
98
-
-
84929293007
-
Extracellular vesicles as modulators of the cancer microenvironment
-
Webber J, Yeung V, Clayton A. Extracellular vesicles as modulators of the cancer microenvironment. Semin Cell Dev Biol 2015;40:27-34.
-
(2015)
Semin Cell Dev Biol
, vol.40
, pp. 27-34
-
-
Webber, J.1
Yeung, V.2
Clayton, A.3
-
99
-
-
84923194150
-
Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis
-
Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 2015;17:183-94.
-
(2015)
Nat Cell Biol
, vol.17
, pp. 183-194
-
-
Fong, M.Y.1
Zhou, W.2
Liu, L.3
Alontaga, A.Y.4
Chandra, M.5
Ashby, J.6
|