-
1
-
-
79952284127
-
Hallmarks of cancer: The next generation
-
Hanahan D, Weinberg RA,. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-674.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
2
-
-
8144228566
-
Why do cancers have high aerobic glycolysis?
-
Gatenby RA, Gillies RJ,: Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004; 4: 891-899.
-
(2004)
Nat Rev Cancer
, vol.4
, pp. 891-899
-
-
Gatenby, R.A.1
Gillies, R.J.2
-
4
-
-
80052242132
-
Targeting cancer metabolism: A therapeutic window opens
-
Vander Heiden MG,: Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10: 671-684.
-
(2011)
Nat Rev Drug Discov
, vol.10
, pp. 671-684
-
-
Vander Heiden, M.G.1
-
5
-
-
84856860890
-
Targeting glucose metabolism for cancer therapy
-
Hamanaka RB, Chandel NS,: Targeting glucose metabolism for cancer therapy. J Exp Med 2012; 209: 211-215.
-
(2012)
J Exp Med
, vol.209
, pp. 211-215
-
-
Hamanaka, R.B.1
Chandel, N.S.2
-
8
-
-
84856100695
-
Is cancer a metabolic rebellion against host aging? in the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism
-
Ertel A, Tsirigos A, Whitaker-Menezes D, et al., Is cancer a metabolic rebellion against host aging? In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism. Cell Cycle 2012; 11: 253-263.
-
(2012)
Cell Cycle
, vol.11
, pp. 253-263
-
-
Ertel, A.1
Tsirigos, A.2
Whitaker-Menezes, D.3
-
9
-
-
37449024702
-
The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, et al., The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11-20.
-
(2008)
Cell Metab
, vol.7
, pp. 11-20
-
-
Deberardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
-
10
-
-
30444437063
-
Altered metabolism and mitochondrial genome in prostate cancer
-
Dakubo GD, Parr RL, Costello LC, et al., Altered metabolism and mitochondrial genome in prostate cancer. J Clin Pathol 2006; 59: 10-16.
-
(2006)
J Clin Pathol
, vol.59
, pp. 10-16
-
-
Dakubo, G.D.1
Parr, R.L.2
Costello, L.C.3
-
11
-
-
20444484872
-
Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer
-
Costello LC, Franklin RB, Feng P,. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion 2005; 5: 143-153.
-
(2005)
Mitochondrion
, vol.5
, pp. 143-153
-
-
Costello, L.C.1
Franklin, R.B.2
Feng, P.3
-
12
-
-
44949244988
-
The pathogenesis of prostate cancer: From molecular to metabolic alterations
-
Benedettini E, Nguyen P, Loda M,. The pathogenesis of prostate cancer: from molecular to metabolic alterations. Diagn Histopathol 2008; 14: 195-201.
-
(2008)
Diagn Histopathol
, vol.14
, pp. 195-201
-
-
Benedettini, E.1
Nguyen, P.2
Loda, M.3
-
13
-
-
84874219218
-
Monocarboxylate transporter 2 (MCT2) as putative biomarker in prostate cancer
-
Pertega-Gomes N, Vizcaino JR, Gouveia C, et al., Monocarboxylate transporter 2 (MCT2) as putative biomarker in prostate cancer. Prostate 2013; 73: 763-769.
-
(2013)
Prostate
, vol.73
, pp. 763-769
-
-
Pertega-Gomes, N.1
Vizcaino, J.R.2
Gouveia, C.3
-
14
-
-
79960587072
-
Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer
-
Pertega-Gomes N, Vizcaino JR, Miranda-Goncalves V, et al., Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer. BMC Cancer 2011; 11: 312.
-
(2011)
BMC Cancer
, vol.11
, pp. 312
-
-
Pertega-Gomes, N.1
Vizcaino, J.R.2
Miranda-Goncalves, V.3
-
15
-
-
84901597401
-
A lactate shuttle system between tumour and stromal cells is associated with poor prognosis in prostate cancer
-
Pertega-Gomes N, Vizcaino JR, Attig J, et al., A lactate shuttle system between tumour and stromal cells is associated with poor prognosis in prostate cancer. BMC Cancer 2014; 14: 352.
-
(2014)
BMC Cancer
, vol.14
, pp. 352
-
-
Pertega-Gomes, N.1
Vizcaino, J.R.2
Attig, J.3
-
16
-
-
77957234813
-
Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression
-
Hao J, Chen H, Madigan MC, et al., Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression. Br J Cancer 2010; 103: 1008-1018.
-
(2010)
Br J Cancer
, vol.103
, pp. 1008-1018
-
-
Hao, J.1
Chen, H.2
Madigan, M.C.3
-
17
-
-
84858705550
-
Role of monocarboxylate transporters in human cancers: State of the art
-
Pinheiro C, Longatto-Filho A, Azevedo-Silva J, et al., Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr 2012; 44: 127-139.
-
(2012)
J Bioenerg Biomembr
, vol.44
, pp. 127-139
-
-
Pinheiro, C.1
Longatto-Filho, A.2
Azevedo-Silva, J.3
-
18
-
-
84907828807
-
Monocarboxylate transporters as targets and mediators in cancer therapy response
-
Baltazar F, Pinheiro C, Morais-Santos F, et al., Monocarboxylate transporters as targets and mediators in cancer therapy response. Histol Histopathol 2014; 29: 1511-1524.
-
(2014)
Histol Histopathol
, vol.29
, pp. 1511-1524
-
-
Baltazar, F.1
Pinheiro, C.2
Morais-Santos, F.3
-
19
-
-
84875731196
-
Monocarboxylate transporters (MCTs) in gliomas: Expression and exploitation as therapeutic targets
-
Miranda-Goncalves V, Honavar M, Pinheiro C, et al., Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro-oncology 2013; 15: 172-188.
-
(2013)
Neuro-oncology
, vol.15
, pp. 172-188
-
-
Miranda-Goncalves, V.1
Honavar, M.2
Pinheiro, C.3
-
20
-
-
84873027161
-
Anticancer efficacy of the metabolic blocker 3-bromopyruvate: Specific molecular targeting
-
Ganapathy-Kanniappan S, Kunjithapatham R, Geschwind JF,. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting. Anticancer Res 2013; 33: 13-20.
-
(2013)
Anticancer Res
, vol.33
, pp. 13-20
-
-
Ganapathy-Kanniappan, S.1
Kunjithapatham, R.2
Geschwind, J.F.3
-
21
-
-
57449097020
-
Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice
-
Sonveaux P, Vegran F, Schroeder T, et al., Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 2008; 118: 3930-3942.
-
(2008)
J Clin Invest
, vol.118
, pp. 3930-3942
-
-
Sonveaux, P.1
Vegran, F.2
Schroeder, T.3
-
22
-
-
84858120137
-
Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis
-
Sonveaux P, Copetti T, De Saedeleer CJ, et al., Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PloS One 2012; 7: e33418.
-
(2012)
PloS One
, vol.7
, pp. e33418
-
-
Sonveaux, P.1
Copetti, T.2
De Saedeleer, C.J.3
-
23
-
-
84871706742
-
Carbohydrate restriction and lactate transporter inhibition in a mouse xenograft model of human prostate cancer
-
Kim HS, Masko EM, Poulton SL, et al., Carbohydrate restriction and lactate transporter inhibition in a mouse xenograft model of human prostate cancer. BJU Int 2012; 110: 1062-1069.
-
(2012)
BJU Int
, vol.110
, pp. 1062-1069
-
-
Kim, H.S.1
Masko, E.M.2
Poulton, S.L.3
-
24
-
-
2142717404
-
Gene expression profiling predicts clinical outcome of prostate cancer
-
Glinsky GV, Glinskii AB, Stephenson AJ, et al., Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Invest 2004; 113: 913-923.
-
(2004)
J Clin Invest
, vol.113
, pp. 913-923
-
-
Glinsky, G.V.1
Glinskii, A.B.2
Stephenson, A.J.3
-
25
-
-
33847246805
-
Oncomine 3.0: Genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles
-
Rhodes DR, Kalyana-Sundaram S, Mahavisno V, et al., Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007; 9: 166-180.
-
(2007)
Neoplasia
, vol.9
, pp. 166-180
-
-
Rhodes, D.R.1
Kalyana-Sundaram, S.2
Mahavisno, V.3
-
26
-
-
27644506613
-
Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression
-
Varambally S, Yu J, Laxman B, et al., Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 2005; 8: 393-406.
-
(2005)
Cancer Cell
, vol.8
, pp. 393-406
-
-
Varambally, S.1
Yu, J.2
Laxman, B.3
-
27
-
-
84863723010
-
The mutational landscape of lethal castration-resistant prostate cancer
-
Grasso CS, Wu YM, Robinson DR, et al., The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012; 487: 239-243.
-
(2012)
Nature
, vol.487
, pp. 239-243
-
-
Grasso, C.S.1
Wu, Y.M.2
Robinson, D.R.3
-
28
-
-
79960071366
-
The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis
-
Massie CE, Lynch A, Ramos-Montoya A, et al., The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 2011; 30: 2719-2733.
-
(2011)
EMBO J
, vol.30
, pp. 2719-2733
-
-
Massie, C.E.1
Lynch, A.2
Ramos-Montoya, A.3
-
29
-
-
84865976786
-
Anticancer targets in the glycolytic metabolism of tumors: A comprehensive review
-
Porporato PE, Dhup S, Dadhich RK, et al., Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2011; 2: 49.
-
(2011)
Front Pharmacol
, vol.2
, pp. 49
-
-
Porporato, P.E.1
Dhup, S.2
Dadhich, R.K.3
-
30
-
-
84857716739
-
Multiple biological activities of lactic acid in cancer: Influences on tumor growth, angiogenesis and metastasis
-
Dhup S, Dadhich RK, Porporato PE, et al., Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharmaceut Design 2012; 18: 1319-1330.
-
(2012)
Curr Pharmaceut Design
, vol.18
, pp. 1319-1330
-
-
Dhup, S.1
Dadhich, R.K.2
Porporato, P.E.3
-
31
-
-
33644815278
-
Potent blockers of the monocarboxylate transporter MCT1: Novel immunomodulatory compounds
-
Guile SD, Bantick JR, Cheshire DR, et al., Potent blockers of the monocarboxylate transporter MCT1: novel immunomodulatory compounds. Bioorg Med Chem Lett 2006; 16: 2260-2265.
-
(2006)
Bioorg Med Chem Lett
, vol.16
, pp. 2260-2265
-
-
Guile, S.D.1
Bantick, J.R.2
Cheshire, D.R.3
-
32
-
-
0037447330
-
Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells
-
Bakin RE, Gioeli D, Sikes RA, et al., Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. Cancer Res 2003; 63: 1981-1989.
-
(2003)
Cancer Res
, vol.63
, pp. 1981-1989
-
-
Bakin, R.E.1
Gioeli, D.2
Sikes, R.A.3
-
33
-
-
33744902086
-
Hypoxia increases androgen receptor activity in prostate cancer cells
-
Park SY, Kim YJ, Gao AC, et al., Hypoxia increases androgen receptor activity in prostate cancer cells. Cancer Res 2006; 66: 5121-5129.
-
(2006)
Cancer Res
, vol.66
, pp. 5121-5129
-
-
Park, S.Y.1
Kim, Y.J.2
Gao, A.C.3
-
34
-
-
84893480469
-
Transport metabolons with carbonic anhydrases
-
Deitmer JW, Becker HM,. Transport metabolons with carbonic anhydrases. Front Physiol 2013; 4: 291.
-
(2013)
Front Physiol
, vol.4
, pp. 291
-
-
Deitmer, J.W.1
Becker, H.M.2
-
35
-
-
34250822389
-
Prostate cancer associated with p53 and Rb deficiency arises from the stem/progenitor cell-enriched proximal region of prostatic ducts
-
Zhou Z, Flesken-Nikitin A, Nikitin AY,. Prostate cancer associated with p53 and Rb deficiency arises from the stem/progenitor cell-enriched proximal region of prostatic ducts. Cancer Res 2007; 67: 5683-5690.
-
(2007)
Cancer Res
, vol.67
, pp. 5683-5690
-
-
Zhou, Z.1
Flesken-Nikitin, A.2
Nikitin, A.Y.3
-
36
-
-
80053640489
-
+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors
-
+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc Natl Acad Sci USA 2011; 108: 16663-16668.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 16663-16668
-
-
Le Floch, R.1
Chiche, J.2
Marchiq, I.3
-
37
-
-
84920507179
-
+ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin
-
+ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin. Cancer Res 2015; 75: 171-180.
-
(2015)
Cancer Res
, vol.75
, pp. 171-180
-
-
Marchiq, I.1
Le Floch, R.2
Roux, D.3
-
38
-
-
84893860311
-
Blocking lactate export by inhibiting the Myc target MCT1 disables glycolysis and glutathione synthesis
-
Doherty JR, Yang C, Scott KE, et al., Blocking lactate export by inhibiting the Myc target MCT1 disables glycolysis and glutathione synthesis. Cancer Res 2014; 74: 908-920.
-
(2014)
Cancer Res
, vol.74
, pp. 908-920
-
-
Doherty, J.R.1
Yang, C.2
Scott, K.E.3
|