메뉴 건너뛰기




Volumn 2, Issue 5, 2016, Pages 241-251

Emerging Role of mTOR in the Response to Cancer Therapeutics

Author keywords

[No Author keywords available]

Indexed keywords

B RAF KINASE; EPIDERMAL GROWTH FACTOR RECEPTOR; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MAMMALIAN TARGET OF RAPAMYCIN INHIBITOR;

EID: 84968719169     PISSN: 24058033     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trecan.2016.03.008     Document Type: Review
Times cited : (91)

References (91)
  • 1
    • 84863652136 scopus 로고    scopus 로고
    • Circumventing cancer drug resistance in the era of personalized medicine
    • L.A. Garraway, and P.A. Janne Circumventing cancer drug resistance in the era of personalized medicine Cancer Discov. 2 2012 214 226
    • (2012) Cancer Discov. , vol.2 , pp. 214-226
    • Garraway, L.A.1    Janne, P.A.2
  • 2
    • 84878532557 scopus 로고    scopus 로고
    • Signal integration by mTORC1 coordinates nutrient input with biosynthetic output
    • C.C. Dibble, and B.D. Manning Signal integration by mTORC1 coordinates nutrient input with biosynthetic output Nat. Cell Biol. 15 2013 555 564
    • (2013) Nat. Cell Biol. , vol.15 , pp. 555-564
    • Dibble, C.C.1    Manning, B.D.2
  • 3
    • 84874961313 scopus 로고    scopus 로고
    • Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis
    • A.M. Robitaille, and et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis Science 339 2013 1320 1323
    • (2013) Science , vol.339 , pp. 1320-1323
    • Robitaille, A.M.1
  • 4
    • 84874995247 scopus 로고    scopus 로고
    • Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
    • I. Ben-Sahra, and et al. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1 Science 339 2013 1323 1328
    • (2013) Science , vol.339 , pp. 1323-1328
    • Ben-Sahra, I.1
  • 5
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • K. Duvel, and et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1 Mol. Cell 39 2010 171 183
    • (2010) Mol. Cell , vol.39 , pp. 171-183
    • Duvel, K.1
  • 6
    • 50049116472 scopus 로고    scopus 로고
    • SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
    • T. Porstmann, and et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth Cell Metab. 8 2008 224 236
    • (2008) Cell Metab. , vol.8 , pp. 224-236
    • Porstmann, T.1
  • 7
    • 84930328718 scopus 로고    scopus 로고
    • Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP
    • S.J.H. Ricoult, and et al. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP Oncogene 35 2015 1250 1260
    • (2015) Oncogene , vol.35 , pp. 1250-1260
    • Ricoult, S.J.H.1
  • 8
    • 84880566446 scopus 로고    scopus 로고
    • A growing role for mTOR in promoting anabolic metabolism
    • Jessica J. Howell, and et al. A growing role for mTOR in promoting anabolic metabolism Biochem. Soc. Trans. 41 2013 906 912
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 906-912
    • Howell, J.J.1
  • 9
    • 84957899529 scopus 로고    scopus 로고
    • MTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle
    • I. Ben-Sahra, and et al. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle Science 351 2016 728 733
    • (2016) Science , vol.351 , pp. 728-733
    • Ben-Sahra, I.1
  • 10
    • 84940467267 scopus 로고    scopus 로고
    • Regulation of mTORC1 by PI3K signaling
    • C.C. Dibble, and L.C. Cantley Regulation of mTORC1 by PI3K signaling Trends Cell Biol. 25 2015 545 555
    • (2015) Trends Cell Biol. , vol.25 , pp. 545-555
    • Dibble, C.C.1    Cantley, L.C.2
  • 11
    • 84903158167 scopus 로고    scopus 로고
    • Regulation of mTORC1 by amino acids
    • L. Bar-Peled, and D.M. Sabatini Regulation of mTORC1 by amino acids Trends Cell Biol. 24 2014 400 406
    • (2014) Trends Cell Biol. , vol.24 , pp. 400-406
    • Bar-Peled, L.1    Sabatini, D.M.2
  • 12
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Y. Sancak, and et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids Cell 141 2010 290 303
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1
  • 13
    • 84894114029 scopus 로고    scopus 로고
    • Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
    • S. Menon, and et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome Cell 156 2014 771 785
    • (2014) Cell , vol.156 , pp. 771-785
    • Menon, S.1
  • 14
    • 0036342294 scopus 로고    scopus 로고
    • Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway
    • B.D. Manning, and et al. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway Mol. Cell 10 2002 151 162
    • (2002) Mol. Cell , vol.10 , pp. 151-162
    • Manning, B.D.1
  • 15
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • K. Inoki, and et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling Nat. Cell Biol. 4 2002 648 657
    • (2002) Nat. Cell Biol. , vol.4 , pp. 648-657
    • Inoki, K.1
  • 16
    • 0037108750 scopus 로고    scopus 로고
    • Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling
    • A.R. Tee, and et al. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling Proc. Natl. Acad. Sci. U.S.A. 99 2002 13571 13576
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 13571-13576
    • Tee, A.R.1
  • 17
    • 4544384577 scopus 로고    scopus 로고
    • Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase
    • P.P. Roux, and et al. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase Proc. Natl. Acad. Sci. U.S.A. 101 2004 13489 13494
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 13489-13494
    • Roux, P.P.1
  • 18
    • 17444431201 scopus 로고    scopus 로고
    • Phosphorylation and functional inactivation of TSC2 by Erk
    • L. Ma, and et al. Phosphorylation and functional inactivation of TSC2 by Erk Cell 121 2005 179 193
    • (2005) Cell , vol.121 , pp. 179-193
    • Ma, L.1
  • 19
    • 72949083368 scopus 로고    scopus 로고
    • Common corruption of the mTOR signaling network in human tumors
    • S. Menon, and B.D. Manning Common corruption of the mTOR signaling network in human tumors Oncogene 27 Suppl. 2 2008 S43 S51
    • (2008) Oncogene , vol.27 , pp. S43-S51
    • Menon, S.1    Manning, B.D.2
  • 20
    • 84922210268 scopus 로고    scopus 로고
    • Current treatment strategies for inhibiting mTOR in cancer
    • F. Chiarini, and et al. Current treatment strategies for inhibiting mTOR in cancer Trends Pharmacol. Sci. 36 2015 124 135
    • (2015) Trends Pharmacol. Sci. , vol.36 , pp. 124-135
    • Chiarini, F.1
  • 21
    • 38049169559 scopus 로고    scopus 로고
    • Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis
    • J.J. Bissler, and et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis N. Engl. J. Med. 358 2008 140 151
    • (2008) N. Engl. J. Med. , vol.358 , pp. 140-151
    • Bissler, J.J.1
  • 22
    • 33644827461 scopus 로고    scopus 로고
    • Rapamycin causes regression of astrocytomas in tuberous sclerosis complex
    • D.N. Franz, and et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex Ann. Neurol. 59 2006 490 498
    • (2006) Ann. Neurol. , vol.59 , pp. 490-498
    • Franz, D.N.1
  • 23
    • 78049510428 scopus 로고    scopus 로고
    • Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis
    • D.A. Krueger, and et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis N. Engl. J. Med. 363 2010 1801 1811
    • (2010) N. Engl. J. Med. , vol.363 , pp. 1801-1811
    • Krueger, D.A.1
  • 24
    • 84867333656 scopus 로고    scopus 로고
    • Genome sequencing identifies a basis for everolimus sensitivity
    • G. Iyer, and et al. Genome sequencing identifies a basis for everolimus sensitivity Science 338 2012 221
    • (2012) Science , vol.338 , pp. 221
    • Iyer, G.1
  • 25
    • 84907863603 scopus 로고    scopus 로고
    • Response and acquired resistance to everolimus in anaplastic thyroid cancer
    • N. Wagle, and et al. Response and acquired resistance to everolimus in anaplastic thyroid cancer N. Engl. J. Med. 371 2014 1426 1433
    • (2014) N. Engl. J. Med. , vol.371 , pp. 1426-1433
    • Wagle, N.1
  • 26
    • 84899678098 scopus 로고    scopus 로고
    • A diverse array of cancer-associated mTOR mutations are hyperactivating and can predict rapamycin sensitivity
    • B.C. Grabiner, and et al. A diverse array of cancer-associated mTOR mutations are hyperactivating and can predict rapamycin sensitivity Cancer Discov. 4 2014 554 563
    • (2014) Cancer Discov. , vol.4 , pp. 554-563
    • Grabiner, B.C.1
  • 27
    • 84899680978 scopus 로고    scopus 로고
    • Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib
    • N. Wagle, and et al. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib Cancer Discov. 4 2014 546 553
    • (2014) Cancer Discov. , vol.4 , pp. 546-553
    • Wagle, N.1
  • 28
    • 84896692038 scopus 로고    scopus 로고
    • Rapamycin: One drug, many effects
    • J. Li, and et al. Rapamycin: one drug, many effects Cell Metab. 19 2014 373 379
    • (2014) Cell Metab. , vol.19 , pp. 373-379
    • Li, J.1
  • 29
    • 0025776523 scopus 로고
    • Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
    • J. Heitman, and et al. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast Science 253 1991 905 909
    • (1991) Science , vol.253 , pp. 905-909
    • Heitman, J.1
  • 30
    • 84919872308 scopus 로고    scopus 로고
    • Regulation of T cells by mTOR: The known knowns and the known unknowns
    • K.N. Pollizzi, and J.D. Powell Regulation of T cells by mTOR: the known knowns and the known unknowns Trends Immunol. 36 2015 13 20
    • (2015) Trends Immunol. , vol.36 , pp. 13-20
    • Pollizzi, K.N.1    Powell, J.D.2
  • 31
    • 3342958797 scopus 로고    scopus 로고
    • The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins
    • L.S. Harrington, and et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins J. Cell Biol. 166 2004 213 223
    • (2004) J. Cell Biol. , vol.166 , pp. 213-223
    • Harrington, L.S.1
  • 32
    • 4544343980 scopus 로고    scopus 로고
    • Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies
    • O.J. Shah, and et al. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies Curr. Biol. 14 2004 1650 1656
    • (2004) Curr. Biol. , vol.14 , pp. 1650-1656
    • Shah, O.J.1
  • 33
    • 8444224619 scopus 로고    scopus 로고
    • Balancing Akt with S6K: Implications for both metabolic diseases and tumorigenesis
    • B.D. Manning Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis J. Cell Biol. 167 2004 399 403
    • (2004) J. Cell Biol. , vol.167 , pp. 399-403
    • Manning, B.D.1
  • 34
    • 32944457518 scopus 로고    scopus 로고
    • MTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt
    • K.E. O'Reilly, and et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt Cancer Res. 66 2006 1500 1508
    • (2006) Cancer Res. , vol.66 , pp. 1500-1508
    • O'Reilly, K.E.1
  • 35
    • 34250788809 scopus 로고    scopus 로고
    • AKT/PKB signaling: Navigating downstream
    • B.D. Manning, and L.C. Cantley AKT/PKB signaling: navigating downstream Cell 129 2007 1261 1274
    • (2007) Cell , vol.129 , pp. 1261-1274
    • Manning, B.D.1    Cantley, L.C.2
  • 36
    • 70350545722 scopus 로고    scopus 로고
    • Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1
    • C.C. Dibble, and et al. Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1 Mol. Cell. Biol. 29 2009 5657 5670
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 5657-5670
    • Dibble, C.C.1
  • 37
    • 79958696694 scopus 로고    scopus 로고
    • The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
    • P.P. Hsu, and et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling Science 332 2011 1317 1322
    • (2011) Science , vol.332 , pp. 1317-1322
    • Hsu, P.P.1
  • 38
    • 79958696336 scopus 로고    scopus 로고
    • Quantitative phosphoproteomic analysis identifies the adaptor protein Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
    • Y. Yu, and et al. Quantitative phosphoproteomic analysis identifies the adaptor protein Grb10 as an mTORC1 substrate that negatively regulates insulin signaling Science 332 2011 1322 1326
    • (2011) Science , vol.332 , pp. 1322-1326
    • Yu, Y.1
  • 39
    • 80655126355 scopus 로고    scopus 로고
    • MTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling
    • V.S. Rodrik-Outmezguine, and et al. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling Cancer Discov. 1 2011 248 259
    • (2011) Cancer Discov. , vol.1 , pp. 248-259
    • Rodrik-Outmezguine, V.S.1
  • 40
    • 84885708052 scopus 로고    scopus 로고
    • MTORC1 status dictates tumor response to targeted therapeutics
    • I. Kelsey, and B.D. Manning mTORC1 status dictates tumor response to targeted therapeutics Sci. Signal. 6 2013 pe31
    • (2013) Sci. Signal. , vol.6 , pp. pe31
    • Kelsey, I.1    Manning, B.D.2
  • 41
    • 84887497121 scopus 로고    scopus 로고
    • The quest to overcome resistance to EGFR-targeted therapies in cancer
    • C.R. Chong, and P.A. Janne The quest to overcome resistance to EGFR-targeted therapies in cancer Nat. Med. 19 2013 1389 1400
    • (2013) Nat. Med. , vol.19 , pp. 1389-1400
    • Chong, C.R.1    Janne, P.A.2
  • 42
    • 40849147041 scopus 로고    scopus 로고
    • EGFR antagonists in cancer treatment
    • F. Ciardiello, and G. Tortora EGFR antagonists in cancer treatment N. Engl. J. Med. 358 2008 1160 1174
    • (2008) N. Engl. J. Med. , vol.358 , pp. 1160-1174
    • Ciardiello, F.1    Tortora, G.2
  • 43
    • 33847323129 scopus 로고    scopus 로고
    • Epidermal growth factor receptor mutations in lung cancer
    • S.V. Sharma, and et al. Epidermal growth factor receptor mutations in lung cancer Nat. Rev. Cancer 7 2007 169 181
    • (2007) Nat. Rev. Cancer , vol.7 , pp. 169-181
    • Sharma, S.V.1
  • 44
    • 13844317894 scopus 로고    scopus 로고
    • EGFR mutation and resistance of non-small-cell lung cancer to gefitinib
    • S. Kobayashi, and et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib N. Engl. J. Med. 352 2005 786 792
    • (2005) N. Engl. J. Med. , vol.352 , pp. 786-792
    • Kobayashi, S.1
  • 45
    • 18244371651 scopus 로고    scopus 로고
    • Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain
    • W. Pao, and et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain PLoS Med. 2 2005 0225 0235
    • (2005) PLoS Med. , vol.2 , pp. 0225-0235
    • Pao, W.1
  • 46
    • 21144439000 scopus 로고    scopus 로고
    • Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib
    • E.L. Kwak, and et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib Proc. Natl. Acad. Sci. U.S.A. 102 2005 7665 7670
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 7665-7670
    • Kwak, E.L.1
  • 47
    • 72949092456 scopus 로고    scopus 로고
    • Novel mutant-selective EGFR kinase inhibitors against EGFR T790M
    • W. Zhou, and et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M Nature 462 2009 1070 1074
    • (2009) Nature , vol.462 , pp. 1070-1074
    • Zhou, W.1
  • 48
    • 84887977876 scopus 로고    scopus 로고
    • Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC
    • A.O. Walter, and et al. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC Cancer Discov. 3 2013 1404 1415
    • (2013) Cancer Discov. , vol.3 , pp. 1404-1415
    • Walter, A.O.1
  • 49
    • 84904898065 scopus 로고    scopus 로고
    • AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer
    • D.A.E. Cross, and et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer Cancer Discov. 4 2014 1046 1061
    • (2014) Cancer Discov. , vol.4 , pp. 1046-1061
    • Cross, D.A.E.1
  • 50
    • 14844366111 scopus 로고    scopus 로고
    • ERBB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines
    • J.A. Engelman, and et al. ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines Proc. Natl. Acad. Sci. U.S.A. 102 2005 3788 3793
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 3788-3793
    • Engelman, J.A.1
  • 51
    • 77956268839 scopus 로고    scopus 로고
    • Understanding resistance to EGFR inhibitors-impact on future treatment strategies
    • D.L. Wheeler, and et al. Understanding resistance to EGFR inhibitors-impact on future treatment strategies Nat. Rev. Clin. Oncol. 7 2010 493 507
    • (2010) Nat. Rev. Clin. Oncol. , vol.7 , pp. 493-507
    • Wheeler, D.L.1
  • 52
    • 84941786489 scopus 로고    scopus 로고
    • Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR-mutant lung cancer
    • E.M. Tricker, and et al. Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR-mutant lung cancer Cancer Discov. 5 2015 960 971
    • (2015) Cancer Discov. , vol.5 , pp. 960-971
    • Tricker, E.M.1
  • 53
    • 34347208648 scopus 로고    scopus 로고
    • Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy
    • D. Li, and et al. Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy Cancer Cell 12 2007 81 93
    • (2007) Cancer Cell , vol.12 , pp. 81-93
    • Li, D.1
  • 54
    • 70349684791 scopus 로고    scopus 로고
    • Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer
    • L. Regales, and et al. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer J. Clin. Invest. 119 2009 3000 3010
    • (2009) J. Clin. Invest. , vol.119 , pp. 3000-3010
    • Regales, L.1
  • 55
    • 84906911022 scopus 로고    scopus 로고
    • Dual Inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations
    • Y.Y. Janjigian, and et al. Dual Inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations Cancer Discov. 4 2014 1036 1045
    • (2014) Cancer Discov. , vol.4 , pp. 1036-1045
    • Janjigian, Y.Y.1
  • 56
    • 84958976789 scopus 로고    scopus 로고
    • Afatinib plus cetuximab delays resistance compared to single-agent erlotinib or afatinib in mouse models of TKI-naïve EGFR L858R-induced lung adenocarcinoma
    • V. Pirazzoli, and et al. Afatinib plus cetuximab delays resistance compared to single-agent erlotinib or afatinib in mouse models of TKI-naïve EGFR L858R-induced lung adenocarcinoma Clin. Cancer Res. 22 2016 426 435
    • (2016) Clin. Cancer Res. , vol.22 , pp. 426-435
    • Pirazzoli, V.1
  • 57
    • 84901275269 scopus 로고    scopus 로고
    • Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1
    • V. Pirazzoli, and et al. Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1 Cell Rep. 7 2014 999 1008
    • (2014) Cell Rep. , vol.7 , pp. 999-1008
    • Pirazzoli, V.1
  • 58
    • 84903478069 scopus 로고    scopus 로고
    • Rapamycin prevents the development and progression of mutant EGFR lung tumors with the acquired resistance mutation T790M
    • S. Kawabata, and et al. Rapamycin prevents the development and progression of mutant EGFR lung tumors with the acquired resistance mutation T790M Cell Rep. 7 2014 1824 1832
    • (2014) Cell Rep. , vol.7 , pp. 1824-1832
    • Kawabata, S.1
  • 59
    • 84891354826 scopus 로고    scopus 로고
    • PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1
    • H. Ebi, and et al. PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1 Proc. Natl. Acad. Sci. U.S.A. 110 2013 21124 21129
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 21124-21129
    • Ebi, H.1
  • 60
    • 51849111556 scopus 로고    scopus 로고
    • PI3K pathway alterations in cancer: Variations on a theme
    • T.L. Yuan, and L.C. Cantley PI3K pathway alterations in cancer: variations on a theme Oncogene 27 2008 5497 5510
    • (2008) Oncogene , vol.27 , pp. 5497-5510
    • Yuan, T.L.1    Cantley, L.C.2
  • 61
    • 67749122122 scopus 로고    scopus 로고
    • Targeting PI3K signalling in cancer: Opportunities, challenges and limitations
    • J.A. Engelman Targeting PI3K signalling in cancer: opportunities, challenges and limitations Nat. Rev. Cancer 9 2009 550 562
    • (2009) Nat. Rev. Cancer , vol.9 , pp. 550-562
    • Engelman, J.A.1
  • 62
    • 84875950102 scopus 로고    scopus 로고
    • Abstract CT-01: BYL719, a next generation PI3K alpha specific inhibitor: Preliminary safety, PK, and efficacy results from the first-in-human study
    • CT-01-CT-01
    • D. Juric, and et al. Abstract CT-01: BYL719, a next generation PI3K alpha specific inhibitor: preliminary safety, PK, and efficacy results from the first-in-human study Cancer Res 72 2012 CT-01-CT-01
    • (2012) Cancer Res , vol.72
    • Juric, D.1
  • 63
    • 84899785427 scopus 로고    scopus 로고
    • Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials
    • C. Fritsch, and et al. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials Mol. Cancer Ther. 13 2014 1117 1129
    • (2014) Mol. Cancer Ther. , vol.13 , pp. 1117-1129
    • Fritsch, C.1
  • 64
    • 84883624766 scopus 로고    scopus 로고
    • MTORC1 inhibition is required for sensitivity to PI3K p110α inhibitors in PIK3CA-mutant breast cancer
    • M. Elkabets, and et al. mTORC1 inhibition is required for sensitivity to PI3K p110α inhibitors in PIK3CA-mutant breast cancer Sci. Transl. Med. 5 2013 196ra199
    • (2013) Sci. Transl. Med. , vol.5 , pp. 196ra199
    • Elkabets, M.1
  • 65
    • 18444374405 scopus 로고    scopus 로고
    • Mutations of the BRAF gene in human cancer
    • H. Davies, and et al. Mutations of the BRAF gene in human cancer Nature 417 2002 949 954
    • (2002) Nature , vol.417 , pp. 949-954
    • Davies, H.1
  • 66
    • 84883016265 scopus 로고    scopus 로고
    • BRAF in melanoma: Current strategies and future directions
    • A.K.S. Salama, and K.T. Flaherty BRAF in melanoma: current strategies and future directions Clin. Cancer Res. 19 2013 4326 4334
    • (2013) Clin. Cancer Res. , vol.19 , pp. 4326-4334
    • Salama, A.K.S.1    Flaherty, K.T.2
  • 67
    • 84903159476 scopus 로고    scopus 로고
    • Targeting RAF kinases for cancer therapy: BRAF mutated melanoma and beyond
    • M. Holderfield, and et al. Targeting RAF kinases for cancer therapy: BRAF mutated melanoma and beyond Nat. Rev. Cancer 14 2014 455 467
    • (2014) Nat. Rev. Cancer , vol.14 , pp. 455-467
    • Holderfield, M.1
  • 68
    • 84863673204 scopus 로고    scopus 로고
    • Improved survival with MEK inhibition in BRAF-mutated melanoma
    • K.T. Flaherty, and et al. Improved survival with MEK inhibition in BRAF-mutated melanoma N. Engl. J. Med. 367 2012 107 114
    • (2012) N. Engl. J. Med. , vol.367 , pp. 107-114
    • Flaherty, K.T.1
  • 69
    • 79959795786 scopus 로고    scopus 로고
    • Improved survival with vemurafenib in melanoma with BRAF V600E mutation
    • P.B. Chapman, and et al. improved survival with vemurafenib in melanoma with BRAF V600E mutation N. Engl. J. Med. 364 2011 2507 2516
    • (2011) N. Engl. J. Med. , vol.364 , pp. 2507-2516
    • Chapman, P.B.1
  • 70
    • 84864285704 scopus 로고    scopus 로고
    • Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, open-label, phase 3 randomised controlled trial
    • A. Hauschild, and et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial Lancet 380 2012 358 365
    • (2012) Lancet , vol.380 , pp. 358-365
    • Hauschild, A.1
  • 71
    • 84883644630 scopus 로고    scopus 로고
    • TORC1 suppression predicts responsiveness to RAF and MEK inhibition in BRAF-mutant melanoma
    • R.B. Corcoran, and et al. TORC1 suppression predicts responsiveness to RAF and MEK inhibition in BRAF-mutant melanoma Sci. Transl. Med 5 2013 196ra198
    • (2013) Sci. Transl. Med , vol.5 , pp. 196ra198
    • Corcoran, R.B.1
  • 72
    • 84876037369 scopus 로고    scopus 로고
    • Elucidating distinct roles for NF1 in melanomagenesis
    • O. Maertens, and et al. Elucidating distinct roles for NF1 in melanomagenesis Cancer Discov. 3 2013 338 349
    • (2013) Cancer Discov. , vol.3 , pp. 338-349
    • Maertens, O.1
  • 73
    • 84928015512 scopus 로고    scopus 로고
    • AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas
    • M. Elkabets, and et al. AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas Cancer Cell 27 2015 533 546
    • (2015) Cancer Cell , vol.27 , pp. 533-546
    • Elkabets, M.1
  • 74
    • 84885816283 scopus 로고    scopus 로고
    • Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer
    • M.J. Niederst, and J.A. Engelman Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer Sci. Signal. 6 2013 1 6
    • (2013) Sci. Signal. , vol.6 , pp. 1-6
    • Niederst, M.J.1    Engelman, J.A.2
  • 75
    • 84878357685 scopus 로고    scopus 로고
    • A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
    • L. Bar-Peled, and et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1 Science 340 2013 1100 1106
    • (2013) Science , vol.340 , pp. 1100-1106
    • Bar-Peled, L.1
  • 76
    • 84956702125 scopus 로고    scopus 로고
    • Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma
    • J. Okosun, and et al. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma Nat. Genet. 48 2016 183 188
    • (2016) Nat. Genet. , vol.48 , pp. 183-188
    • Okosun, J.1
  • 77
    • 84958963164 scopus 로고    scopus 로고
    • Control of PD-L1 expression by oncogenic activation of the AKT/mTOR pathway in non-small cell lung cancer
    • K.J. Lastwika, and et al. Control of PD-L1 expression by oncogenic activation of the AKT/mTOR pathway in non-small cell lung cancer Cancer Res. 76 2015 227 238
    • (2015) Cancer Res. , vol.76 , pp. 227-238
    • Lastwika, K.J.1
  • 78
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • S. Wullschleger, and et al. TOR signaling in growth and metabolism Cell 124 2006 471 484
    • (2006) Cell , vol.124 , pp. 471-484
    • Wullschleger, S.1
  • 79
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • M. Laplante, and D.M. Sabatini mTOR signaling in growth control and disease Cell 149 2012 274 293
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 80
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR Complex
    • D.D. Sarbassov, and et al. Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR Complex Science 307 2005 1098 1101
    • (2005) Science , vol.307 , pp. 1098-1101
    • Sarbassov, D.D.1
  • 81
    • 58649092475 scopus 로고    scopus 로고
    • MTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1)
    • J.M. García-Martínez, and D.R. Alessi mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1) Biochem. J. 416 2008 375 385
    • (2008) Biochem. J. , vol.416 , pp. 375-385
    • García-Martínez, J.M.1    Alessi, D.R.2
  • 82
    • 47949125486 scopus 로고    scopus 로고
    • The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C
    • V. Facchinetti, and et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C EMBO J. 27 2008 1932 1943
    • (2008) EMBO J. , vol.27 , pp. 1932-1943
    • Facchinetti, V.1
  • 83
    • 47949104258 scopus 로고    scopus 로고
    • Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling
    • T. Ikenoue, and et al. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling EMBO J. 27 2008 1919 1931
    • (2008) EMBO J. , vol.27 , pp. 1919-1931
    • Ikenoue, T.1
  • 84
    • 68149096799 scopus 로고    scopus 로고
    • The pharmacology of mTOR inhibition
    • D.A. Guertin, and D.M. Sabatini The pharmacology of mTOR inhibition Sci. Signal. 2 2009 pe24
    • (2009) Sci. Signal. , vol.2 , pp. pe24
    • Guertin, D.A.1    Sabatini, D.M.2
  • 85
    • 80155142474 scopus 로고    scopus 로고
    • Rapamycin passes the torch: A new generation of mTOR inhibitors
    • D. Benjamin, and et al. Rapamycin passes the torch: a new generation of mTOR inhibitors Nat. Rev. Drug Discov. 10 2011 868 880
    • (2011) Nat. Rev. Drug Discov. , vol.10 , pp. 868-880
    • Benjamin, D.1
  • 86
    • 33646023695 scopus 로고    scopus 로고
    • Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
    • D.D. Sarbassov, and et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB Mol. Cell 22 2006 159 168
    • (2006) Mol. Cell , vol.22 , pp. 159-168
    • Sarbassov, D.D.1
  • 87
    • 56249147509 scopus 로고    scopus 로고
    • Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation
    • A.Y. Choo, and et al. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation Proc. Natl. Acad. Sci.U.S.A. 105 2008 17414 17419
    • (2008) Proc. Natl. Acad. Sci.U.S.A. , vol.105 , pp. 17414-17419
    • Choo, A.Y.1
  • 88
    • 65549145048 scopus 로고    scopus 로고
    • An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
    • C.C. Thoreen, and et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1 J. Biol. Chem. 284 2009 8023 8032
    • (2009) J. Biol. Chem. , vol.284 , pp. 8023-8032
    • Thoreen, C.C.1
  • 89
    • 61349141302 scopus 로고    scopus 로고
    • Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
    • M.E. Feldman, and et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2 PLoS Biol. 7 2009 0371 0383
    • (2009) PLoS Biol. , vol.7 , pp. 0371-0383
    • Feldman, M.E.1
  • 90
    • 84880709668 scopus 로고    scopus 로고
    • MTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin
    • S.A. Kang, and et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin Science 341 2013 1236566
    • (2013) Science , vol.341 , pp. 1236566
    • Kang, S.A.1
  • 91
    • 84858964150 scopus 로고    scopus 로고
    • Kinome-wide selectivity profiling of ATP-competitive mammalian target of rapamycin (mTOR) inhibitors and characterization of their binding kinetics
    • Q. Liu, and et al. Kinome-wide selectivity profiling of ATP-competitive mammalian target of rapamycin (mTOR) inhibitors and characterization of their binding kinetics J. Biol. Chem. 287 2012 9742 9752
    • (2012) J. Biol. Chem. , vol.287 , pp. 9742-9752
    • Liu, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.