-
1
-
-
84918583229
-
Metformin directly acts on mitochondria to alter cellular bioenergetics
-
Andrzejewski S, Gravel SP, Pollak M, St-Pierre J, Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer & metabolism. 2014;2:12.
-
(2014)
Cancer & metabolism
, vol.2
, pp. 12
-
-
Andrzejewski, S.1
Gravel, S.P.2
Pollak, M.3
St-Pierre, J.4
-
2
-
-
84907370814
-
Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria
-
Bridges HR, Jones AJ, Pollak MN, Hirst J, Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J. 2014;462(3):475–87. doi: 10.1042/BJ20140620 25017630
-
(2014)
Biochem J
, vol.462
, Issue.3
, pp. 475-487
-
-
Bridges, H.R.1
Jones, A.J.2
Pollak, M.N.3
Hirst, J.4
-
3
-
-
0034659785
-
Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
-
Owen MR, Doran E, Halestrap AP, Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348 Pt 3:607–14. Epub 2000/06/07. 10839993
-
(2000)
Biochem J
, vol.348
, Issue.Pt 3
, pp. 607-614
-
-
Owen, M.R.1
Doran, E.2
Halestrap, A.P.3
-
4
-
-
0034614420
-
Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I
-
El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X, Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275(1):223–8. Epub 2000/01/05. 10617608
-
(2000)
J Biol Chem
, vol.275
, Issue.1
, pp. 223-228
-
-
El-Mir, M.Y.1
Nogueira, V.2
Fontaine, E.3
Averet, N.4
Rigoulet, M.5
Leverve, X.6
-
5
-
-
0032568257
-
Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus
-
Inzucchi SE, Maggs DG, Spollett GR, Page SL, Rife FS, Walton V, et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med. 1998;338(13):867–72. Epub 1998/03/27. 9516221
-
(1998)
N Engl J Med
, vol.338
, Issue.13
, pp. 867-872
-
-
Inzucchi, S.E.1
Maggs, D.G.2
Spollett, G.R.3
Page, S.L.4
Rife, F.S.5
Walton, V.6
-
6
-
-
0029133235
-
Metabolic effects of metformin in non-insulin-dependent diabetes mellitus
-
Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE, Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333(9):550–4. Epub 1995/08/31. 7623903
-
(1995)
N Engl J Med
, vol.333
, Issue.9
, pp. 550-554
-
-
Stumvoll, M.1
Nurjhan, N.2
Perriello, G.3
Dailey, G.4
Gerich, J.E.5
-
7
-
-
0028342565
-
Acute antihyperglycemic mechanisms of metformin in NIDDM. Evidence for suppression of lipid oxidation and hepatic glucose production
-
Perriello G, Misericordia P, Volpi E, Santucci A, Santucci C, Ferrannini E, et al. Acute antihyperglycemic mechanisms of metformin in NIDDM. Evidence for suppression of lipid oxidation and hepatic glucose production. Diabetes. 1994;43(7):920–8. Epub 1994/07/01. 8013758
-
(1994)
Diabetes
, vol.43
, Issue.7
, pp. 920-928
-
-
Perriello, G.1
Misericordia, P.2
Volpi, E.3
Santucci, A.4
Santucci, C.5
Ferrannini, E.6
-
8
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310(5754):1642–6. Epub 2005/11/26. 16308421
-
(2005)
Science
, vol.310
, Issue.5754
, pp. 1642-1646
-
-
Shaw, R.J.1
Lamia, K.A.2
Vasquez, D.3
Koo, S.H.4
Bardeesy, N.5
Depinho, R.A.6
-
9
-
-
20444461067
-
Metformin and reduced risk of cancer in diabetic patients
-
Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD, Metformin and reduced risk of cancer in diabetic patients. Bmj. 2005;330(7503):1304–5. Epub 2005/04/26. 15849206
-
(2005)
Bmj
, vol.330
, Issue.7503
, pp. 1304-1305
-
-
Evans, J.M.1
Donnelly, L.A.2
Emslie-Smith, A.M.3
Alessi, D.R.4
Morris, A.D.5
-
10
-
-
84883165443
-
Repositioning metformin for cancer prevention and treatment
-
Quinn BJ, Kitagawa H, Memmott RM, Gills JJ, Dennis PA, Repositioning metformin for cancer prevention and treatment. Trends in endocrinology and metabolism: TEM. 2013;24(9):469–80. Epub 2013/06/19. doi: 10.1016/j.tem.2013.05.004 23773243
-
(2013)
Trends in endocrinology and metabolism: TEM
, vol.24
, Issue.9
, pp. 469-480
-
-
Quinn, B.J.1
Kitagawa, H.2
Memmott, R.M.3
Gills, J.J.4
Dennis, P.A.5
-
11
-
-
84866322945
-
Investigating metformin for cancer prevention and treatment: the end of the beginning
-
Pollak MN, Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer discovery. 2012;2(9):778–90. doi: 10.1158/2159-8290.CD-12-0263 22926251
-
(2012)
Cancer discovery
, vol.2
, Issue.9
, pp. 778-790
-
-
Pollak, M.N.1
-
12
-
-
84900468450
-
Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis
-
Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife. 2014;3:e02242. doi: 10.7554/eLife.02242 24843020
-
(2014)
eLife
, vol.3
, pp. e02242
-
-
Wheaton, W.W.1
Weinberg, S.E.2
Hamanaka, R.B.3
Soberanes, S.4
Sullivan, L.B.5
Anso, E.6
-
13
-
-
67749111502
-
The LKB1-AMPK pathway: metabolism and growth control in tumour suppression
-
Shackelford DB, Shaw RJ, The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9(8):563–75. Epub 2009/07/25. doi: 10.1038/nrc2676 19629071
-
(2009)
Nat Rev Cancer
, vol.9
, Issue.8
, pp. 563-575
-
-
Shackelford, D.B.1
Shaw, R.J.2
-
14
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–74. 11602624
-
(2001)
J Clin Invest
, vol.108
, Issue.8
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
Chen, Y.4
Shen, X.5
Fenyk-Melody, J.6
-
15
-
-
0037067666
-
The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways
-
Fryer LG, Parbu-Patel A, Carling D, The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem. 2002;277(28):25226–32. Epub 2002/05/08. 11994296
-
(2002)
J Biol Chem
, vol.277
, Issue.28
, pp. 25226-25232
-
-
Fryer, L.G.1
Parbu-Patel, A.2
Carling, D.3
-
16
-
-
0036324142
-
The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism
-
Hawley SA, Gadalla AE, Olsen GS, Hardie DG, The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes. 2002;51(8):2420–5. Epub 2002/07/30. 12145153
-
(2002)
Diabetes
, vol.51
, Issue.8
, pp. 2420-2425
-
-
Hawley, S.A.1
Gadalla, A.E.2
Olsen, G.S.3
Hardie, D.G.4
-
17
-
-
34547114031
-
Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth
-
Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007;67(14):6745–52. Epub 2007/07/20. 17638885
-
(2007)
Cancer Res
, vol.67
, Issue.14
, pp. 6745-6752
-
-
Buzzai, M.1
Jones, R.G.2
Amaravadi, R.K.3
Lum, J.J.4
DeBerardinis, R.J.5
Zhao, F.6
-
18
-
-
44449103256
-
Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice
-
Huang X, Wullschleger S, Shpiro N, McGuire VA, Sakamoto K, Woods YL, et al. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J. 2008;412(2):211–21. doi: 10.1042/BJ20080557 18387000
-
(2008)
Biochem J
, vol.412
, Issue.2
, pp. 211-221
-
-
Huang, X.1
Wullschleger, S.2
Shpiro, N.3
McGuire, V.A.4
Sakamoto, K.5
Woods, Y.L.6
-
19
-
-
77955287742
-
Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
-
Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010;11(5):390–401. doi: 10.1016/j.cmet.2010.03.014 20444419
-
(2010)
Cell Metab
, vol.11
, Issue.5
, pp. 390-401
-
-
Kalender, A.1
Selvaraj, A.2
Kim, S.Y.3
Gulati, P.4
Brule, S.5
Viollet, B.6
-
20
-
-
36348950449
-
Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells
-
Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N, Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 2007;67(22):10804–12. Epub 2007/11/17. 18006825
-
(2007)
Cancer Res
, vol.67
, Issue.22
, pp. 10804-10812
-
-
Dowling, R.J.1
Zakikhani, M.2
Fantus, I.G.3
Pollak, M.4
Sonenberg, N.5
-
21
-
-
84893361058
-
Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK
-
Liu X, Chhipa RR, Pooya S, Wortman M, Yachyshin S, Chow LM, et al. Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc Natl Acad Sci U S A. 2014;111(4):E435–44. Epub 2014/01/30. doi: 10.1073/pnas.1311121111 24474794
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, Issue.4
, pp. E435-44
-
-
Liu, X.1
Chhipa, R.R.2
Pooya, S.3
Wortman, M.4
Yachyshin, S.5
Chow, L.M.6
-
22
-
-
33751284806
-
Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells
-
Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M, Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 2006;66(21):10269–73. 17062558
-
(2006)
Cancer Res
, vol.66
, Issue.21
, pp. 10269-10273
-
-
Zakikhani, M.1
Dowling, R.2
Fantus, I.G.3
Sonenberg, N.4
Pollak, M.5
-
23
-
-
60749108023
-
The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells
-
Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA, The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells. Cell Cycle. 2009;8(1):88–96. 19106626
-
(2009)
Cell Cycle
, vol.8
, Issue.1
, pp. 88-96
-
-
Vazquez-Martin, A.1
Oliveras-Ferraros, C.2
Menendez, J.A.3
-
24
-
-
84942588417
-
Differential effects of AMPK agonists on cell growth and metabolism
-
Vincent EE, Coelho PP, Blagih J, Griss T, Viollet B, Jones RG, Differential effects of AMPK agonists on cell growth and metabolism. Oncogene. 2014. Epub 2014/09/23.
-
(2014)
Oncogene
-
-
Vincent, E.E.1
Coelho, P.P.2
Blagih, J.3
Griss, T.4
Viollet, B.5
Jones, R.G.6
-
25
-
-
33846317064
-
Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells
-
Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 2007;292(1):C125–36. Epub 2006/09/15. 16971499
-
(2007)
Am J Physiol Cell Physiol
, vol.292
, Issue.1
, pp. C125-36
-
-
Wu, M.1
Neilson, A.2
Swift, A.L.3
Moran, R.4
Tamagnine, J.5
Parslow, D.6
-
26
-
-
84872159532
-
AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo
-
Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013;17(1):113–24. doi: 10.1016/j.cmet.2012.12.001 23274086
-
(2013)
Cell Metab
, vol.17
, Issue.1
, pp. 113-124
-
-
Faubert, B.1
Boily, G.2
Izreig, S.3
Griss, T.4
Samborska, B.5
Dong, Z.6
-
27
-
-
33745840203
-
5'-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments
-
Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J, et al. 5'-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol. 2006;26(14):5336–47. Epub 2006/07/01. 16809770
-
(2006)
Mol Cell Biol
, vol.26
, Issue.14
, pp. 5336-5347
-
-
Laderoute, K.R.1
Amin, K.2
Calaoagan, J.M.3
Knapp, M.4
Le, T.5
Orduna, J.6
-
28
-
-
1542618348
-
The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
-
Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A. 2004;101(10):3329–35. 14985505
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, Issue.10
, pp. 3329-3335
-
-
Shaw, R.J.1
Kosmatka, M.2
Bardeesy, N.3
Hurley, R.L.4
Witters, L.A.5
DePinho, R.A.6
-
29
-
-
33644886769
-
Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation
-
Tzatsos A, Kandror KV, Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol. 2006;26(1):63–76. Epub 2005/12/16. 16354680
-
(2006)
Mol Cell Biol
, vol.26
, Issue.1
, pp. 63-76
-
-
Tzatsos, A.1
Kandror, K.V.2
-
30
-
-
77952967459
-
mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs
-
Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science. 2010;328(5982):1172–6. Epub 2010/05/29. doi: 10.1126/science.1187532 20508131
-
(2010)
Science
, vol.328
, Issue.5982
, pp. 1172-1176
-
-
Dowling, R.J.1
Topisirovic, I.2
Alain, T.3
Bidinosti, M.4
Fonseca, B.D.5
Petroulakis, E.6
-
31
-
-
84880876347
-
Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism
-
Fendt SM, Bell EL, Keibler MA, Davidson SM, Wirth GJ, Fiske B, et al. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res. 2013;73(14):4429–38. Epub 2013/05/21. doi: 10.1158/0008-5472.CAN-13-0080 23687346
-
(2013)
Cancer Res
, vol.73
, Issue.14
, pp. 4429-4438
-
-
Fendt, S.M.1
Bell, E.L.2
Keibler, M.A.3
Davidson, S.M.4
Wirth, G.J.5
Fiske, B.6
-
32
-
-
84855987831
-
Reductive carboxylation supports growth in tumour cells with defective mitochondria
-
Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. 2012;481(7381):385–8.
-
(2012)
Nature
, vol.481
, Issue.7381
, pp. 385-388
-
-
Mullen, A.R.1
Wheaton, W.W.2
Jin, E.S.3
Chen, P.H.4
Sullivan, L.B.5
Cheng, T.6
-
33
-
-
26644441651
-
ATP citrate lyase inhibition can suppress tumor cell growth
-
Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell. 2005;8(4):311–21. 16226706
-
(2005)
Cancer Cell
, vol.8
, Issue.4
, pp. 311-321
-
-
Hatzivassiliou, G.1
Zhao, F.2
Bauer, D.E.3
Andreadis, C.4
Shaw, A.N.5
Dhanak, D.6
-
34
-
-
83755178091
-
Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability
-
Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011;108(49):19611–6. Epub 2011/11/23. doi: 10.1073/pnas.1117773108 22106302
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, Issue.49
, pp. 19611-19616
-
-
Wise, D.R.1
Ward, P.S.2
Shay, J.E.3
Cross, J.R.4
Gruber, J.J.5
Sachdeva, U.M.6
-
35
-
-
84856014884
-
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
-
Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2012;481(7381):380–4. Epub 2011/11/22.
-
(2012)
Nature
, vol.481
, Issue.7381
, pp. 380-384
-
-
Metallo, C.M.1
Gameiro, P.A.2
Bell, E.L.3
Mattaini, K.R.4
Yang, J.5
Hiller, K.6
-
36
-
-
77952737658
-
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
-
Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010;107(19):8788–93. doi: 10.1073/pnas.1003428107 20421486
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.19
, pp. 8788-8793
-
-
Weinberg, F.1
Hamanaka, R.2
Wheaton, W.W.3
Weinberg, S.4
Joseph, J.5
Lopez, M.6
-
37
-
-
0033767317
-
An out-of-frame cytochrome b gene deletion from a patient with parkinsonism is associated with impaired complex III assembly and an increase in free radical production
-
Rana M, de Coo I, Diaz F, Smeets H, Moraes CT, An out-of-frame cytochrome b gene deletion from a patient with parkinsonism is associated with impaired complex III assembly and an increase in free radical production. Ann Neurol. 2000;48(5):774–81. 11079541
-
(2000)
Ann Neurol
, vol.48
, Issue.5
, pp. 774-781
-
-
Rana, M.1
de Coo, I.2
Diaz, F.3
Smeets, H.4
Moraes, C.T.5
-
38
-
-
84923148982
-
Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate
-
Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD, Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer & metabolism. 2014;2:23. Epub 2015/02/12.
-
(2014)
Cancer & metabolism
, vol.2
, pp. 23
-
-
Kamphorst, J.J.1
Chung, M.K.2
Fan, J.3
Rabinowitz, J.D.4
-
39
-
-
84897537717
-
Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides
-
Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B, et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature. 2014;508(7494):108–12. doi: 10.1038/nature13110 24670634
-
(2014)
Nature
, vol.508
, Issue.7494
, pp. 108-112
-
-
Birsoy, K.1
Possemato, R.2
Lorbeer, F.K.3
Bayraktar, E.C.4
Thiru, P.5
Yucel, B.6
-
40
-
-
80054046029
-
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
-
Lunt SY, Vander Heiden MG, Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual review of cell and developmental biology. 2011;27:441–64. Epub 2011/10/12. doi: 10.1146/annurev-cellbio-092910-154237 21985671
-
(2011)
Annual review of cell and developmental biology
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
41
-
-
43749083041
-
Brick by brick: metabolism and tumor cell growth
-
Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB, Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18(1):54–61. Epub 2008/04/05. doi: 10.1016/j.gde.2008.02.003 18387799
-
(2008)
Curr Opin Genet Dev
, vol.18
, Issue.1
, pp. 54-61
-
-
Deberardinis, R.J.1
Sayed, N.2
Ditsworth, D.3
Thompson, C.B.4
-
42
-
-
85069238542
-
Mitochondria as biosynthetic factories for cancer proliferation
-
Ahn CS, Metallo CM, Mitochondria as biosynthetic factories for cancer proliferation. Cancer & metabolism. 2015;3(1):1.
-
(2015)
Cancer & metabolism
, vol.3
, Issue.1
, pp. 1
-
-
Ahn, C.S.1
Metallo, C.M.2
-
43
-
-
84864532063
-
Metformin is synthetically lethal with glucose withdrawal in cancer cells
-
Menendez JA, Oliveras-Ferraros C, Cufi S, Corominas-Faja B, Joven J, Martin-Castillo B, et al. Metformin is synthetically lethal with glucose withdrawal in cancer cells. Cell Cycle. 2012;11(15):2782–92. doi: 10.4161/cc.20948 22809961
-
(2012)
Cell Cycle
, vol.11
, Issue.15
, pp. 2782-2792
-
-
Menendez, J.A.1
Oliveras-Ferraros, C.2
Cufi, S.3
Corominas-Faja, B.4
Joven, J.5
Martin-Castillo, B.6
-
44
-
-
84887415150
-
mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
-
Morita M, Gravel SP, Chenard V, Sikstrom K, Zheng L, Alain T, et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 2013;18(5):698–711. Epub 2013/11/12. doi: 10.1016/j.cmet.2013.10.001 24206664
-
(2013)
Cell Metab
, vol.18
, Issue.5
, pp. 698-711
-
-
Morita, M.1
Gravel, S.P.2
Chenard, V.3
Sikstrom, K.4
Zheng, L.5
Alain, T.6
-
45
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39(2):171–83. Epub 2010/07/31. doi: 10.1016/j.molcel.2010.06.022 20670887
-
(2010)
Mol Cell
, vol.39
, Issue.2
, pp. 171-183
-
-
Duvel, K.1
Yecies, J.L.2
Menon, S.3
Raman, P.4
Lipovsky, A.I.5
Souza, A.L.6
-
46
-
-
84873584845
-
LKB1 Inactivation Dictates Therapeutic Response of Non-Small Cell Lung Cancer to the Metabolism Drug Phenformin
-
Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M, et al. LKB1 Inactivation Dictates Therapeutic Response of Non-Small Cell Lung Cancer to the Metabolism Drug Phenformin. Cancer Cell. 2013;23(2):143–58. Epub 2013/01/29. doi: 10.1016/j.ccr.2012.12.008 23352126
-
(2013)
Cancer Cell
, vol.23
, Issue.2
, pp. 143-158
-
-
Shackelford, D.B.1
Abt, E.2
Gerken, L.3
Vasquez, D.S.4
Seki, A.5
Leblanc, M.6
-
47
-
-
77956294919
-
Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation
-
Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B, et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science. 2010;329(5996):1201–5. Epub 2010/07/22. doi: 10.1126/science.1191241 20647423
-
(2010)
Science
, vol.329
, Issue.5996
, pp. 1201-1205
-
-
Bungard, D.1
Fuerth, B.J.2
Zeng, P.Y.3
Faubert, B.4
Maas, N.L.5
Viollet, B.6
-
48
-
-
84859167179
-
Deregulated MYC expression induces dependence upon AMPK-related kinase 5
-
Liu L, Ulbrich J, Muller J, Wustefeld T, Aeberhard L, Kress TR, et al. Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature. 2012;483(7391):608–12. Epub 2012/03/31. doi: 10.1038/nature10927 22460906
-
(2012)
Nature
, vol.483
, Issue.7391
, pp. 608-612
-
-
Liu, L.1
Ulbrich, J.2
Muller, J.3
Wustefeld, T.4
Aeberhard, L.5
Kress, T.R.6
-
49
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB, The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20. Epub 2008/01/08. doi: 10.1016/j.cmet.2007.10.002 18177721
-
(2008)
Cell Metab
, vol.7
, Issue.1
, pp. 11-20
-
-
DeBerardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
Thompson, C.B.4
-
50
-
-
30544433533
-
ATP citrate lyase is an important component of cell growth and transformation
-
Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB, ATP citrate lyase is an important component of cell growth and transformation. Oncogene. 2005;24(41):6314–22. 16007201
-
(2005)
Oncogene
, vol.24
, Issue.41
, pp. 6314-6322
-
-
Bauer, D.E.1
Hatzivassiliou, G.2
Zhao, F.3
Andreadis, C.4
Thompson, C.B.5
-
51
-
-
84881329062
-
Reductive glutamine metabolism is a function of the alpha-ketoglutarate to citrate ratio in cells
-
Fendt SM, Bell EL, Keibler MA, Olenchock BA, Mayers JR, Wasylenko TM, et al. Reductive glutamine metabolism is a function of the alpha-ketoglutarate to citrate ratio in cells. Nature communications. 2013;4:2236. Epub 2013/08/01. doi: 10.1038/ncomms3236 23900562
-
(2013)
Nature communications
, vol.4
, pp. 2236
-
-
Fendt, S.M.1
Bell, E.L.2
Keibler, M.A.3
Olenchock, B.A.4
Mayers, J.R.5
Wasylenko, T.M.6
-
52
-
-
84887296747
-
Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma
-
Yuan P, Ito K, Perez-Lorenzo R, Del Guzzo C, Lee JH, Shen CH, et al. Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma. Proc Natl Acad Sci U S A. 2013;110(45):18226–31. Epub 2013/10/23. doi: 10.1073/pnas.1317577110 24145418
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, Issue.45
, pp. 18226-18231
-
-
Yuan, P.1
Ito, K.2
Perez-Lorenzo, R.3
Del Guzzo, C.4
Lee, J.H.5
Shen, C.H.6
-
53
-
-
84893465244
-
Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth
-
Sun RC, Denko NC, Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab. 2014;19(2):285–92. doi: 10.1016/j.cmet.2013.11.022 24506869
-
(2014)
Cell Metab
, vol.19
, Issue.2
, pp. 285-292
-
-
Sun, R.C.1
Denko, N.C.2
-
54
-
-
33644622570
-
HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
-
Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC, HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187–97. Epub 2006/03/07. 16517406
-
(2006)
Cell Metab
, vol.3
, Issue.3
, pp. 187-197
-
-
Papandreou, I.1
Cairns, R.A.2
Fontana, L.3
Lim, A.L.4
Denko, N.C.5
-
55
-
-
33644614520
-
HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
-
Kim JW, Tchernyshyov I, Semenza GL, Dang CV, HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85. Epub 2006/03/07. 16517405
-
(2006)
Cell Metab
, vol.3
, Issue.3
, pp. 177-185
-
-
Kim, J.W.1
Tchernyshyov, I.2
Semenza, G.L.3
Dang, C.V.4
-
56
-
-
84896714232
-
Metformin as an adjuvant drug against pediatric sarcomas: hypoxia limits therapeutic effects of the drug
-
Garofalo C, Capristo M, Manara MC, Mancarella C, Landuzzi L, Belfiore A, et al. Metformin as an adjuvant drug against pediatric sarcomas: hypoxia limits therapeutic effects of the drug. PLoS One. 2013;8(12):e83832. doi: 10.1371/journal.pone.0083832 24391834
-
(2013)
PLoS One
, vol.8
, Issue.12
, pp. e83832
-
-
Garofalo, C.1
Capristo, M.2
Manara, M.C.3
Mancarella, C.4
Landuzzi, L.5
Belfiore, A.6
-
57
-
-
20844449238
-
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
-
Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005;18(3):283–93. 15866171
-
(2005)
Mol Cell
, vol.18
, Issue.3
, pp. 283-293
-
-
Jones, R.G.1
Plas, D.R.2
Kubek, S.3
Buzzai, M.4
Mu, J.5
Xu, Y.6
-
58
-
-
84894359469
-
Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha
-
Faubert B, Vincent EE, Griss T, Samborska B, Izreig S, Svensson RU, et al. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha. Proc Natl Acad Sci U S A. 2014;111(7):2554–9. Epub 2014/02/20. doi: 10.1073/pnas.1312570111 24550282
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, Issue.7
, pp. 2554-2559
-
-
Faubert, B.1
Vincent, E.E.2
Griss, T.3
Samborska, B.4
Izreig, S.5
Svensson, R.U.6
-
59
-
-
84894237902
-
PGC-1alpha supports glutamine metabolism in breast cancer
-
McGuirk S, Gravel SP, Deblois G, Papadopoli DJ, Faubert B, Wegner A, et al. PGC-1alpha supports glutamine metabolism in breast cancer. Cancer & metabolism. 2013;1(1):22.
-
(2013)
Cancer & metabolism
, vol.1
, Issue.1
, pp. 22
-
-
McGuirk, S.1
Gravel, S.P.2
Deblois, G.3
Papadopoli, D.J.4
Faubert, B.5
Wegner, A.6
-
60
-
-
84901345781
-
LKB1 is a central regulator of tumor initiation and pro-growth metabolism in ErbB2-mediated breast cancer
-
Dupuy F, Griss T, Blagih J, Bridon G, Avizonis D, Ling C, et al. LKB1 is a central regulator of tumor initiation and pro-growth metabolism in ErbB2-mediated breast cancer. Cancer & metabolism. 2013;1(1):18. Epub 2013/11/28.
-
(2013)
Cancer & metabolism
, vol.1
, Issue.1
, pp. 18
-
-
Dupuy, F.1
Griss, T.2
Blagih, J.3
Bridon, G.4
Avizonis, D.5
Ling, C.6
-
61
-
-
78651052311
-
Preparation of lipide extracts from brain tissue
-
Folch J, Ascoli I, Lees M, Meath JA, Le BN, Preparation of lipide extracts from brain tissue. J Biol Chem. 1951;191(2):833–41. Epub 1951/08/01. 14861228
-
(1951)
J Biol Chem
, vol.191
, Issue.2
, pp. 833-841
-
-
Folch, J.1
Ascoli, I.2
Lees, M.3
Meath, J.A.4
Le, B.N.5
-
62
-
-
0026794983
-
Isotopomer spectral analysis of triglyceride fatty acid synthesis in 3T3-L1 cells
-
Kharroubi AT, Masterson TM, Aldaghlas TA, Kennedy KA, Kelleher JK, Isotopomer spectral analysis of triglyceride fatty acid synthesis in 3T3-L1 cells. The American journal of physiology. 1992;263(4 Pt 1):E667–75. 1415685
-
(1992)
The American journal of physiology
, vol.263
, Issue.4
, pp. E667-75
-
-
Kharroubi, A.T.1
Masterson, T.M.2
Aldaghlas, T.A.3
Kennedy, K.A.4
Kelleher, J.K.5
-
63
-
-
84899511589
-
INCA: a computational platform for isotopically non-stationary metabolic flux analysis
-
Young JD, INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics. 2014;30(9):1333–5. doi: 10.1093/bioinformatics/btu015 24413674
-
(2014)
Bioinformatics
, vol.30
, Issue.9
, pp. 1333-1335
-
-
Young, J.D.1
-
64
-
-
33745155105
-
Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements
-
Antoniewicz MR, Kelleher JK, Stephanopoulos G, Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng. 2006;8(4):324–37. 16631402
-
(2006)
Metab Eng
, vol.8
, Issue.4
, pp. 324-337
-
-
Antoniewicz, M.R.1
Kelleher, J.K.2
Stephanopoulos, G.3
|