메뉴 건너뛰기




Volumn 27, Issue 3, 2007, Pages 367-379

An AT-Rich Sequence in Human Common Fragile Site FRA16D Causes Fork Stalling and Chromosome Breakage in S. cerevisiae

Author keywords

DNA; HUMDISEASE

Indexed keywords

HYDROXYUREA; RAD52 PROTEIN;

EID: 34547205070     PISSN: 10972765     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.molcel.2007.06.012     Document Type: Article
Times cited : (147)

References (40)
  • 2
    • 0026320272 scopus 로고
    • Large-scale stable opening of supercoiled DNA in response to temperature and supercoiling in (A + T)-rich regions that promote low-salt cruciform extrusion
    • Bowater R., Aboul-ela F., and Lilley D.M. Large-scale stable opening of supercoiled DNA in response to temperature and supercoiling in (A + T)-rich regions that promote low-salt cruciform extrusion. Biochemistry 30 (1991) 11495-11506
    • (1991) Biochemistry , vol.30 , pp. 11495-11506
    • Bowater, R.1    Aboul-ela, F.2    Lilley, D.M.3
  • 3
    • 0142027842 scopus 로고    scopus 로고
    • Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility
    • Callahan J.L., Andrews K.J., Zakian V.A., and Freudenreich C.H. Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility. Mol. Cell. Biol. 23 (2003) 7849-7860
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 7849-7860
    • Callahan, J.L.1    Andrews, K.J.2    Zakian, V.A.3    Freudenreich, C.H.4
  • 4
    • 0037074013 scopus 로고    scopus 로고
    • ATR regulates fragile site stability
    • Casper A.M., Nghiem P., Arlt M.F., and Glover T.W. ATR regulates fragile site stability. Cell 111 (2002) 779-789
    • (2002) Cell , vol.111 , pp. 779-789
    • Casper, A.M.1    Nghiem, P.2    Arlt, M.F.3    Glover, T.W.4
  • 5
    • 0037178723 scopus 로고    scopus 로고
    • ATR Homolog Mec1 promotes fork progression, thus averting vreaks in replication slow zones
    • Cha R.S., and Kleckner N. ATR Homolog Mec1 promotes fork progression, thus averting vreaks in replication slow zones. Science 297 (2002) 602-606
    • (2002) Science , vol.297 , pp. 602-606
    • Cha, R.S.1    Kleckner, N.2
  • 6
    • 0033635206 scopus 로고    scopus 로고
    • Genetic analysis of the in vivo role of DNA polymerases in Saccharomyces cerevisiae
    • Cooley M., and Mishra N.C. Genetic analysis of the in vivo role of DNA polymerases in Saccharomyces cerevisiae. Curr. Genet. 38 (2000) 256-263
    • (2000) Curr. Genet. , vol.38 , pp. 256-263
    • Cooley, M.1    Mishra, N.C.2
  • 7
    • 0032132806 scopus 로고    scopus 로고
    • A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs
    • Coquelle A., Toledo F., Stern S., Bieth A., and Debatisse M. A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol. Cell 2 (1998) 259-265
    • (1998) Mol. Cell , vol.2 , pp. 259-265
    • Coquelle, A.1    Toledo, F.2    Stern, S.3    Bieth, A.4    Debatisse, M.5
  • 8
    • 0036276388 scopus 로고    scopus 로고
    • The Mre11 complex: at the crossroads of dna repair and checkpoint signalling
    • D'Amours D., and Jackson S.P. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol. 3 (2002) 317-327
    • (2002) Nat. Rev. Mol. Cell Biol. , vol.3 , pp. 317-327
    • D'Amours, D.1    Jackson, S.P.2
  • 9
    • 0025763979 scopus 로고
    • Formation of (dA-dT)n cruciforms in Escherichia coli cells under different environmental conditions
    • Dayn A., Malkhosyan S., Duzhy D., Lyamichev V., Panchenko Y., and Mirkin S. Formation of (dA-dT)n cruciforms in Escherichia coli cells under different environmental conditions. J. Bacteriol. 173 (1991) 2658-2664
    • (1991) J. Bacteriol. , vol.173 , pp. 2658-2664
    • Dayn, A.1    Malkhosyan, S.2    Duzhy, D.3    Lyamichev, V.4    Panchenko, Y.5    Mirkin, S.6
  • 11
    • 29144497885 scopus 로고    scopus 로고
    • Molecular mechanisms of chromosome fragility
    • Freudenreich C.H. Molecular mechanisms of chromosome fragility. Chemtracts: Biochem. Mol. Biol. 18 (2005) 141-152
    • (2005) Chemtracts: Biochem. Mol. Biol. , vol.18 , pp. 141-152
    • Freudenreich, C.H.1
  • 12
    • 13444253858 scopus 로고    scopus 로고
    • Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases
    • Freudenreich C.H., and Lahiri M. Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases. Cell Cycle 3 (2004) 1370-1374
    • (2004) Cell Cycle , vol.3 , pp. 1370-1374
    • Freudenreich, C.H.1    Lahiri, M.2
  • 13
    • 0032488872 scopus 로고    scopus 로고
    • Expansion and length-dependent fragility of CTG repeats in yeast
    • Freudenreich C.H., Kantrow S.M., and Zakian V.A. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279 (1998) 853-856
    • (1998) Science , vol.279 , pp. 853-856
    • Freudenreich, C.H.1    Kantrow, S.M.2    Zakian, V.A.3
  • 14
    • 0023614553 scopus 로고
    • Induction of sister chromatid exchanges at common fragile sites
    • Glover T.W., and Stein C.K. Induction of sister chromatid exchanges at common fragile sites. Am. J. Hum. Genet. 41 (1987) 882-890
    • (1987) Am. J. Hum. Genet. , vol.41 , pp. 882-890
    • Glover, T.W.1    Stein, C.K.2
  • 16
    • 33745438417 scopus 로고    scopus 로고
    • Gene amplification: yeast takes a turn
    • Haber J.E., and Debatisse M. Gene amplification: yeast takes a turn. Cell 125 (2006) 1237-1240
    • (2006) Cell , vol.125 , pp. 1237-1240
    • Haber, J.E.1    Debatisse, M.2
  • 17
    • 0035753424 scopus 로고    scopus 로고
    • FRA3B and other common fragile sites: the weakest links
    • Huebner K., and Croce C.M. FRA3B and other common fragile sites: the weakest links. Nat. Rev. Cancer 1 (2001) 214-221
    • (2001) Nat. Rev. Cancer , vol.1 , pp. 214-221
    • Huebner, K.1    Croce, C.M.2
  • 18
    • 0036606186 scopus 로고    scopus 로고
    • Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA
    • Ivessa A.S., Zhou J.Q., Schulz V.P., Monson E.K., and Zakian V.A. Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev. 16 (2002) 1383-1396
    • (2002) Genes Dev. , vol.16 , pp. 1383-1396
    • Ivessa, A.S.1    Zhou, J.Q.2    Schulz, V.P.3    Monson, E.K.4    Zakian, V.A.5
  • 19
    • 0034306548 scopus 로고    scopus 로고
    • The characterization of the common fragile site FRA16D and its involvement in multiple myeloma translocations
    • Krummel K.A., Roberts L.R., Kawakami M., Glover T.W., and Smith D.I. The characterization of the common fragile site FRA16D and its involvement in multiple myeloma translocations. Genomics 69 (2000) 37-46
    • (2000) Genomics , vol.69 , pp. 37-46
    • Krummel, K.A.1    Roberts, L.R.2    Kawakami, M.3    Glover, T.W.4    Smith, D.I.5
  • 20
    • 3242658268 scopus 로고    scopus 로고
    • Expanded CAG repeats activate the DNA damage checkpoint pathway
    • Lahiri M., Gustafson T.L., Majors E.R., and Freudenreich C.H. Expanded CAG repeats activate the DNA damage checkpoint pathway. Mol. Cell 15 (2004) 287-293
    • (2004) Mol. Cell , vol.15 , pp. 287-293
    • Lahiri, M.1    Gustafson, T.L.2    Majors, E.R.3    Freudenreich, C.H.4
  • 21
    • 0023440934 scopus 로고
    • Proposed mechanism of inheritance and expression of the human fragile-X syndrome of mental retardation
    • Laird C.D. Proposed mechanism of inheritance and expression of the human fragile-X syndrome of mental retardation. Genetics 117 (1987) 587-599
    • (1987) Genetics , vol.117 , pp. 587-599
    • Laird, C.D.1
  • 22
    • 20444424939 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier
    • Lambert S., Watson A., Sheedy D.M., Martin B., and Carr A.M. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121 (2005) 689-702
    • (2005) Cell , vol.121 , pp. 689-702
    • Lambert, S.1    Watson, A.2    Sheedy, D.M.3    Martin, B.4    Carr, A.M.5
  • 23
    • 0001313535 scopus 로고
    • Distribution of numbers of mutants in bacterial population
    • Lea D.E., and Coulson C.A. Distribution of numbers of mutants in bacterial population. J. Genet. 49 (1949) 264-285
    • (1949) J. Genet. , vol.49 , pp. 264-285
    • Lea, D.E.1    Coulson, C.A.2
  • 24
    • 0031924605 scopus 로고    scopus 로고
    • Replication of a common fragile site, FRA3B, occurs late in S phase and is delayed further upon induction: implications for the mechanism of fragile site induction
    • Le Beau M.M., Rassool F.V., Neilly M.E., Espinosa III R., Glover T.W., Smith D.I., and McKeithan T.W. Replication of a common fragile site, FRA3B, occurs late in S phase and is delayed further upon induction: implications for the mechanism of fragile site induction. Hum. Mol. Genet. 7 (1998) 755-761
    • (1998) Hum. Mol. Genet. , vol.7 , pp. 755-761
    • Le Beau, M.M.1    Rassool, F.V.2    Neilly, M.E.3    Espinosa III, R.4    Glover, T.W.5    Smith, D.I.6    McKeithan, T.W.7
  • 25
    • 1942422156 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability
    • Liu Y., Zhang H., Veeraraghavan J., Bambara R.A., and Freudenreich C.H. Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol. Cell. Biol. 24 (2004) 4049-4064
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 4049-4064
    • Liu, Y.1    Zhang, H.2    Veeraraghavan, J.3    Bambara, R.A.4    Freudenreich, C.H.5
  • 27
    • 0025029191 scopus 로고
    • Superhelical torsion in cellular DNA responds directly to environmental and genetic factors
    • McClellan J.A., Boublikova P., Palecek E., and Lilley D.M. Superhelical torsion in cellular DNA responds directly to environmental and genetic factors. Proc. Natl. Acad. Sci. USA 87 (1990) 8373-8377
    • (1990) Proc. Natl. Acad. Sci. USA , vol.87 , pp. 8373-8377
    • McClellan, J.A.1    Boublikova, P.2    Palecek, E.3    Lilley, D.M.4
  • 28
    • 33744807443 scopus 로고    scopus 로고
    • DNA structures, repeat expansions and human hereditary disorders
    • Mirkin S.M. DNA structures, repeat expansions and human hereditary disorders. Curr. Opin. Struct. Biol. 16 (2006) 351-358
    • (2006) Curr. Opin. Struct. Biol. , vol.16 , pp. 351-358
    • Mirkin, S.M.1
  • 30
    • 30144436775 scopus 로고    scopus 로고
    • Common chromosomal fragile sites and cancer: focus on FRA16D
    • O'Keefe L.V., and Richards R.I. Common chromosomal fragile sites and cancer: focus on FRA16D. Cancer Lett. 232 (2006) 37-47
    • (2006) Cancer Lett. , vol.232 , pp. 37-47
    • O'Keefe, L.V.1    Richards, R.I.2
  • 31
    • 0345283196 scopus 로고    scopus 로고
    • The role of late/slow replication of the FRA16D in common fragile site induction
    • Palakodeti A., Han Y., Jiang Y., and Le Beau M.M. The role of late/slow replication of the FRA16D in common fragile site induction. Genes Chromosomes Cancer 39 (2004) 71-76
    • (2004) Genes Chromosomes Cancer , vol.39 , pp. 71-76
    • Palakodeti, A.1    Han, Y.2    Jiang, Y.3    Le Beau, M.M.4
  • 33
    • 0035369401 scopus 로고    scopus 로고
    • Fragile and unstable chromosomes in cancer: causes and consequences
    • Richards R.I. Fragile and unstable chromosomes in cancer: causes and consequences. Trends Genet. 17 (2001) 339-345
    • (2001) Trends Genet. , vol.17 , pp. 339-345
    • Richards, R.I.1
  • 34
    • 17444440946 scopus 로고    scopus 로고
    • Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells
    • Ried K., Finnis M., Hobson L., Mangelsdorf M., Dayan S., Nancarrow J.K., Woollatt E., Kremmidiotis G., Gardner A., Venter D., et al. Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum. Mol. Genet. 9 (2000) 1651-1663
    • (2000) Hum. Mol. Genet. , vol.9 , pp. 1651-1663
    • Ried, K.1    Finnis, M.2    Hobson, L.3    Mangelsdorf, M.4    Dayan, S.5    Nancarrow, J.K.6    Woollatt, E.7    Kremmidiotis, G.8    Gardner, A.9    Venter, D.10
  • 36
    • 30344444783 scopus 로고    scopus 로고
    • The molecular basis of common and rare fragile sites
    • Schwartz M., Zlotorynski E., and Kerem B. The molecular basis of common and rare fragile sites. Cancer Lett. 232 (2006) 13-26
    • (2006) Cancer Lett. , vol.232 , pp. 13-26
    • Schwartz, M.1    Zlotorynski, E.2    Kerem, B.3
  • 37
    • 33646122683 scopus 로고    scopus 로고
    • ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks
    • Trenz K., Smith E., Smith S., and Costanzo V. ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. EMBO J. 25 (2006) 1764-1774
    • (2006) EMBO J. , vol.25 , pp. 1764-1774
    • Trenz, K.1    Smith, E.2    Smith, S.3    Costanzo, V.4
  • 38
    • 0027104096 scopus 로고
    • Localization of three novel hybrid breakpoints and refinement of 18 marker assignments in the human 3cen-p21.1 region
    • Wang N.D., Testa J.R., and Smith D.I. Localization of three novel hybrid breakpoints and refinement of 18 marker assignments in the human 3cen-p21.1 region. Genomics 14 (1992) 891-896
    • (1992) Genomics , vol.14 , pp. 891-896
    • Wang, N.D.1    Testa, J.R.2    Smith, D.I.3
  • 40
    • 0042121256 scopus 로고    scopus 로고
    • Mfold web server for nucleic acid folding and hybridization prediction
    • Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31 (2003) 3406-3415
    • (2003) Nucleic Acids Res. , vol.31 , pp. 3406-3415
    • Zuker, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.