메뉴 건너뛰기




Volumn 17, Issue 9, 2016, Pages 553-563

Transcription-replication conflicts: How they occur and how they are resolved

Author keywords

[No Author keywords available]

Indexed keywords

CIS ACTING ELEMENT; DNA B; DNA HELICASE; DNA POLYMERASE; DOUBLE STRANDED DNA; FANCONI ANEMIA PROTEIN; RNA POLYMERASE; SINGLE STRANDED DNA; DNA; DNA SUPERCOILING; RNA;

EID: 84978734468     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm.2016.88     Document Type: Review
Times cited : (279)

References (101)
  • 1
    • 56749157389 scopus 로고    scopus 로고
    • Transcription-coupled DNA repair: Two decades of progress and surprises
    • Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 9, 958-970 (2008).
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 958-970
    • Hanawalt, P.C.1    Spivak, G.2
  • 3
    • 84922007776 scopus 로고    scopus 로고
    • Replication initiation and genome instability: A crossroads for DNA and RNA synthesis
    • Barlow, J. H. & Nussenzweig, A. Replication initiation and genome instability: a crossroads for DNA and RNA synthesis. Cell. Mol. Life Sci. 71, 4545-4559 (2014).
    • (2014) Cell. Mol. Life Sci. , vol.71 , pp. 4545-4559
    • Barlow, J.H.1    Nussenzweig, A.2
  • 4
    • 0020806166 scopus 로고
    • Properties of the T4 bacteriophage DNA replication apparatus: The T4 dda DNA helicase is required to pass a bound RNA polymerase molecule
    • Bedinger, P., Hochstrasser, M., Jongeneel, C. V. & Alberts, B. M. Properties of the T4 bacteriophage DNA replication apparatus: the T4 dda DNA helicase is required to pass a bound RNA polymerase molecule. Cell 34, 115-123 (1983).
    • (1983) Cell , vol.34 , pp. 115-123
    • Bedinger, P.1    Hochstrasser, M.2    Jongeneel, C.V.3    Alberts, B.M.4
  • 5
    • 84859042868 scopus 로고    scopus 로고
    • Preventing replication stress to maintain genome stability: Resolving conflicts between replication and transcription
    • Bermejo, R., Lai, M. S. & Foiani, M. Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription. Mol. Cell 45, 710-718 (2012).
    • (2012) Mol. Cell , vol.45 , pp. 710-718
    • Bermejo, R.1    Lai, M.S.2    Foiani, M.3
  • 6
    • 84876188716 scopus 로고    scopus 로고
    • Transcription-replication encounters, consequences and genomic instability
    • Helmrich, A., Ballarino, M., Nudler, E. & Tora, L. Transcription-replication encounters, consequences and genomic instability. Mol. Cell 20, 412-418 (2013).
    • (2013) Mol. Cell , vol.20 , pp. 412-418
    • Helmrich, A.1    Ballarino, M.2    Nudler, E.3    Tora, L.4
  • 8
    • 84974698796 scopus 로고    scopus 로고
    • Transcription as a threat to genome integrity
    • Gaillard, H. & Aguilera, A. Transcription as a threat to genome integrity. Annu. Rev. Biochem. 85, 291-317 (2016).
    • (2016) Annu. Rev. Biochem. , vol.85 , pp. 291-317
    • Gaillard, H.1    Aguilera, A.2
  • 9
    • 67449113551 scopus 로고    scopus 로고
    • Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae
    • Azvolinsky, A., Giresi, P. G., Lieb, J. D. & Zakian, V. A. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell 34, 722-734 (2009).
    • (2009) Mol. Cell , vol.34 , pp. 722-734
    • Azvolinsky, A.1    Giresi, P.G.2    Lieb, J.D.3    Zakian, V.A.4
  • 10
    • 79952126098 scopus 로고    scopus 로고
    • Co-directional replication-transcription conflicts lead to replication restart
    • Merrikh, H., Machón, C., Grainger, W. H., Grossman, A. D. & Soultanas, P. Co-directional replication-transcription conflicts lead to replication restart. Nature 470, 554-557 (2011).
    • (2011) Nature , vol.470 , pp. 554-557
    • Merrikh, H.1    Machón, C.2    Grainger, W.H.3    Grossman, A.D.4    Soultanas, P.5
  • 11
    • 76749094639 scopus 로고    scopus 로고
    • Co-orientation of replication and transcription preserves genome integrity
    • Srivatsan, A., Tehranchi, A., MacAlpine, D. M. & Wang, J. D. Co-orientation of replication and transcription preserves genome integrity. PLoS Genet. 6, e1000810 (2010).
    • (2010) PLoS Genet. , vol.6 , pp. e1000810
    • Srivatsan, A.1    Tehranchi, A.2    MacAlpine, D.M.3    Wang, J.D.4
  • 12
    • 17144426028 scopus 로고    scopus 로고
    • Impairment of replication fork progression mediates RNA pol II transcription-associated recombination
    • Prado, F. & Aguilera, A. Impairment of replication fork progression mediates RNA pol II transcription-associated recombination. EMBO J. 24, 1267-1276 (2005).
    • (2005) EMBO J. , vol.24 , pp. 1267-1276
    • Prado, F.1    Aguilera, A.2
  • 14
    • 0034681257 scopus 로고    scopus 로고
    • The saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA
    • Ivessa, A. S., Zhou, J. Q. & Zakian, V. A. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100,479-489 (2000).
    • (2000) Cell , vol.100 , pp. 479-489
    • Ivessa, A.S.1    Zhou, J.Q.2    Zakian, V.A.3
  • 15
    • 84918508759 scopus 로고    scopus 로고
    • Separation of replication and transcription domains in nucleoli
    • Smirnov, E. et al. Separation of replication and transcription domains in nucleoli. J. Struct. Biol. 188, 259-266 (2014).
    • (2014) J. Struct. Biol. , vol.188 , pp. 259-266
    • Smirnov, E.1
  • 16
    • 0036591890 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: Beyond cause and effect
    • Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect. Curr. Opin. Cell Biol. 14, 377-383 (2002).
    • (2002) Curr. Opin. Cell Biol. , vol.14 , pp. 377-383
    • Gilbert, D.M.1
  • 17
    • 84912133503 scopus 로고    scopus 로고
    • Temporal separation of replication and transcription during S-phase progression
    • Meryet-Figuiere, M. et al. Temporal separation of replication and transcription during S-phase progression. Cell Cycle 13, 3241-3248 (2014).
    • (2014) Cell Cycle , vol.13 , pp. 3241-3248
    • Meryet-Figuiere, M.1
  • 18
    • 0023127037 scopus 로고
    • Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA
    • Brill, S. J., DiNardo, S., Voelkel-Meiman, K. & Sternglanz, R. Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA. Nature 326, 414-416 (1987).
    • (1987) Nature , vol.326 , pp. 414-416
    • Brill, S.J.1    DiNardo, S.2    Voelkel-Meiman, K.3    Sternglanz, R.4
  • 19
    • 34547626213 scopus 로고    scopus 로고
    • Top1- and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation
    • Bermejo, R. et al. Top1- and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation. Genes Dev. 21, 1921-1936 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 1921-1936
    • Bermejo, R.1
  • 20
    • 70449522304 scopus 로고    scopus 로고
    • Topoisomerase i suppresses genomic instability by preventing interference between replication and transcription
    • Tuduri, S. et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat. Cell Biol. 11, 1315-1324 (2009).
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1315-1324
    • Tuduri, S.1
  • 21
    • 69449108384 scopus 로고    scopus 로고
    • Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription
    • Bermejo, R. et al. Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription. Cell 138, 870-884 (2009).
    • (2009) Cell , vol.138 , pp. 870-884
    • Bermejo, R.1
  • 22
    • 84856891849 scopus 로고    scopus 로고
    • Topological constraints impair RNA polymerase II transcription and causes instability of plasmid-borne convergent genes
    • García-Rubio, M. L. & Aguilera, A. Topological constraints impair RNA polymerase II transcription and causes instability of plasmid-borne convergent genes. Nucleic Acids Res. 40, 1050-1064 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. 1050-1064
    • García-Rubio, M.L.1    Aguilera, A.2
  • 23
    • 84957959570 scopus 로고    scopus 로고
    • Dissecting the roles of divergent and convergent transcription in chromosome instability
    • Pannunzio, N. R. & Lieber, M. R. Dissecting the roles of divergent and convergent transcription in chromosome instability. Cell Rep. 14, 1025-1031 (2016).
    • (2016) Cell Rep. , vol.14 , pp. 1025-1031
    • Pannunzio, N.R.1    Lieber, M.R.2
  • 24
    • 73749085274 scopus 로고    scopus 로고
    • Non-B DNA structure-induced genetic instability and evolution
    • Zhao, J., Bacolla, A., Wang, G. & Vasquez, K. M. Non-B DNA structure-induced genetic instability and evolution. Cell. Mol. Life Sci. 67, 43-62 (2010).
    • (2010) Cell. Mol. Life Sci. , vol.67 , pp. 43-62
    • Zhao, J.1    Bacolla, A.2    Wang, G.3    Vasquez, K.M.4
  • 25
    • 84948578614 scopus 로고    scopus 로고
    • RPA prevents G-rich structure formation at lagging-strand telomeres to allow maintenance of chromosome ends
    • Audry, J. et al. RPA prevents G-rich structure formation at lagging-strand telomeres to allow maintenance of chromosome ends. EMBO J. 34, 1942-1958 (2015).
    • (2015) EMBO J. , vol.34 , pp. 1942-1958
    • Audry, J.1
  • 26
    • 84857163904 scopus 로고    scopus 로고
    • Small-molecule-induced DNA damage identifies alternative DNA structures in human genes
    • Rodriguez, R. et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 8, 301-310 (2012).
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 301-310
    • Rodriguez, R.1
  • 27
    • 80051823466 scopus 로고    scopus 로고
    • Guanine repeat-containing sequences confer transcription-dependent instability in an orientation-specific manner in yeast
    • Kim, N. & Jinks-Robertson, S. Guanine repeat-containing sequences confer transcription-dependent instability in an orientation-specific manner in yeast. DNA Repair (Amst.) 10, 953-960 (2011).
    • (2011) DNA Repair (Amst.) , vol.10 , pp. 953-960
    • Kim, N.1    Jinks-Robertson, S.2
  • 28
    • 84919624857 scopus 로고    scopus 로고
    • Topoisomerase i plays a critical role in suppressing genome instability at a highly transcribed G-quadruplex-forming sequence
    • Yadav, P. et al. Topoisomerase I plays a critical role in suppressing genome instability at a highly transcribed G-quadruplex-forming sequence. PLoS Genet. 10, e1004839 (2014).
    • (2014) PLoS Genet. , vol.10 , pp. e1004839
    • Yadav, P.1
  • 29
    • 84858315982 scopus 로고    scopus 로고
    • DNA replication through hard-to-replicate sites, including both highly transcribed RNA Pol II and Pol III genes, requires the S. Pombe Pfh1 helicase
    • Sabouri, N., McDonald, K. R., Webb, C. J., Cristea, I. M. & Zakian, V. A. DNA replication through hard-to-replicate sites, including both highly transcribed RNA Pol II and Pol III genes, requires the S. pombe Pfh1 helicase. Genes Dev. 26, 581-593 (2012).
    • (2012) Genes Dev. , vol.26 , pp. 581-593
    • Sabouri, N.1    McDonald, K.R.2    Webb, C.J.3    Cristea, I.M.4    Zakian, V.A.5
  • 30
    • 79957556530 scopus 로고    scopus 로고
    • DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase
    • Paeschke, K., Capra, J. A. & Zakian, V. A. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145, 678-691 (2011).
    • (2011) Cell , vol.145 , pp. 678-691
    • Paeschke, K.1    Capra, J.A.2    Zakian, V.A.3
  • 31
    • 0141819093 scopus 로고    scopus 로고
    • Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination
    • Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711-721 (2003).
    • (2003) Mol. Cell , vol.12 , pp. 711-721
    • Huertas, P.1    Aguilera, A.2
  • 32
    • 23744455164 scopus 로고    scopus 로고
    • Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability
    • Li, X. & Manley, J. L. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365-378 (2005).
    • (2005) Cell , vol.122 , pp. 365-378
    • Li, X.1    Manley, J.L.2
  • 33
    • 84941937809 scopus 로고    scopus 로고
    • R loops: New modulators of genome dynamics and function
    • Santos-Pereira, J. M. & Aguilera, A. R loops: new modulators of genome dynamics and function. Nat. Rev. Genet. 16, 583-597 (2015).
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 583-597
    • Santos-Pereira, J.M.1    Aguilera, A.2
  • 34
    • 84903795949 scopus 로고    scopus 로고
    • A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression
    • Skourti-Stathaki, K. & Proudfoot, N. J. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 28, 1384-1396 (2014).
    • (2014) Genes Dev. , vol.28 , pp. 1384-1396
    • Skourti-Stathaki, K.1    Proudfoot, N.J.2
  • 35
    • 84940467362 scopus 로고    scopus 로고
    • Breaking bad: R-loops and genome integrity
    • Sollier, J. & Cimprich, K. A. Breaking bad: R-loops and genome integrity. Trends Cell Biol. 25, 514-522 (2015).
    • (2015) Trends Cell Biol. , vol.25 , pp. 514-522
    • Sollier, J.1    Cimprich, K.A.2
  • 37
    • 84862673628 scopus 로고    scopus 로고
    • RNA polymerase backtracking in gene regulation and genome instability
    • Nudler, E. RNA polymerase backtracking in gene regulation and genome instability. Cell 149,1438-1445 (2012).
    • (2012) Cell , vol.149 , pp. 1438-1445
    • Nudler, E.1
  • 38
    • 75749150810 scopus 로고    scopus 로고
    • Direct restart of a replication fork stalled by a head-on RNA polymerase
    • Pomerantz, R. T. & O'Donnell, M. Direct restart of a replication fork stalled by a head-on RNA polymerase. Science 327, 590-592 (2010).
    • (2010) Science , vol.327 , pp. 590-592
    • Pomerantz, R.T.1    O'Donnell, M.2
  • 39
    • 80052008241 scopus 로고    scopus 로고
    • Linking RNA polymerase backtracking to genome instability in E. Coli
    • Dutta, D., Shatalin, K., Epshtein, V., Gottesman, M. E. & Nudler, E. Linking RNA polymerase backtracking to genome instability in E. coli. Cell 146, 533-543 (2011).
    • (2011) Cell , vol.146 , pp. 533-543
    • Dutta, D.1    Shatalin, K.2    Epshtein, V.3    Gottesman, M.E.4    Nudler, E.5
  • 40
    • 77952527102 scopus 로고    scopus 로고
    • The transcription factor DksA prevents conflicts between DNA replication and transcription machinery
    • Tehranchi, A. K. et al. The transcription factor DksA prevents conflicts between DNA replication and transcription machinery. Cell 141, 595-605 (2010).
    • (2010) Cell , vol.141 , pp. 595-605
    • Tehranchi, A.K.1
  • 41
    • 84929414078 scopus 로고    scopus 로고
    • Ccr4-Not and TFIIS function cooperatively to rescue arrested RNA polymerase II
    • Dutta, A. et al. Ccr4-Not and TFIIS function cooperatively to rescue arrested RNA polymerase II. Mol. Cell. Biol. 35, 1915-1925 (2015).
    • (2015) Mol. Cell. Biol. , vol.35 , pp. 1915-1925
    • Dutta, A.1
  • 42
    • 77954371207 scopus 로고    scopus 로고
    • RNA polymerase mutations that facilitate replication progression in the rep uvrD recF mutant lacking two accessory replicative helicases
    • Baharoglu, Z., Lestini, R., Duigou, S. & Michel, B. RNA polymerase mutations that facilitate replication progression in the rep uvrD recF mutant lacking two accessory replicative helicases. Mol. Microbiol. 77, 324-336 (2010).
    • (2010) Mol. Microbiol. , vol.77 , pp. 324-336
    • Baharoglu, Z.1    Lestini, R.2    Duigou, S.3    Michel, B.4
  • 43
    • 84921314292 scopus 로고    scopus 로고
    • RNA polymerase II contributes to preventing transcription-mediated replication fork stalls
    • Felipe-Abrio, I., Lafuente-Barquero, J., García-Rubio, M. L. & Aguilera, A. RNA polymerase II contributes to preventing transcription-mediated replication fork stalls. EMBO J. 34, 236-250 (2015).
    • (2015) EMBO J. , vol.34 , pp. 236-250
    • Felipe-Abrio, I.1    Lafuente-Barquero, J.2    García-Rubio, M.L.3    Aguilera, A.4
  • 44
    • 84957805308 scopus 로고    scopus 로고
    • Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress
    • Poli, J. et al. Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes Dev. 30, 337-354 (2016).
    • (2016) Genes Dev. , vol.30 , pp. 337-354
    • Poli, J.1
  • 45
    • 84937793079 scopus 로고    scopus 로고
    • The B. Subtilis accessory helicase PcrA facilitates DNA replication through transcription units
    • Merrikh, C. N., Brewer, B. J. & Merrikh, H. The B. subtilis accessory helicase PcrA facilitates DNA replication through transcription units. PLoS Genet. 11, e1005289 (2015).
    • (2015) PLoS Genet. , vol.11 , pp. e1005289
    • Merrikh, C.N.1    Brewer, B.J.2    Merrikh, H.3
  • 46
    • 84876891791 scopus 로고    scopus 로고
    • Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli
    • Gupta, M. K. et al. Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli. Proc. Natl Acad. Sci. USA 110, 7252-7257 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 7252-7257
    • Gupta, M.K.1
  • 47
    • 0024291357 scopus 로고
    • A replication fork barrier at the 3′ end of yeast ribosomal RNA genes
    • Brewer, B. J. & Fangman, W. L. A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55, 637-643 (1988).
    • (1988) Cell , vol.55 , pp. 637-643
    • Brewer, B.J.1    Fangman, W.L.2
  • 48
    • 1642417690 scopus 로고    scopus 로고
    • Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. Cerevisiae DNA helicase Rrm3p
    • Torres, J. Z., Bessler, J. B. & Zakian, V. A. Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiae DNA helicase Rrm3p. Genes Dev. 18, 498-503 (2004).
    • (2004) Genes Dev. , vol.18 , pp. 498-503
    • Torres, J.Z.1    Bessler, J.B.2    Zakian, V.A.3
  • 49
    • 0348047594 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes
    • Ivessa, A. S. et al. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol. Cell 12, 1525-1536 (2003).
    • (2003) Mol. Cell , vol.12 , pp. 1525-1536
    • Ivessa, A.S.1
  • 50
    • 0036606186 scopus 로고    scopus 로고
    • Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA
    • Ivessa, A. S., Zhou, J.-Q., Schulz, V. P., Monson, E. K. & Zakian, V. A. Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev. 16, 1383-1396 (2002).
    • (2002) Genes Dev. , vol.16 , pp. 1383-1396
    • Ivessa, A.S.1    Zhou, J.-Q.2    Schulz, V.P.3    Monson, E.K.4    Zakian, V.A.5
  • 51
    • 84878468465 scopus 로고    scopus 로고
    • Human RECQL5: Guarding the crossroads of DNA replication and transcription and providing backup capability
    • Popuri, V., Tadokoro, T., Croteau, D. L. & Bohr, V. A. Human RECQL5: guarding the crossroads of DNA replication and transcription and providing backup capability. Crit. Rev. Biochem. Mol. Biol. 48, 289-299 (2013).
    • (2013) Crit. Rev. Biochem. Mol. Biol. , vol.48 , pp. 289-299
    • Popuri, V.1    Tadokoro, T.2    Croteau, D.L.3    Bohr, V.A.4
  • 52
    • 84901408644 scopus 로고    scopus 로고
    • RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress
    • Saponaro, M. et al. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 157,1037-1049 (2014).
    • (2014) Cell , vol.157 , pp. 1037-1049
    • Saponaro, M.1
  • 53
    • 63049125856 scopus 로고    scopus 로고
    • Recql5 plays an important role in DNA replication and cell survival after camptothecin treatment
    • Hu, Y., Lu, X., Zhou, G., Barnes, E. L. & Luo, G. Recql5 plays an important role in DNA replication and cell survival after camptothecin treatment. Mol. Biol. Cell 20, 114-123 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 114-123
    • Hu, Y.1    Lu, X.2    Zhou, G.3    Barnes, E.L.4    Luo, G.5
  • 54
    • 79956140211 scopus 로고    scopus 로고
    • The SET2-RPB1 interaction domain of human RECQ5 is important for transcription-associated genome stability
    • Li, M., Xu, X. & Liu, Y. The SET2-RPB1 interaction domain of human RECQ5 is important for transcription-associated genome stability. Mol. Cell. Biol. 31, 2090-2099 (2011).
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 2090-2099
    • Li, M.1    Xu, X.2    Liu, Y.3
  • 55
    • 84926631633 scopus 로고    scopus 로고
    • RECQ5-dependent SUMOylation of DNA topoisomerase i prevents transcription-associated genome instability
    • Li, M., Pokharel, S., Wang, J.-T., Xu, X. & Liu, Y. RECQ5-dependent SUMOylation of DNA topoisomerase I prevents transcription-associated genome instability. Nat. Commun. 6, 6720 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 6720
    • Li, M.1    Pokharel, S.2    Wang, J.-T.3    Xu, X.4    Liu, Y.5
  • 56
    • 0033566129 scopus 로고    scopus 로고
    • The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins
    • Orphanides, G., Wu, W. H., Lane, W. S., Hampsey, M. & Reinberg, D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400, 284-288 (1999).
    • (1999) Nature , vol.400 , pp. 284-288
    • Orphanides, G.1    Wu, W.H.2    Lane, W.S.3    Hampsey, M.4    Reinberg, D.5
  • 57
    • 84875805105 scopus 로고    scopus 로고
    • Eukaryotic replisome components cooperate to process histones during chromosome replication
    • Foltman, M. et al. Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep. 3, 892-904 (2013).
    • (2013) Cell Rep. , vol.3 , pp. 892-904
    • Foltman, M.1
  • 58
    • 80052231992 scopus 로고    scopus 로고
    • The histone chaperone facilitates chromatin transcription (FACT) protein maintains normal replication fork rates
    • Abe, T. et al. The histone chaperone facilitates chromatin transcription (FACT) protein maintains normal replication fork rates. J. Biol. Chem. 286, 30504-30512 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 30504-30512
    • Abe, T.1
  • 59
    • 84898841862 scopus 로고    scopus 로고
    • The yeast and human FACT chromatin-reorganizing complexes solve R-loop-mediated transcription-replication conflicts
    • Herrera-Moyano, E., Mergui, X., Garcia-Rubio, M. L., Barroso, S. & Aguilera, A. The yeast and human FACT chromatin-reorganizing complexes solve R-loop-mediated transcription-replication conflicts. Genes Dev. 28, 735-748 (2014).
    • (2014) Genes Dev. , vol.28 , pp. 735-748
    • Herrera-Moyano, E.1    Mergui, X.2    Garcia-Rubio, M.L.3    Barroso, S.4    Aguilera, A.5
  • 60
    • 84888151835 scopus 로고    scopus 로고
    • R loops are linked to histone H3 S10 phosphorylation and chromatin condensation
    • Castellano-Pozo, M. et al. R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Mol. Cell 52, 583-590 (2013).
    • (2013) Mol. Cell , vol.52 , pp. 583-590
    • Castellano-Pozo, M.1
  • 61
    • 84901626668 scopus 로고    scopus 로고
    • R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome
    • Groh, M., Lufino, M. M., Wade-Martins, R. & Gromak, N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet. 10, e1004318 (2014).
    • (2014) PLoS Genet. , vol.10 , pp. e1004318
    • Groh, M.1    Lufino, M.M.2    Wade-Martins, R.3    Gromak, N.4
  • 62
    • 80455176844 scopus 로고    scopus 로고
    • RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II
    • Zaratiegui, M. et al. RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II. Nature 479, 135-138 (2011).
    • (2011) Nature , vol.479 , pp. 135-138
    • Zaratiegui, M.1
  • 63
    • 84908282370 scopus 로고    scopus 로고
    • Dicer promotes transcription termination at sites of replication stress to maintain genome stability
    • Castel, S. E. et al. Dicer promotes transcription termination at sites of replication stress to maintain genome stability. Cell 159, 572-583 (2014).
    • (2014) Cell , vol.159 , pp. 572-583
    • Castel, S.E.1
  • 64
    • 29544437558 scopus 로고    scopus 로고
    • Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions
    • Lopes, M., Foiani, M. & Sogo, J. M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 15-27 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 15-27
    • Lopes, M.1    Foiani, M.2    Sogo, J.M.3
  • 65
    • 31844456472 scopus 로고    scopus 로고
    • Replication fork reactivation downstream of a blocked nascent leading strand
    • Heller, R. C. & Marians, K. J. Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439, 557-562 (2006).
    • (2006) Nature , vol.439 , pp. 557-562
    • Heller, R.C.1    Marians, K.J.2
  • 66
    • 0029740114 scopus 로고    scopus 로고
    • DNA replication fork pause sites dependent on transcription
    • Deshpande, A. M. & Newlon, C. S. DNA replication fork pause sites dependent on transcription. Science 272, 1030-1033 (1996).
    • (1996) Science , vol.272 , pp. 1030-1033
    • Deshpande, A.M.1    Newlon, C.S.2
  • 67
    • 77955424206 scopus 로고    scopus 로고
    • Replication stress checkpoint signaling controls tRNA gene transcription
    • Nguyen, V. C. et al. Replication stress checkpoint signaling controls tRNA gene transcription. Nat. Struct. Mol. Biol. 17, 976-981 (2010).
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 976-981
    • Nguyen, V.C.1
  • 68
    • 84954511723 scopus 로고    scopus 로고
    • TRNA processing defects induce replication stress and Chk2-dependent disruption of piRNA transcription
    • Molla-Herman, A., Vallis, A. M., Ganem-Elbaz, C., Antoniewski, C. & Huynh, J.-R. tRNA processing defects induce replication stress and Chk2-dependent disruption of piRNA transcription. EMBO J. 34, 3009-3027 (2015).
    • (2015) EMBO J. , vol.34 , pp. 3009-3027
    • Molla-Herman, A.1    Vallis, A.M.2    Ganem-Elbaz, C.3    Antoniewski, C.4    Huynh, J.-R.5
  • 69
    • 84898863608 scopus 로고    scopus 로고
    • ATR checkpoint kinase and CRL1βTRCP collaborate to degrade ASF1a and thus repress genes overlapping with clusters of stalled replication forks
    • Im, J. S. et al. ATR checkpoint kinase and CRL1βTRCP collaborate to degrade ASF1a and thus repress genes overlapping with clusters of stalled replication forks. Genes Dev. 28, 875-887 (2014).
    • (2014) Genes Dev. , vol.28 , pp. 875-887
    • Im, J.S.1
  • 70
    • 84963588819 scopus 로고    scopus 로고
    • P53 maintains genomic stability by preventing interference between transcription and replication
    • Yeo, C. Q. et al. p53 maintains genomic stability by preventing interference between transcription and replication. Cell Rep. 15, 132-146 (2016).
    • (2016) Cell Rep. , vol.15 , pp. 132-146
    • Yeo, C.Q.1
  • 71
    • 33745001795 scopus 로고    scopus 로고
    • SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope
    • Cabal, G. G. et al. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441, 770-773 (2006).
    • (2006) Nature , vol.441 , pp. 770-773
    • Cabal, G.G.1
  • 72
    • 0344338368 scopus 로고
    • Gene gating: A hypothesis
    • Blobel, G. Gene gating: a hypothesis. Proc. Natl Acad. Sci. USA 82, 8527-8529 (1985).
    • (1985) Proc. Natl Acad. Sci. USA , vol.82 , pp. 8527-8529
    • Blobel, G.1
  • 73
    • 79960802984 scopus 로고    scopus 로고
    • The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores
    • Bermejo, R. et al. The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146, 233-246 (2011).
    • (2011) Cell , vol.146 , pp. 233-246
    • Bermejo, R.1
  • 74
    • 84943224208 scopus 로고    scopus 로고
    • Rad53-mediated regulation of Rrm3 and Pif1 DNA helicases contributes to prevention of aberrant fork transitions under replication stress
    • Rossi, S. E., Ajazi, A., Carotenuto, W., Foiani, M. & Giannattasio, M. Rad53-mediated regulation of Rrm3 and Pif1 DNA helicases contributes to prevention of aberrant fork transitions under replication stress. Cell Rep. 13, 80-92 (2015).
    • (2015) Cell Rep. , vol.13 , pp. 80-92
    • Rossi, S.E.1    Ajazi, A.2    Carotenuto, W.3    Foiani, M.4    Giannattasio, M.5
  • 75
    • 84904459138 scopus 로고    scopus 로고
    • BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2
    • Bhatia, V. et al. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 511, 362-365 (2014).
    • (2014) Nature , vol.511 , pp. 362-365
    • Bhatia, V.1
  • 76
    • 84906857430 scopus 로고    scopus 로고
    • Systematic screening reveals a role for BRCA1 in the response to transcription-associated DNA damage
    • Hill, S. J. et al. Systematic screening reveals a role for BRCA1 in the response to transcription-associated DNA damage. Genes Dev. 28, 1957-1975 (2014).
    • (2014) Genes Dev. , vol.28 , pp. 1957-1975
    • Hill, S.J.1
  • 77
    • 79955799175 scopus 로고    scopus 로고
    • Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11
    • Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529-542 (2011).
    • (2011) Cell , vol.145 , pp. 529-542
    • Schlacher, K.1
  • 78
    • 84947740589 scopus 로고    scopus 로고
    • The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription
    • Schwab, R. A. et al. The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol. Cell 60, 351-361 (2015).
    • (2015) Mol. Cell , vol.60 , pp. 351-361
    • Schwab, R.A.1
  • 79
    • 84949256749 scopus 로고    scopus 로고
    • The Fanconi anemia pathway protects genome integrity from R-loops
    • Garcva-Rubio, M. L. et al. The Fanconi anemia pathway protects genome integrity from R-loops. PLoS Genet. 11, e1005674 (2015).
    • (2015) PLoS Genet. , vol.11 , pp. e1005674
    • Garcva-Rubio, M.L.1
  • 80
    • 84923848772 scopus 로고    scopus 로고
    • BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair
    • Hatchi, E. et al. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol. Cell 57, 636-647 (2015).
    • (2015) Mol. Cell , vol.57 , pp. 636-647
    • Hatchi, E.1
  • 81
    • 84871861757 scopus 로고    scopus 로고
    • Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response
    • Yüce, Ö. & West, S. C. Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response. Mol. Cell. Biol. 33, 406-417 (2013).
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 406-417
    • Yüce, O.1    West, S.C.2
  • 82
    • 84869026790 scopus 로고    scopus 로고
    • Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes
    • Alzu, A. et al. Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Cell 151, 835-846 (2012).
    • (2012) Cell , vol.151 , pp. 835-846
    • Alzu, A.1
  • 83
    • 15844390393 scopus 로고    scopus 로고
    • A human RNA polymerase II complex associated with SRB and DNA-repair proteins
    • Maldonado, E. et al. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381, 86-89 (1996).
    • (1996) Nature , vol.381 , pp. 86-89
    • Maldonado, E.1
  • 84
    • 84871740379 scopus 로고    scopus 로고
    • Coordinated control of replication and transcription by a SAPK protects genomic integrity
    • Duch, A. et al. Coordinated control of replication and transcription by a SAPK protects genomic integrity. Nature 493, 116-119 (2013).
    • (2013) Nature , vol.493 , pp. 116-119
    • Duch, A.1
  • 85
    • 0035735472 scopus 로고    scopus 로고
    • Mrc1 transduces signals of DNA replication stress to activate Rad53
    • Alcasabas, A. A. et al. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat. Cell Biol. 3, 958-965 (2001).
    • (2001) Nat. Cell Biol. , vol.3 , pp. 958-965
    • Alcasabas, A.A.1
  • 86
    • 0021278143 scopus 로고
    • DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes
    • Glover, T. W., Berger, C., Coyle, J. & Echo, B. DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum. Genet. 67, 136-142 (1984).
    • (1984) Hum. Genet. , vol.67 , pp. 136-142
    • Glover, T.W.1    Berger, C.2    Coyle, J.3    Echo, B.4
  • 87
    • 34547205070 scopus 로고    scopus 로고
    • An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. Cerevisiae
    • Zhang, H. & Freudenreich, C. H. An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol. Cell 27, 367-379 (2007).
    • (2007) Mol. Cell , vol.27 , pp. 367-379
    • Zhang, H.1    Freudenreich, C.H.2
  • 88
    • 84892178896 scopus 로고    scopus 로고
    • The DNA replication program is altered at the FMR1 locus in fragile X embryonic stem cells
    • Gerhardt, J. et al. The DNA replication program is altered at the FMR1 locus in fragile X embryonic stem cells. Mol. Cell 53, 19-31 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 19-31
    • Gerhardt, J.1
  • 89
    • 79551661935 scopus 로고    scopus 로고
    • Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site
    • Letessier, A. et al. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470, 120-123 (2011).
    • (2011) Nature , vol.470 , pp. 120-123
    • Letessier, A.1
  • 90
    • 79959885574 scopus 로고    scopus 로고
    • Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites
    • Ozeri-Galai, E. et al. Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. Mol. Cell 43, 122-131 (2011).
    • (2011) Mol. Cell , vol.43 , pp. 122-131
    • Ozeri-Galai, E.1
  • 91
    • 84881615685 scopus 로고    scopus 로고
    • Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes
    • Le Tallec, B. et al. Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes. Cell Rep. 4, 420-428 (2013).
    • (2013) Cell Rep. , vol.4 , pp. 420-428
    • Le Tallec, B.1
  • 92
    • 84922359016 scopus 로고    scopus 로고
    • Large transcription units unify copy number variants and common fragile sites arising under replication stress
    • Wilson, T. E. et al. Large transcription units unify copy number variants and common fragile sites arising under replication stress. Genome Res. 25, 189-200 (2015).
    • (2015) Genome Res. , vol.25 , pp. 189-200
    • Wilson, T.E.1
  • 93
    • 84255198334 scopus 로고    scopus 로고
    • Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes
    • Helmrich, A., Ballarino, M. & Tora, L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44, 966-977 (2011).
    • (2011) Mol. Cell , vol.44 , pp. 966-977
    • Helmrich, A.1    Ballarino, M.2    Tora, L.3
  • 94
    • 84873310832 scopus 로고    scopus 로고
    • Identification of early replicating fragile sites that contribute to genome instability
    • Barlow, J. H. et al. Identification of early replicating fragile sites that contribute to genome instability. Cell 152, 620-632 (2013).
    • (2013) Cell , vol.152 , pp. 620-632
    • Barlow, J.H.1
  • 95
    • 84923883214 scopus 로고    scopus 로고
    • Break-seq reveals hydroxyurea-induced chromosome fragility as a result of unscheduled conflict between DNA replication and transcription
    • Hoffman, E. A., McCulley, A., Haarer, B., Arnak, R. & Feng, W. Break-seq reveals hydroxyurea-induced chromosome fragility as a result of unscheduled conflict between DNA replication and transcription. Genome Res. 25, 402-412 (2015).
    • (2015) Genome Res. , vol.25 , pp. 402-412
    • Hoffman, E.A.1    McCulley, A.2    Haarer, B.3    Arnak, R.4    Feng, W.5
  • 96
    • 40449120350 scopus 로고    scopus 로고
    • An oncogene-induced DNA damage model for cancer development
    • Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352-1355 (2008).
    • (2008) Science , vol.319 , pp. 1352-1355
    • Halazonetis, T.D.1    Gorgoulis, V.G.2    Bartek, J.3
  • 98
    • 17244367849 scopus 로고    scopus 로고
    • DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis
    • Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864-870 (2005).
    • (2005) Nature , vol.434 , pp. 864-870
    • Bartkova, J.1
  • 99
    • 84890157171 scopus 로고    scopus 로고
    • Transcriptional control of DNA replication licensing by Myc
    • Valovka, T. et al. Transcriptional control of DNA replication licensing by Myc. Sci. Rep. 3, 3444 (2013).
    • (2013) Sci. Rep. , vol.3 , pp. 3444
    • Valovka, T.1
  • 100
  • 101
    • 84881480253 scopus 로고    scopus 로고
    • Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress
    • Jones, R. M. et al. Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress. Oncogene 32, 3744-3753 (2013).
    • (2013) Oncogene , vol.32 , pp. 3744-3753
    • Jones, R.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.