메뉴 건너뛰기




Volumn 13, Issue 12, 2015, Pages

Metformin Antagonizes Cancer Cell Proliferation by Suppressing Mitochondrial-Dependent Biosynthesis

Author keywords

[No Author keywords available]

Indexed keywords

CITRIC ACID; GLUCOSE; GLUTAMINE; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; METFORMIN; PROTEIN KINASE LKB1; AMPK ALPHA1 SUBUNIT, MOUSE; AMPK ALPHA2 SUBUNIT, MOUSE; ANTIDIABETIC AGENT; ANTINEOPLASTIC AGENT; CARRIER PROTEIN; EIF4EBP1 PROTEIN, MOUSE; EIF4EBP2 PROTEIN, MOUSE; INITIATION FACTOR; MULTIENZYME COMPLEX; PHOSPHOPROTEIN; PROTEIN SERINE THREONINE KINASE; STK11 PROTEIN, MOUSE;

EID: 84953322856     PISSN: 15449173     EISSN: 15457885     Source Type: Journal    
DOI: 10.1371/journal.pbio.1002309     Document Type: Article
Times cited : (174)

References (64)
  • 2
    • 84907370814 scopus 로고    scopus 로고
    • Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria
    • Bridges HR, Jones AJ, Pollak MN, Hirst J, Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J. 2014;462(3):475–87. doi: 10.1042/BJ20140620 25017630
    • (2014) Biochem J , vol.462 , Issue.3 , pp. 475-487
    • Bridges, H.R.1    Jones, A.J.2    Pollak, M.N.3    Hirst, J.4
  • 3
    • 0034659785 scopus 로고    scopus 로고
    • Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
    • Owen MR, Doran E, Halestrap AP, Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348 Pt 3:607–14. Epub 2000/06/07. 10839993
    • (2000) Biochem J , vol.348 , Issue.Pt 3 , pp. 607-614
    • Owen, M.R.1    Doran, E.2    Halestrap, A.P.3
  • 4
    • 0034614420 scopus 로고    scopus 로고
    • Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I
    • El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X, Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275(1):223–8. Epub 2000/01/05. 10617608
    • (2000) J Biol Chem , vol.275 , Issue.1 , pp. 223-228
    • El-Mir, M.Y.1    Nogueira, V.2    Fontaine, E.3    Averet, N.4    Rigoulet, M.5    Leverve, X.6
  • 5
    • 0032568257 scopus 로고    scopus 로고
    • Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus
    • Inzucchi SE, Maggs DG, Spollett GR, Page SL, Rife FS, Walton V, et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med. 1998;338(13):867–72. Epub 1998/03/27. 9516221
    • (1998) N Engl J Med , vol.338 , Issue.13 , pp. 867-872
    • Inzucchi, S.E.1    Maggs, D.G.2    Spollett, G.R.3    Page, S.L.4    Rife, F.S.5    Walton, V.6
  • 6
    • 0029133235 scopus 로고
    • Metabolic effects of metformin in non-insulin-dependent diabetes mellitus
    • Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE, Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333(9):550–4. Epub 1995/08/31. 7623903
    • (1995) N Engl J Med , vol.333 , Issue.9 , pp. 550-554
    • Stumvoll, M.1    Nurjhan, N.2    Perriello, G.3    Dailey, G.4    Gerich, J.E.5
  • 7
    • 0028342565 scopus 로고
    • Acute antihyperglycemic mechanisms of metformin in NIDDM. Evidence for suppression of lipid oxidation and hepatic glucose production
    • Perriello G, Misericordia P, Volpi E, Santucci A, Santucci C, Ferrannini E, et al. Acute antihyperglycemic mechanisms of metformin in NIDDM. Evidence for suppression of lipid oxidation and hepatic glucose production. Diabetes. 1994;43(7):920–8. Epub 1994/07/01. 8013758
    • (1994) Diabetes , vol.43 , Issue.7 , pp. 920-928
    • Perriello, G.1    Misericordia, P.2    Volpi, E.3    Santucci, A.4    Santucci, C.5    Ferrannini, E.6
  • 8
    • 28844433635 scopus 로고    scopus 로고
    • The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
    • Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310(5754):1642–6. Epub 2005/11/26. 16308421
    • (2005) Science , vol.310 , Issue.5754 , pp. 1642-1646
    • Shaw, R.J.1    Lamia, K.A.2    Vasquez, D.3    Koo, S.H.4    Bardeesy, N.5    Depinho, R.A.6
  • 9
    • 20444461067 scopus 로고    scopus 로고
    • Metformin and reduced risk of cancer in diabetic patients
    • Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD, Metformin and reduced risk of cancer in diabetic patients. Bmj. 2005;330(7503):1304–5. Epub 2005/04/26. 15849206
    • (2005) Bmj , vol.330 , Issue.7503 , pp. 1304-1305
    • Evans, J.M.1    Donnelly, L.A.2    Emslie-Smith, A.M.3    Alessi, D.R.4    Morris, A.D.5
  • 11
    • 84866322945 scopus 로고    scopus 로고
    • Investigating metformin for cancer prevention and treatment: the end of the beginning
    • Pollak MN, Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer discovery. 2012;2(9):778–90. doi: 10.1158/2159-8290.CD-12-0263 22926251
    • (2012) Cancer discovery , vol.2 , Issue.9 , pp. 778-790
    • Pollak, M.N.1
  • 12
    • 84900468450 scopus 로고    scopus 로고
    • Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis
    • Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife. 2014;3:e02242. doi: 10.7554/eLife.02242 24843020
    • (2014) eLife , vol.3 , pp. e02242
    • Wheaton, W.W.1    Weinberg, S.E.2    Hamanaka, R.B.3    Soberanes, S.4    Sullivan, L.B.5    Anso, E.6
  • 13
    • 67749111502 scopus 로고    scopus 로고
    • The LKB1-AMPK pathway: metabolism and growth control in tumour suppression
    • Shackelford DB, Shaw RJ, The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9(8):563–75. Epub 2009/07/25. doi: 10.1038/nrc2676 19629071
    • (2009) Nat Rev Cancer , vol.9 , Issue.8 , pp. 563-575
    • Shackelford, D.B.1    Shaw, R.J.2
  • 14
    • 0034773404 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in mechanism of metformin action
    • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–74. 11602624
    • (2001) J Clin Invest , vol.108 , Issue.8 , pp. 1167-1174
    • Zhou, G.1    Myers, R.2    Li, Y.3    Chen, Y.4    Shen, X.5    Fenyk-Melody, J.6
  • 15
    • 0037067666 scopus 로고    scopus 로고
    • The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways
    • Fryer LG, Parbu-Patel A, Carling D, The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem. 2002;277(28):25226–32. Epub 2002/05/08. 11994296
    • (2002) J Biol Chem , vol.277 , Issue.28 , pp. 25226-25232
    • Fryer, L.G.1    Parbu-Patel, A.2    Carling, D.3
  • 16
    • 0036324142 scopus 로고    scopus 로고
    • The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism
    • Hawley SA, Gadalla AE, Olsen GS, Hardie DG, The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes. 2002;51(8):2420–5. Epub 2002/07/30. 12145153
    • (2002) Diabetes , vol.51 , Issue.8 , pp. 2420-2425
    • Hawley, S.A.1    Gadalla, A.E.2    Olsen, G.S.3    Hardie, D.G.4
  • 17
    • 34547114031 scopus 로고    scopus 로고
    • Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth
    • Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007;67(14):6745–52. Epub 2007/07/20. 17638885
    • (2007) Cancer Res , vol.67 , Issue.14 , pp. 6745-6752
    • Buzzai, M.1    Jones, R.G.2    Amaravadi, R.K.3    Lum, J.J.4    DeBerardinis, R.J.5    Zhao, F.6
  • 18
    • 44449103256 scopus 로고    scopus 로고
    • Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice
    • Huang X, Wullschleger S, Shpiro N, McGuire VA, Sakamoto K, Woods YL, et al. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J. 2008;412(2):211–21. doi: 10.1042/BJ20080557 18387000
    • (2008) Biochem J , vol.412 , Issue.2 , pp. 211-221
    • Huang, X.1    Wullschleger, S.2    Shpiro, N.3    McGuire, V.A.4    Sakamoto, K.5    Woods, Y.L.6
  • 19
    • 77955287742 scopus 로고    scopus 로고
    • Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
    • Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010;11(5):390–401. doi: 10.1016/j.cmet.2010.03.014 20444419
    • (2010) Cell Metab , vol.11 , Issue.5 , pp. 390-401
    • Kalender, A.1    Selvaraj, A.2    Kim, S.Y.3    Gulati, P.4    Brule, S.5    Viollet, B.6
  • 20
    • 36348950449 scopus 로고    scopus 로고
    • Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells
    • Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N, Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 2007;67(22):10804–12. Epub 2007/11/17. 18006825
    • (2007) Cancer Res , vol.67 , Issue.22 , pp. 10804-10812
    • Dowling, R.J.1    Zakikhani, M.2    Fantus, I.G.3    Pollak, M.4    Sonenberg, N.5
  • 21
    • 84893361058 scopus 로고    scopus 로고
    • Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK
    • Liu X, Chhipa RR, Pooya S, Wortman M, Yachyshin S, Chow LM, et al. Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc Natl Acad Sci U S A. 2014;111(4):E435–44. Epub 2014/01/30. doi: 10.1073/pnas.1311121111 24474794
    • (2014) Proc Natl Acad Sci U S A , vol.111 , Issue.4 , pp. E435-44
    • Liu, X.1    Chhipa, R.R.2    Pooya, S.3    Wortman, M.4    Yachyshin, S.5    Chow, L.M.6
  • 22
    • 33751284806 scopus 로고    scopus 로고
    • Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells
    • Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M, Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 2006;66(21):10269–73. 17062558
    • (2006) Cancer Res , vol.66 , Issue.21 , pp. 10269-10273
    • Zakikhani, M.1    Dowling, R.2    Fantus, I.G.3    Sonenberg, N.4    Pollak, M.5
  • 23
    • 60749108023 scopus 로고    scopus 로고
    • The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells
    • Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA, The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells. Cell Cycle. 2009;8(1):88–96. 19106626
    • (2009) Cell Cycle , vol.8 , Issue.1 , pp. 88-96
    • Vazquez-Martin, A.1    Oliveras-Ferraros, C.2    Menendez, J.A.3
  • 25
    • 33846317064 scopus 로고    scopus 로고
    • Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells
    • Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 2007;292(1):C125–36. Epub 2006/09/15. 16971499
    • (2007) Am J Physiol Cell Physiol , vol.292 , Issue.1 , pp. C125-36
    • Wu, M.1    Neilson, A.2    Swift, A.L.3    Moran, R.4    Tamagnine, J.5    Parslow, D.6
  • 26
    • 84872159532 scopus 로고    scopus 로고
    • AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo
    • Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013;17(1):113–24. doi: 10.1016/j.cmet.2012.12.001 23274086
    • (2013) Cell Metab , vol.17 , Issue.1 , pp. 113-124
    • Faubert, B.1    Boily, G.2    Izreig, S.3    Griss, T.4    Samborska, B.5    Dong, Z.6
  • 27
    • 33745840203 scopus 로고    scopus 로고
    • 5'-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments
    • Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J, et al. 5'-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol. 2006;26(14):5336–47. Epub 2006/07/01. 16809770
    • (2006) Mol Cell Biol , vol.26 , Issue.14 , pp. 5336-5347
    • Laderoute, K.R.1    Amin, K.2    Calaoagan, J.M.3    Knapp, M.4    Le, T.5    Orduna, J.6
  • 28
    • 1542618348 scopus 로고    scopus 로고
    • The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
    • Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A. 2004;101(10):3329–35. 14985505
    • (2004) Proc Natl Acad Sci U S A , vol.101 , Issue.10 , pp. 3329-3335
    • Shaw, R.J.1    Kosmatka, M.2    Bardeesy, N.3    Hurley, R.L.4    Witters, L.A.5    DePinho, R.A.6
  • 29
    • 33644886769 scopus 로고    scopus 로고
    • Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation
    • Tzatsos A, Kandror KV, Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol. 2006;26(1):63–76. Epub 2005/12/16. 16354680
    • (2006) Mol Cell Biol , vol.26 , Issue.1 , pp. 63-76
    • Tzatsos, A.1    Kandror, K.V.2
  • 30
    • 77952967459 scopus 로고    scopus 로고
    • mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs
    • Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science. 2010;328(5982):1172–6. Epub 2010/05/29. doi: 10.1126/science.1187532 20508131
    • (2010) Science , vol.328 , Issue.5982 , pp. 1172-1176
    • Dowling, R.J.1    Topisirovic, I.2    Alain, T.3    Bidinosti, M.4    Fonseca, B.D.5    Petroulakis, E.6
  • 31
    • 84880876347 scopus 로고    scopus 로고
    • Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism
    • Fendt SM, Bell EL, Keibler MA, Davidson SM, Wirth GJ, Fiske B, et al. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res. 2013;73(14):4429–38. Epub 2013/05/21. doi: 10.1158/0008-5472.CAN-13-0080 23687346
    • (2013) Cancer Res , vol.73 , Issue.14 , pp. 4429-4438
    • Fendt, S.M.1    Bell, E.L.2    Keibler, M.A.3    Davidson, S.M.4    Wirth, G.J.5    Fiske, B.6
  • 32
    • 84855987831 scopus 로고    scopus 로고
    • Reductive carboxylation supports growth in tumour cells with defective mitochondria
    • Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. 2012;481(7381):385–8.
    • (2012) Nature , vol.481 , Issue.7381 , pp. 385-388
    • Mullen, A.R.1    Wheaton, W.W.2    Jin, E.S.3    Chen, P.H.4    Sullivan, L.B.5    Cheng, T.6
  • 34
    • 83755178091 scopus 로고    scopus 로고
    • Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability
    • Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011;108(49):19611–6. Epub 2011/11/23. doi: 10.1073/pnas.1117773108 22106302
    • (2011) Proc Natl Acad Sci U S A , vol.108 , Issue.49 , pp. 19611-19616
    • Wise, D.R.1    Ward, P.S.2    Shay, J.E.3    Cross, J.R.4    Gruber, J.J.5    Sachdeva, U.M.6
  • 35
    • 84856014884 scopus 로고    scopus 로고
    • Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
    • Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2012;481(7381):380–4. Epub 2011/11/22.
    • (2012) Nature , vol.481 , Issue.7381 , pp. 380-384
    • Metallo, C.M.1    Gameiro, P.A.2    Bell, E.L.3    Mattaini, K.R.4    Yang, J.5    Hiller, K.6
  • 36
    • 77952737658 scopus 로고    scopus 로고
    • Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
    • Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010;107(19):8788–93. doi: 10.1073/pnas.1003428107 20421486
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.19 , pp. 8788-8793
    • Weinberg, F.1    Hamanaka, R.2    Wheaton, W.W.3    Weinberg, S.4    Joseph, J.5    Lopez, M.6
  • 37
    • 0033767317 scopus 로고    scopus 로고
    • An out-of-frame cytochrome b gene deletion from a patient with parkinsonism is associated with impaired complex III assembly and an increase in free radical production
    • Rana M, de Coo I, Diaz F, Smeets H, Moraes CT, An out-of-frame cytochrome b gene deletion from a patient with parkinsonism is associated with impaired complex III assembly and an increase in free radical production. Ann Neurol. 2000;48(5):774–81. 11079541
    • (2000) Ann Neurol , vol.48 , Issue.5 , pp. 774-781
    • Rana, M.1    de Coo, I.2    Diaz, F.3    Smeets, H.4    Moraes, C.T.5
  • 38
    • 84923148982 scopus 로고    scopus 로고
    • Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate
    • Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD, Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer & metabolism. 2014;2:23. Epub 2015/02/12.
    • (2014) Cancer & metabolism , vol.2 , pp. 23
    • Kamphorst, J.J.1    Chung, M.K.2    Fan, J.3    Rabinowitz, J.D.4
  • 39
    • 84897537717 scopus 로고    scopus 로고
    • Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides
    • Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B, et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature. 2014;508(7494):108–12. doi: 10.1038/nature13110 24670634
    • (2014) Nature , vol.508 , Issue.7494 , pp. 108-112
    • Birsoy, K.1    Possemato, R.2    Lorbeer, F.K.3    Bayraktar, E.C.4    Thiru, P.5    Yucel, B.6
  • 40
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
    • Lunt SY, Vander Heiden MG, Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual review of cell and developmental biology. 2011;27:441–64. Epub 2011/10/12. doi: 10.1146/annurev-cellbio-092910-154237 21985671
    • (2011) Annual review of cell and developmental biology , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 41
    • 43749083041 scopus 로고    scopus 로고
    • Brick by brick: metabolism and tumor cell growth
    • Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB, Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18(1):54–61. Epub 2008/04/05. doi: 10.1016/j.gde.2008.02.003 18387799
    • (2008) Curr Opin Genet Dev , vol.18 , Issue.1 , pp. 54-61
    • Deberardinis, R.J.1    Sayed, N.2    Ditsworth, D.3    Thompson, C.B.4
  • 42
    • 85069238542 scopus 로고    scopus 로고
    • Mitochondria as biosynthetic factories for cancer proliferation
    • Ahn CS, Metallo CM, Mitochondria as biosynthetic factories for cancer proliferation. Cancer & metabolism. 2015;3(1):1.
    • (2015) Cancer & metabolism , vol.3 , Issue.1 , pp. 1
    • Ahn, C.S.1    Metallo, C.M.2
  • 44
    • 84887415150 scopus 로고    scopus 로고
    • mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
    • Morita M, Gravel SP, Chenard V, Sikstrom K, Zheng L, Alain T, et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 2013;18(5):698–711. Epub 2013/11/12. doi: 10.1016/j.cmet.2013.10.001 24206664
    • (2013) Cell Metab , vol.18 , Issue.5 , pp. 698-711
    • Morita, M.1    Gravel, S.P.2    Chenard, V.3    Sikstrom, K.4    Zheng, L.5    Alain, T.6
  • 45
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39(2):171–83. Epub 2010/07/31. doi: 10.1016/j.molcel.2010.06.022 20670887
    • (2010) Mol Cell , vol.39 , Issue.2 , pp. 171-183
    • Duvel, K.1    Yecies, J.L.2    Menon, S.3    Raman, P.4    Lipovsky, A.I.5    Souza, A.L.6
  • 46
    • 84873584845 scopus 로고    scopus 로고
    • LKB1 Inactivation Dictates Therapeutic Response of Non-Small Cell Lung Cancer to the Metabolism Drug Phenformin
    • Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M, et al. LKB1 Inactivation Dictates Therapeutic Response of Non-Small Cell Lung Cancer to the Metabolism Drug Phenformin. Cancer Cell. 2013;23(2):143–58. Epub 2013/01/29. doi: 10.1016/j.ccr.2012.12.008 23352126
    • (2013) Cancer Cell , vol.23 , Issue.2 , pp. 143-158
    • Shackelford, D.B.1    Abt, E.2    Gerken, L.3    Vasquez, D.S.4    Seki, A.5    Leblanc, M.6
  • 47
    • 77956294919 scopus 로고    scopus 로고
    • Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation
    • Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B, et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science. 2010;329(5996):1201–5. Epub 2010/07/22. doi: 10.1126/science.1191241 20647423
    • (2010) Science , vol.329 , Issue.5996 , pp. 1201-1205
    • Bungard, D.1    Fuerth, B.J.2    Zeng, P.Y.3    Faubert, B.4    Maas, N.L.5    Viollet, B.6
  • 48
    • 84859167179 scopus 로고    scopus 로고
    • Deregulated MYC expression induces dependence upon AMPK-related kinase 5
    • Liu L, Ulbrich J, Muller J, Wustefeld T, Aeberhard L, Kress TR, et al. Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature. 2012;483(7391):608–12. Epub 2012/03/31. doi: 10.1038/nature10927 22460906
    • (2012) Nature , vol.483 , Issue.7391 , pp. 608-612
    • Liu, L.1    Ulbrich, J.2    Muller, J.3    Wustefeld, T.4    Aeberhard, L.5    Kress, T.R.6
  • 49
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
    • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB, The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20. Epub 2008/01/08. doi: 10.1016/j.cmet.2007.10.002 18177721
    • (2008) Cell Metab , vol.7 , Issue.1 , pp. 11-20
    • DeBerardinis, R.J.1    Lum, J.J.2    Hatzivassiliou, G.3    Thompson, C.B.4
  • 50
    • 30544433533 scopus 로고    scopus 로고
    • ATP citrate lyase is an important component of cell growth and transformation
    • Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB, ATP citrate lyase is an important component of cell growth and transformation. Oncogene. 2005;24(41):6314–22. 16007201
    • (2005) Oncogene , vol.24 , Issue.41 , pp. 6314-6322
    • Bauer, D.E.1    Hatzivassiliou, G.2    Zhao, F.3    Andreadis, C.4    Thompson, C.B.5
  • 51
    • 84881329062 scopus 로고    scopus 로고
    • Reductive glutamine metabolism is a function of the alpha-ketoglutarate to citrate ratio in cells
    • Fendt SM, Bell EL, Keibler MA, Olenchock BA, Mayers JR, Wasylenko TM, et al. Reductive glutamine metabolism is a function of the alpha-ketoglutarate to citrate ratio in cells. Nature communications. 2013;4:2236. Epub 2013/08/01. doi: 10.1038/ncomms3236 23900562
    • (2013) Nature communications , vol.4 , pp. 2236
    • Fendt, S.M.1    Bell, E.L.2    Keibler, M.A.3    Olenchock, B.A.4    Mayers, J.R.5    Wasylenko, T.M.6
  • 52
    • 84887296747 scopus 로고    scopus 로고
    • Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma
    • Yuan P, Ito K, Perez-Lorenzo R, Del Guzzo C, Lee JH, Shen CH, et al. Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma. Proc Natl Acad Sci U S A. 2013;110(45):18226–31. Epub 2013/10/23. doi: 10.1073/pnas.1317577110 24145418
    • (2013) Proc Natl Acad Sci U S A , vol.110 , Issue.45 , pp. 18226-18231
    • Yuan, P.1    Ito, K.2    Perez-Lorenzo, R.3    Del Guzzo, C.4    Lee, J.H.5    Shen, C.H.6
  • 53
    • 84893465244 scopus 로고    scopus 로고
    • Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth
    • Sun RC, Denko NC, Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab. 2014;19(2):285–92. doi: 10.1016/j.cmet.2013.11.022 24506869
    • (2014) Cell Metab , vol.19 , Issue.2 , pp. 285-292
    • Sun, R.C.1    Denko, N.C.2
  • 54
    • 33644622570 scopus 로고    scopus 로고
    • HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
    • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC, HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187–97. Epub 2006/03/07. 16517406
    • (2006) Cell Metab , vol.3 , Issue.3 , pp. 187-197
    • Papandreou, I.1    Cairns, R.A.2    Fontana, L.3    Lim, A.L.4    Denko, N.C.5
  • 55
    • 33644614520 scopus 로고    scopus 로고
    • HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
    • Kim JW, Tchernyshyov I, Semenza GL, Dang CV, HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85. Epub 2006/03/07. 16517405
    • (2006) Cell Metab , vol.3 , Issue.3 , pp. 177-185
    • Kim, J.W.1    Tchernyshyov, I.2    Semenza, G.L.3    Dang, C.V.4
  • 56
    • 84896714232 scopus 로고    scopus 로고
    • Metformin as an adjuvant drug against pediatric sarcomas: hypoxia limits therapeutic effects of the drug
    • Garofalo C, Capristo M, Manara MC, Mancarella C, Landuzzi L, Belfiore A, et al. Metformin as an adjuvant drug against pediatric sarcomas: hypoxia limits therapeutic effects of the drug. PLoS One. 2013;8(12):e83832. doi: 10.1371/journal.pone.0083832 24391834
    • (2013) PLoS One , vol.8 , Issue.12 , pp. e83832
    • Garofalo, C.1    Capristo, M.2    Manara, M.C.3    Mancarella, C.4    Landuzzi, L.5    Belfiore, A.6
  • 57
    • 20844449238 scopus 로고    scopus 로고
    • AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
    • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005;18(3):283–93. 15866171
    • (2005) Mol Cell , vol.18 , Issue.3 , pp. 283-293
    • Jones, R.G.1    Plas, D.R.2    Kubek, S.3    Buzzai, M.4    Mu, J.5    Xu, Y.6
  • 58
    • 84894359469 scopus 로고    scopus 로고
    • Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha
    • Faubert B, Vincent EE, Griss T, Samborska B, Izreig S, Svensson RU, et al. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha. Proc Natl Acad Sci U S A. 2014;111(7):2554–9. Epub 2014/02/20. doi: 10.1073/pnas.1312570111 24550282
    • (2014) Proc Natl Acad Sci U S A , vol.111 , Issue.7 , pp. 2554-2559
    • Faubert, B.1    Vincent, E.E.2    Griss, T.3    Samborska, B.4    Izreig, S.5    Svensson, R.U.6
  • 60
    • 84901345781 scopus 로고    scopus 로고
    • LKB1 is a central regulator of tumor initiation and pro-growth metabolism in ErbB2-mediated breast cancer
    • Dupuy F, Griss T, Blagih J, Bridon G, Avizonis D, Ling C, et al. LKB1 is a central regulator of tumor initiation and pro-growth metabolism in ErbB2-mediated breast cancer. Cancer & metabolism. 2013;1(1):18. Epub 2013/11/28.
    • (2013) Cancer & metabolism , vol.1 , Issue.1 , pp. 18
    • Dupuy, F.1    Griss, T.2    Blagih, J.3    Bridon, G.4    Avizonis, D.5    Ling, C.6
  • 61
    • 78651052311 scopus 로고
    • Preparation of lipide extracts from brain tissue
    • Folch J, Ascoli I, Lees M, Meath JA, Le BN, Preparation of lipide extracts from brain tissue. J Biol Chem. 1951;191(2):833–41. Epub 1951/08/01. 14861228
    • (1951) J Biol Chem , vol.191 , Issue.2 , pp. 833-841
    • Folch, J.1    Ascoli, I.2    Lees, M.3    Meath, J.A.4    Le, B.N.5
  • 63
    • 84899511589 scopus 로고    scopus 로고
    • INCA: a computational platform for isotopically non-stationary metabolic flux analysis
    • Young JD, INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics. 2014;30(9):1333–5. doi: 10.1093/bioinformatics/btu015 24413674
    • (2014) Bioinformatics , vol.30 , Issue.9 , pp. 1333-1335
    • Young, J.D.1
  • 64
    • 33745155105 scopus 로고    scopus 로고
    • Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements
    • Antoniewicz MR, Kelleher JK, Stephanopoulos G, Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng. 2006;8(4):324–37. 16631402
    • (2006) Metab Eng , vol.8 , Issue.4 , pp. 324-337
    • Antoniewicz, M.R.1    Kelleher, J.K.2    Stephanopoulos, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.