메뉴 건너뛰기




Volumn , Issue , 2006, Pages 1-60

Yin and Yang of mitochondrial ROS

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84967683966     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1142/9781860948046_0001     Document Type: Chapter
Times cited : (6)

References (211)
  • 1
    • 0142150051 scopus 로고    scopus 로고
    • Mitochondrial formation of reactive oxygen species
    • Turrens JF. Mitochondrial formation of reactive oxygen species. J. Physiol. 552: 335-344 (2003).
    • (2003) J. Physiol , vol.552 , pp. 335-344
    • Turrens, J.F.1
  • 2
    • 0022973182 scopus 로고
    • Subcellular distribution of OM cytochrome b-mediated NADH-semidehydroascorbate reductase activity in rat liver
    • Nishino H, Ito A. Subcellular distribution of OM cytochrome b-mediated NADH-semidehydroascorbate reductase activity in rat liver. J. Biochem. (Tokyo) 100: 1523-1531 (1986).
    • (1986) J. Biochem. (Tokyo) , vol.100 , pp. 1523-1531
    • Nishino, H.1    Ito, A.2
  • 3
    • 0035797080 scopus 로고    scopus 로고
    • Mitochondrial NADH-cytochrome b(5) reductase plays a crucial role in the reduction of D-erythroascorbyl free radical in Saccharomyces cerevisiae
    • Lee JS, Huh WK, Lee BH, Baek YU, Hwang CS, Kim ST, Kim YR, Kang SO. Mitochondrial NADH-cytochrome b(5) reductase plays a crucial role in the reduction of D-erythroascorbyl free radical in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1527: 31-38 (2001).
    • (2001) Biochim. Biophys. Acta , vol.1527 , pp. 31-38
    • Lee, J.S.1    Huh, W.K.2    Lee, B.H.3    Baek, Y.U.4    Hwang, C.S.5    Kim, S.T.6    Kim, Y.R.7    Kang, S.O.8
  • 4
    • 0029848373 scopus 로고    scopus 로고
    • Mitochondrial involvement in schizophrenia and other functional psychoses
    • Whatley SA, Curti D, Marchbanks RM. Mitochondrial involvement in schizophrenia and other functional psychoses. Neurochem. Res. 21: 995-1004 (1996).
    • (1996) Neurochem. Res , vol.21 , pp. 995-1004
    • Whatley, S.A.1    Curti, D.2    Marchbanks, R.M.3
  • 5
    • 0031781878 scopus 로고    scopus 로고
    • Superoxide, neuroleptics and the ubiquinone and cytochrome b5 reductases in brain and lymphocytes from normal and schizophrenic patients
    • Whatley SA, Curti D, Das Gupta F, Ferrier IN, Jones S, Taylor C, Marchbanks RM. Superoxide, neuroleptics and the ubiquinone and cytochrome b5 reductases in brain and lymphocytes from normal and schizophrenic patients. Mol. Psychiatry 3: 227-237 (1998).
    • (1998) Mol. Psychiatry , vol.3 , pp. 227-237
    • Whatley, S.A.1    Curti, D.2    Das Gupta, F.3    Ferrier, I.N.4    Jones, S.5    Taylor, C.6    Marchbanks, R.M.7
  • 6
    • 0030589009 scopus 로고    scopus 로고
    • The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA
    • Hauptmann N, Grimsby J, Shih JC, Cadenas E. The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Arch. Biochem. Biophys. 335: 295-304 (1996).
    • (1996) Arch. Biochem. Biophys , vol.335 , pp. 295-304
    • Hauptmann, N.1    Grimsby, J.2    Shih, J.C.3    Cadenas, E.4
  • 8
    • 0037135035 scopus 로고    scopus 로고
    • Hydrogen peroxide production bymonoamine oxidase during ischemia/reperfusion
    • Kunduzova OR, Bianchi P, Parini A, Cambon C. Hydrogen peroxide production bymonoamine oxidase during ischemia/reperfusion. Eur. J. Pharmacol. 448: 225-230 (2002).
    • (2002) Eur. J. Pharmacol , vol.448 , pp. 225-230
    • Kunduzova, O.R.1    Bianchi, P.2    Parini, A.3    Cambon, C.4
  • 10
    • 0034758492 scopus 로고    scopus 로고
    • Hydrogen peroxide production in mouse tissues after acute d-amphetamine administration. Influence of monoamine oxidase inhibition
    • Carvalho F, Duarte JA, Neuparth MJ, Carmo H, Fernandes E, Remiao F, Bastos ML. Hydrogen peroxide production in mouse tissues after acute d-amphetamine administration. Influence of monoamine oxidase inhibition. Arch. Toxicol. 75: 465-469 (2001).
    • (2001) Arch. Toxicol , vol.75 , pp. 465-469
    • Carvalho, F.1    Duarte, J.A.2    Neuparth, M.J.3    Carmo, H.4    Fernandes, E.5    Remiao, F.6    Bastos, M.L.7
  • 11
    • 0344443765 scopus 로고    scopus 로고
    • Oxidative alpha-ketoglutarate ehydrogenase inhibition via subtle elevations in monoamine oxidase B levels results in loss of spare respiratory capacity: Implications for Parkinson’s disease
    • Kumar MJ, Nicholls DG, Andersen JK. Oxidative alpha-ketoglutarate ehydrogenase inhibition via subtle elevations in monoamine oxidase B levels results in loss of spare respiratory capacity: implications for Parkinson’s disease. J. Biol. Chem. 278: 46432-46439 (2003).
    • (2003) J. Biol. Chem , vol.278 , pp. 46432-46439
    • Kumar, M.J.1    Nicholls, D.G.2    Andersen, J.K.3
  • 12
    • 0030039060 scopus 로고    scopus 로고
    • Catalytic enzyme histochemistry and biochemical analysis of dihydroorotate dehydrogenase/oxidase and succinate dehydrogenase in mammalian tissues, cells and mitochondria
    • Loffler M, Becker C, Wegerle E, Schuster G. Catalytic enzyme histochemistry and biochemical analysis of dihydroorotate dehydrogenase/oxidase and succinate dehydrogenase in mammalian tissues, cells and mitochondria. Histochem. Cell. Biol. 105: 119-128 (1996).
    • (1996) Histochem. Cell. Biol , vol.105 , pp. 119-128
    • Loffler, M.1    Becker, C.2    Wegerle, E.3    Schuster, G.4
  • 13
    • 0016750459 scopus 로고
    • Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid
    • Forman JH, Kennedy J. Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid. J. Biol. Chem. 250: 4322-4326 (1975).
    • (1975) J. Biol. Chem , vol.250 , pp. 4322-4326
    • Forman, J.H.1    Kennedy, J.2
  • 14
    • 0017293045 scopus 로고
    • Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase
    • Forman HJ, Kennedy J. Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase. Arch. Biochem. Biophys. 173: 219-224 (1976).
    • (1976) Arch. Biochem. Biophys , vol.173 , pp. 219-224
    • Forman, H.J.1    Kennedy, J.2
  • 15
    • 0021972262 scopus 로고
    • Complete inhibition of dihydro-orotate oxidation and superoxide production by 1,1,1-trifluoro-3-thenoylacetone in rat liver mitochondria
    • Dileepan KN, Kennedy J. Complete inhibition of dihydro-orotate oxidation and superoxide production by 1,1,1-trifluoro-3-thenoylacetone in rat liver mitochondria. Biochem. J. 225: 189-194 (1985).
    • (1985) Biochem. J , vol.225 , pp. 189-194
    • Dileepan, K.N.1    Kennedy, J.2
  • 16
    • 0037031846 scopus 로고    scopus 로고
    • Normal thyroid thermogenesis but reduced viability and adiposity in mice lacking the mitochondrial glycerol phosphate dehydrogenase
    • Brown LJ, Koza RA, Everett C, Reitman ML, Marshall L, Fahien LA, Kozak LP, MacDonald MJ. Normal thyroid thermogenesis but reduced viability and adiposity in mice lacking the mitochondrial glycerol phosphate dehydrogenase. J. Biol. Chem. 277: 32892-32898 (2002).
    • (2002) J. Biol. Chem , vol.277 , pp. 32892-32898
    • Brown, L.J.1    Koza, R.A.2    Everett, C.3    Reitman, M.L.4    Marshall, L.5    Fahien, L.A.6    Kozak, L.P.7    MacDonald, M.J.8
  • 17
    • 0000883949 scopus 로고
    • Influence of thyroid hormones on L-alpha-glycerophosphate dehydrogenases and other dehydrogenases in various organs of the rat
    • Lee YP, Lardy HA. Influence of thyroid hormones on L-alpha-glycerophosphate dehydrogenases and other dehydrogenases in various organs of the rat. J. Biol. Chem. 240: 1427-1436 (1965).
    • (1965) J. Biol. Chem , vol.240 , pp. 1427-1436
    • Lee, Y.P.1    Lardy, H.A.2
  • 18
    • 0029821947 scopus 로고    scopus 로고
    • Regulation of adenine nucleotide translocase and glycerol 3-phosphate dehydrogenase expression by thyroid hormones in different rat tissues
    • Dummler K, Muller S, Seitz HJ. Regulation of adenine nucleotide translocase and glycerol 3-phosphate dehydrogenase expression by thyroid hormones in different rat tissues. Biochem. J. 317 (Pt 3): 913-918 (1996).
    • (1996) Biochem. J , vol.317 , pp. 913-918
    • Dummler, K.1    Muller, S.2    Seitz, H.J.3
  • 20
    • 0000274924 scopus 로고
    • Alpha-Glycerophosphate oxidase of flight muscle mitochondria
    • Estabrook RW, Sacktor B. Alpha-Glycerophosphate oxidase of flight muscle mitochondria. J. Biol. Chem. 233: 1014-1019 (1958).
    • (1958) J. Biol. Chem , vol.233 , pp. 1014-1019
    • Estabrook, R.W.1    Sacktor, B.2
  • 21
    • 0031853099 scopus 로고    scopus 로고
    • Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria
    • Kwong LK, Sohal RS. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch. Biochem. Biophys. 350: 118-126 (1998).
    • (1998) Arch. Biochem. Biophys , vol.350 , pp. 118-126
    • Kwong, L.K.1    Sohal, R.S.2
  • 22
    • 0141526414 scopus 로고    scopus 로고
    • Superoxide and hydrogen peroxide production by Drosophila mitochondria
    • Miwa S, St-Pierre J, Partridge L, Brand MD. Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic. Biol. Med. 35: 938-948 (2003).
    • (2003) Free Radic. Biol. Med , vol.35 , pp. 938-948
    • Miwa, S.1    St-Pierre, J.2    Partridge, L.3    Brand, M.D.4
  • 23
    • 0032545269 scopus 로고    scopus 로고
    • Generation of superoxide anion by succinatecytochrome c reductase from bovine heart mitochondria
    • Zhang L, Yu L, Yu CA. Generation of superoxide anion by succinatecytochrome c reductase from bovine heart mitochondria. J. Biol. Chem. 273: 33972-33976 (1998a).
    • (1998) J. Biol. Chem , vol.273 , pp. 33972-33976
    • Zhang, L.1    Yu, L.2    Yu, C.A.3
  • 24
    • 0033858360 scopus 로고    scopus 로고
    • The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species
    • McLennan HR, Degli Esposti M. The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J. Bioenerg. Biomembr. 32: 153-162 (2000).
    • (2000) J. Bioenerg. Biomembr , vol.32 , pp. 153-162
    • McLennan, H.R.1    Degli Esposti, M.2
  • 25
    • 0036121191 scopus 로고    scopus 로고
    • Aconitase: Sensitive target and measure of superoxide
    • Gardner PR. Aconitase: sensitive target and measure of superoxide. Methods Enzymol. 349: 9-23 (2002).
    • (2002) Methods Enzymol , vol.349 , pp. 9-23
    • Gardner, P.R.1
  • 26
    • 0039174315 scopus 로고    scopus 로고
    • Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation
    • Vasquez-Vivar J, Kalyanaraman B, Kennedy MC. Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. J. Biol. Chem. 275: 14064-14069 (2000).
    • (2000) J. Biol. Chem , vol.275 , pp. 14064-14069
    • Vasquez-Vivar, J.1    Kalyanaraman, B.2    Kennedy, M.C.3
  • 27
    • 0025689355 scopus 로고
    • Localization of the alpha-oxoacid dehydrogenase multienzyme complexes within the mitochondrion
    • Maas E, Bisswanger H. Localization of the alpha-oxoacid dehydrogenase multienzyme complexes within the mitochondrion. FEBS Lett. 277: 189-190 (1990).
    • (1990) FEBS Lett , vol.277 , pp. 189-190
    • Maas, E.1    Bisswanger, H.2
  • 29
    • 4544226082 scopus 로고    scopus 로고
    • Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutaratedehydrogenase
    • Tretter L. Adam-Vizi V. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutaratedehydrogenase. J. Neurosci. 24: 7771-7778 (2004).
    • (2004) J. Neurosci , vol.24 , pp. 7771-7778
    • Tretter, L.1    Adam-Vizi, V.2
  • 30
    • 0036408866 scopus 로고    scopus 로고
    • Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species
    • Bunik VI, Sievers C. Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species. Eur. J. Biochem. 269: 5004-5015 (2002).
    • (2002) Eur. J. Biochem , vol.269 , pp. 5004-5015
    • Bunik, V.I.1    Sievers, C.2
  • 31
    • 0030969868 scopus 로고    scopus 로고
    • Superoxide production by the mitochondrial respiratory chain
    • Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17: 3-8 (1997).
    • (1997) Biosci. Rep , vol.17 , pp. 3-8
    • Turrens, J.F.1
  • 32
    • 0036139856 scopus 로고    scopus 로고
    • The mitochondrial production of reactive oxygen species: Mechanisms and implications in human pathology
    • Lenaz G. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52: 159-164 (2001).
    • (2001) IUBMB Life , vol.52 , pp. 159-164
    • Lenaz, G.1
  • 33
    • 0036903625 scopus 로고    scopus 로고
    • Complex I-mediated reactive oxygen species generation: Modulation by cytochrome c and NAD(P)+ oxidation-reduction state
    • Kushnareva Y, Murphy AN, Andreyev A. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem. J. 368: 545-553 (2002).
    • (2002) Biochem. J , vol.368 , pp. 545-553
    • Kushnareva, Y.1    Murphy, A.N.2    Andreyev, A.3
  • 34
    • 0036319021 scopus 로고    scopus 로고
    • Generation of reactive oxygen species by the mitochondrial electron transport chain
    • Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80: 780-787 (2002).
    • (2002) J. Neurochem , vol.80 , pp. 780-787
    • Liu, Y.1    Fiskum, G.2    Schubert, D.3
  • 35
    • 0017406503 scopus 로고
    • Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinolcytochrome c reductase from beef-heart mitochondria
    • Cadenas E, Boveris A, Ragan CI, Stoppani AO. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinolcytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 180: 248-257 (1977).
    • (1977) Arch. Biochem. Biophys , vol.180 , pp. 248-257
    • Cadenas, E.1    Boveris, A.2    Ragan, C.I.3    Stoppani, A.O.4
  • 37
    • 0014217470 scopus 로고
    • Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles
    • Hinkle PC, Butow RA, Racker E, Chance B. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles. J. Biol. Chem. 242: 5169-5173 (1967).
    • (1967) J. Biol. Chem , vol.242 , pp. 5169-5173
    • Hinkle, P.C.1    Butow, R.A.2    Racker, E.3    Chance, B.4
  • 38
    • 0018393931 scopus 로고
    • NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation
    • Takeshige K, Minakami S. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem. J. 180: 129-135 (1979).
    • (1979) Biochem. J , vol.180 , pp. 129-135
    • Takeshige, K.1    Minakami, S.2
  • 39
    • 0034467677 scopus 로고    scopus 로고
    • Localization of the site of oxygen radical generation inside the complex I of heart and non-synaptic brain mammalian mitochondria
    • Herrero A, Barja G. Localization of the site of oxygen radical generation inside the complex I of heart and non-synaptic brain mammalian mitochondria. J. Bioenerg. Biomembr. 32: 609-615 (2000).
    • (2000) J. Bioenerg. Biomembr , vol.32 , pp. 609-615
    • Herrero, A.1    Barja, G.2
  • 40
    • 0035929367 scopus 로고    scopus 로고
    • The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably ironsulfur cluster N2
    • Genova ML, Ventura B, Giuliano G, Bovina C, Formiggini G, Parenti Castelli G, Lenaz G. The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably ironsulfur cluster N2. FEBS Lett. 505: 364-368 (2001).
    • (2001) FEBS Lett , vol.505 , pp. 364-368
    • Genova, M.L.1    Ventura, B.2    Giuliano, G.3    Bovina, C.4    Formiggini, G.5    Parenti Castelli, G.6    Lenaz, G.7
  • 41
    • 0020839146 scopus 로고
    • Kinetics of superoxide formation by respiratory chain NADH-dehydrogenase of bovine heart mitochondria
    • Kang D, Narabayashi H, Sata T, Takeshige K. Kinetics of superoxide formation by respiratory chain NADH-dehydrogenase of bovine heart mitochondria. J. Biochem. (Tokyo) 94: 1301-1306 (1983).
    • (1983) J. Biochem. (Tokyo) , vol.94 , pp. 1301-1306
    • Kang, D.1    Narabayashi, H.2    Sata, T.3    Takeshige, K.4
  • 42
  • 43
    • 0024297325 scopus 로고
    • Studies on the electron transfer pathway, topography of iron-sulfur centers, and site of coupling in NADH-Q oxidoreductase
    • Krishnamoorthy G, Hinkle PC. Studies on the electron transfer pathway, topography of iron-sulfur centers, and site of coupling in NADH-Q oxidoreductase. J. Biol. Chem. 263: 17566-17575 (1988).
    • (1988) J. Biol. Chem , vol.263 , pp. 17566-17575
    • Krishnamoorthy, G.1    Hinkle, P.C.2
  • 44
    • 0030729851 scopus 로고    scopus 로고
    • High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria
    • Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416: 15-18 (1997).
    • (1997) FEBS Lett , vol.416 , pp. 15-18
    • Korshunov, S.S.1    Skulachev, V.P.2    Starkov, A.A.3
  • 45
    • 0030615104 scopus 로고    scopus 로고
    • Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age
    • Hansford RG, Hogue BA, Mildaziene V. Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J. Bioenerg. Biomembr. 29: 89-95 (1997).
    • (1997) J. Bioenerg. Biomembr , vol.29 , pp. 89-95
    • Hansford, R.G.1    Hogue, B.A.2    Mildaziene, V.3
  • 46
    • 0034740585 scopus 로고    scopus 로고
    • DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria
    • Votyakova TV, Reynolds IJ. DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J. Neurochem. 79: 266-277 (2001).
    • (2001) J. Neurochem , vol.79 , pp. 266-277
    • Votyakova, T.V.1    Reynolds, I.J.2
  • 47
    • 0042433242 scopus 로고    scopus 로고
    • Regulation of brainmitochondrial H2O2 production by membrane potential and NAD(P)H redox state
    • Starkov AA, Fiskum G. Regulation of brainmitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J. Neurochem. 86: 1101-1107 (2003).
    • (2003) J. Neurochem , vol.86 , pp. 1101-1107
    • Starkov, A.A.1    Fiskum, G.2
  • 48
    • 4043090717 scopus 로고    scopus 로고
    • Superoxide production by NADH: Ubiquinone oxidoreductase (complex I) depends on the pHgradient across the mitochondrial inner membrane
    • Lambert AJ, Brand MD. Superoxide production by NADH: ubiquinone oxidoreductase (complex I) depends on the pHgradient across the mitochondrial inner membrane. Biochem. J. 382: 511-517 (2004).
    • (2004) Biochem. J , vol.382 , pp. 511-517
    • Lambert, A.J.1    Brand, M.D.2
  • 49
    • 0019083215 scopus 로고
    • Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
    • Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191: 421-427 (1980).
    • (1980) Biochem. J , vol.191 , pp. 421-427
    • Turrens, J.F.1    Boveris, A.2
  • 50
    • 0033369476 scopus 로고    scopus 로고
    • Mitochondrial oxygen radical generation and leak: Sites of production in states 4 and 3, organ specificity, and relation to aging and longevity
    • Barja G. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J. Bioenerg. Biomembr. 31: 347-366 (1999).
    • (1999) J. Bioenerg. Biomembr , vol.31 , pp. 347-366
    • Barja, G.1
  • 51
    • 0037269343 scopus 로고    scopus 로고
    • Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals
    • Sipos I, Tretter L, Adam-Vizi V. Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J. Neurochem. 84: 112-118 (2003).
    • (2003) J. Neurochem , vol.84 , pp. 112-118
    • Sipos, I.1    Tretter, L.2    Adam-Vizi, V.3
  • 53
    • 0027933701 scopus 로고
    • +: Implications for neurodegeneration
    • +: implications for neurodegeneration. J. Neurochem. 63: 584-591 (1994).
    • (1994) J. Neurochem , vol.63 , pp. 584-591
    • Dykens, J.A.1
  • 54
    • 0028821028 scopus 로고
    • 2+-induced mitochondrial membrane permeabilization: Role of coenzyme Q redox state
    • 2+-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state. Am. J. Physiol. 269: C141-C147 (1995).
    • (1995) Am. J. Physiol , vol.269 , pp. C141-C147
    • Kowaltowski, A.J.1    Castilho, R.F.2    Vercesi, A.E.3
  • 57
    • 0032557424 scopus 로고    scopus 로고
    • The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism
    • Kowaltowski AJ, Netto LE, Vercesi AE. The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism. J. Biol. Chem. 273: 12766-12769 (1998a).
    • (1998) J. Biol. Chem , vol.273 , pp. 12766-12769
    • Kowaltowski, A.J.1    Netto, L.E.2    Vercesi, A.E.3
  • 58
    • 0141815741 scopus 로고    scopus 로고
    • Production of reactive oxygen species by mitochondria: Central role of complex III
    • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J. Biol. Chem. 278: 36027-36031 (2003).
    • (2003) J. Biol. Chem , vol.278 , pp. 36027-36031
    • Chen, Q.1    Vazquez, E.J.2    Moghaddas, S.3    Hoppel, C.L.4    Lesnefsky, E.J.5
  • 59
    • 0014010888 scopus 로고
    • Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles. I. pH dependency and hydrogen peroxide formation
    • Jensen PK. Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles. I. pH dependency and hydrogen peroxide formation. Biochim. Biophys. Acta 122: 157-166 (1966).
    • (1966) Biochim. Biophys. Acta , vol.122 , pp. 157-166
    • Jensen, P.K.1
  • 60
    • 0016148483 scopus 로고
    • Superoxide radicals as precursors of mitochondrial hydrogen peroxide
    • Loschen G, Azzi A, Richter C, Flohe L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 42: 68-72 (1974).
    • (1974) FEBS Lett , vol.42 , pp. 68-72
    • Loschen, G.1    Azzi, A.2    Richter, C.3    Flohe, L.4
  • 61
    • 0016701593 scopus 로고
    • Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues
    • Dionisi O, Galeotti T, Terranova T, Azzi A. Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues. Biochim. Biophys. Acta 403: 292-300 (1975).
    • (1975) Biochim. Biophys. Acta , vol.403 , pp. 292-300
    • Dionisi, O.1    Galeotti, T.2    Terranova, T.3    Azzi, A.4
  • 62
    • 0017154414 scopus 로고
    • Role of ubiquinonein the mitochondrial generation of hydrogen peroxide
    • Boveris A, Cadenas E, Stoppani AO. Role of ubiquinonein the mitochondrial generation of hydrogen peroxide. Biochem. J. 156: 435-444 (1976).
    • (1976) Biochem. J , vol.156 , pp. 435-444
    • Boveris, A.1    Cadenas, E.2    Stoppani, A.O.3
  • 63
    • 0018923857 scopus 로고
    • Tiron as a spin-trap for superoxide radicals produced by the respiratory chain of submitochondrial particles
    • Grigolava IV, Ksenzenko M, Konstantinob AA, Tikhonov AN, Kerimov TM. Tiron as a spin-trap for superoxide radicals produced by the respiratory chain of submitochondrial particles. Biokhimiia 45: 75-82 (1980).
    • (1980) Biokhimiia , vol.45 , pp. 75-82
    • Grigolava, I.V.1    Ksenzenko, M.2    Konstantinob, A.A.3    Tikhonov, A.N.4    Kerimov, T.M.5
  • 65
    • 0025358947 scopus 로고
    • The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex
    • Trumpower BL. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J. Biol. Chem. 265: 11409-11412 (1990).
    • (1990) J. Biol. Chem , vol.265 , pp. 11409-11412
    • Trumpower, B.L.1
  • 67
    • 0033619678 scopus 로고    scopus 로고
    • Mechanism of ubiquinol oxidation by the bc(1) complex: Different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors
    • Crofts AR, Barquera B, Gennis RB, Kuras R, Guergova-Kuras M, Berry EA. Mechanism of ubiquinol oxidation by the bc(1) complex: different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors. Biochemistry 38: 15807-15826 (1999).
    • (1999) Biochemistry , vol.38 , pp. 15807-15826
    • Crofts, A.R.1    Barquera, B.2    Gennis, R.B.3    Kuras, R.4    Guergova-Kuras, M.5    Berry, E.A.6
  • 69
    • 0032493297 scopus 로고    scopus 로고
    • Inhibitor binding changes domain mobility in the iron-sulfur protein of the mitochondrial bc1 complex from bovine heart
    • Kim H, Xia D, Yu CA, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J. Inhibitor binding changes domain mobility in the iron-sulfur protein of the mitochondrial bc1 complex from bovine heart. Proc. Natl. Acad. Sci. USA 95: 8026-8033 (1998).
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 8026-8033
    • Kim, H.1    Xia, D.2    Yu, C.A.3    Xia, J.Z.4    Kachurin, A.M.5    Zhang, L.6    Yu, L.7    Deisenhofer, J.8
  • 70
    • 0015882341 scopus 로고
    • The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen
    • Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134: 707-716 (1973).
    • (1973) Biochem. J , vol.134 , pp. 707-716
    • Boveris, A.1    Chance, B.2
  • 71
    • 0020586897 scopus 로고
    • Effect of electron transfer inhibitors on superoxide generation in the cytochrome bc1 site of the mitochondrial respiratory chain
    • Ksenzenko M, Konstantinov AA, Khomutov GB, Tikhonov AN, Ruuge EK. Effect of electron transfer inhibitors on superoxide generation in the cytochrome bc1 site of the mitochondrial respiratory chain. FEBS Lett. 155: 19-24 (1983).
    • (1983) FEBS Lett , vol.155 , pp. 19-24
    • Ksenzenko, M.1    Konstantinov, A.A.2    Khomutov, G.B.3    Tikhonov, A.N.4    Ruuge, E.K.5
  • 72
    • 0021996572 scopus 로고
    • Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria
    • Turrens JF, Alexandre A, Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237: 408-414 (1985).
    • (1985) Arch. Biochem. Biophys , vol.237 , pp. 408-414
    • Turrens, J.F.1    Alexandre, A.2    Lehninger, A.L.3
  • 73
    • 0032555589 scopus 로고    scopus 로고
    • On the mechanism of quinol oxidation in the bc1 complex
    • Junemann S, Heathcote P, Rich PR. On the mechanism of quinol oxidation in the bc1 complex. J. Biol. Chem. 273: 21603-21607 (1998).
    • (1998) J. Biol. Chem , vol.273 , pp. 21603-21607
    • Junemann, S.1    Heathcote, P.2    Rich, P.R.3
  • 75
    • 0023811458 scopus 로고
    • Pathways of hydrogen peroxide generation in guinea pig cerebral cortex mitochondria
    • Zoccarato F, Cavallini L, Deana R, Alexandre A. Pathways of hydrogen peroxide generation in guinea pig cerebral cortex mitochondria. Biochem. Biophys. Res. Commun. 154: 727-734 (1988).
    • (1988) Biochem. Biophys. Res. Commun , vol.154 , pp. 727-734
    • Zoccarato, F.1    Cavallini, L.2    Deana, R.3    Alexandre, A.4
  • 76
    • 0034661024 scopus 로고    scopus 로고
    • Superoxides from mitochondrial complex III: The role of manganese superoxide dismutase
    • Raha S, McEachern GE, Myint AT, Robinson BH. Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Free Radic. Biol. Med. 29: 170-180 (2000).
    • (2000) Free Radic. Biol. Med , vol.29 , pp. 170-180
    • Raha, S.1    McEachern, G.E.2    Myint, A.T.3    Robinson, B.H.4
  • 79
    • 0037172774 scopus 로고    scopus 로고
    • Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc1 complex
    • Muller F, Crofts AR, Kramer DM. Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc1 complex. Biochemistry 41: 7866-7874(2002).
    • (2002) Biochemistry , vol.41 , pp. 7866-7874
    • Muller, F.1    Crofts, A.R.2    Kramer, D.M.3
  • 80
    • 0038348619 scopus 로고    scopus 로고
    • Architecture of the Qo site of the cytochrome bc1 complex probed by superoxide production
    • Muller FL, Roberts AG, Bowman MK, Kramer DM. Architecture of the Qo site of the cytochrome bc1 complex probed by superoxide production. Biochemistry 42: 6493-6499 (2003).
    • (2003) Biochemistry , vol.42 , pp. 6493-6499
    • Muller, F.L.1    Roberts, A.G.2    Bowman, M.K.3    Kramer, D.M.4
  • 81
    • 0142195820 scopus 로고    scopus 로고
    • Superoxide anion generation by the cytochrome bc1 complex
    • Sun J, Trumpower BL. Superoxide anion generation by the cytochrome bc1 complex. Arch. Biochem. Biophys. 419: 198-206 (2003).
    • (2003) Arch. Biochem. Biophys , vol.419 , pp. 198-206
    • Sun, J.1    Trumpower, B.L.2
  • 82
    • 0017810263 scopus 로고
    • Do mitochondria produce oxygen radicals in vivo?
    • Nohl H, Hegner D. Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82: 563-567 (1978).
    • (1978) Eur. J. Biochem , vol.82 , pp. 563-567
    • Nohl, H.1    Hegner, D.2
  • 83
    • 0015816319 scopus 로고
    • The oxidation of catechols by reduced flavins and dehydrogenases. An electron spin resonance study of the kinetics and initial products of oxidation
    • Miller RW, Rapp U. The oxidation of catechols by reduced flavins and dehydrogenases. An electron spin resonance study of the kinetics and initial products of oxidation. J. Biol. Chem. 248: 6084-6090 (1973).
    • (1973) J. Biol. Chem , vol.248 , pp. 6084-6090
    • Miller, R.W.1    Rapp, U.2
  • 84
    • 0017876650 scopus 로고
    • Permeation of the erythrocyte stroma by superoxide radical
    • Lynch RE, Fridovich I. Permeation of the erythrocyte stroma by superoxide radical. J. Biol. Chem. 253: 4697-4699 (1978).
    • (1978) J. Biol. Chem , vol.253 , pp. 4697-4699
    • Lynch, R.E.1    Fridovich, I.2
  • 86
    • 0026774104 scopus 로고
    • Electron spin resonance study on the permeability of superoxide radicals in lipid bilayers and biologicalmembranes
    • Mao GD, Poznansky MJ. Electron spin resonance study on the permeability of superoxide radicals in lipid bilayers and biologicalmembranes. FEBS Lett. 305: 233-236 (1992).
    • (1992) FEBS Lett , vol.305 , pp. 233-236
    • Mao, G.D.1    Poznansky, M.J.2
  • 87
    • 0021105282 scopus 로고
    • Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids
    • Takahashi MA, Asada K. Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch. Biochem. Biophys. 226: 558-566 (1983).
    • (1983) Arch. Biochem. Biophys , vol.226 , pp. 558-566
    • Takahashi, M.A.1    Asada, K.2
  • 88
    • 0029923359 scopus 로고    scopus 로고
    • Can superoxide organic chemistry be observed within the liposomal bilayer?
    • Frimer AA, Strul G, Buch J, Gottlieb HE. Can superoxide organic chemistry be observed within the liposomal bilayer? Free Radic. Biol. Med. 20: 843-852 (1996).
    • (1996) Free Radic. Biol. Med , vol.20 , pp. 843-852
    • Frimer, A.A.1    Strul, G.2    Buch, J.3    Gottlieb, H.E.4
  • 89
    • 0035863011 scopus 로고    scopus 로고
    • Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space
    • Han D, Williams E, Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 353: 411-416 (2001).
    • (2001) Biochem. J , vol.353 , pp. 411-416
    • Han, D.1    Williams, E.2    Cadenas, E.3
  • 90
    • 0037160091 scopus 로고    scopus 로고
    • Topology of superoxide production from different sites in the mitochondrial electron transport chain
    • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 277: 44784-44790 (2002).
    • (2002) J. Biol. Chem , vol.277 , pp. 44784-44790
    • St-Pierre, J.1    Buckingham, J.A.2    Roebuck, S.J.3    Brand, M.D.4
  • 91
  • 92
    • 0018837597 scopus 로고
    • Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplementedmitochondria
    • Cadenas E, Boveris A. Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplementedmitochondria. Biochem. J. 188: 31-37 (1980).
    • (1980) Biochem. J , vol.188 , pp. 31-37
    • Cadenas, E.1    Boveris, A.2
  • 93
    • 0017332369 scopus 로고
    • Relation between the gradient of the ATP/ADP ratio and the membrane potential across the mitochondrial membrane
    • Klingenberg M, Rottenberg H. Relation between the gradient of the ATP/ADP ratio and the membrane potential across the mitochondrial membrane. Eur. J. Biochem. 73: 125-130 (1977).
    • (1977) Eur. J. Biochem , vol.73 , pp. 125-130
    • Klingenberg, M.1    Rottenberg, H.2
  • 94
    • 0030068461 scopus 로고    scopus 로고
    • Conditions allowing redox-cycling ubisemiquinone in mitochondria to establish a direct redox couple with molecular oxygen
    • Nohl H, Gille L, Schonheit K, Liu Y. Conditions allowing redox-cycling ubisemiquinone in mitochondria to establish a direct redox couple with molecular oxygen. Free Radic. Biol. Med. 20: 207-213 (1996).
    • (1996) Free Radic. Biol. Med , vol.20 , pp. 207-213
    • Nohl, H.1    Gille, L.2    Schonheit, K.3    Liu, Y.4
  • 95
    • 0029765443 scopus 로고    scopus 로고
    • Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants
    • Skulachev VP. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q. Rev. Biophys. 29: 169-202 (1996).
    • (1996) Q. Rev. Biophys , vol.29 , pp. 169-202
    • Skulachev, V.P.1
  • 96
    • 0035146985 scopus 로고    scopus 로고
    • Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling
    • Packer L, Weber SU, Rimbach G. Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling. J. Nutr. 131: 369S-373S (2001).
    • (2001) J. Nutr , vol.131 , pp. 369S-373S
    • Packer, L.1    Weber, S.U.2    Rimbach, G.3
  • 97
    • 0032587816 scopus 로고    scopus 로고
    • Effects of coenzyme Q10 and alpha-tocopherol administration on their tissue levels in the mouse: Elevation of mitochondrial alpha-tocopherol by coenzyme Q10
    • Lass A, Forster MJ, Sohal RS. Effects of coenzyme Q10 and alpha-tocopherol administration on their tissue levels in the mouse: elevation of mitochondrial alpha-tocopherol by coenzyme Q10. Free Radic. Biol. Med. 26: 1375-1382 (1999).
    • (1999) Free Radic. Biol. Med , vol.26 , pp. 1375-1382
    • Lass, A.1    Forster, M.J.2    Sohal, R.S.3
  • 98
    • 0025060737 scopus 로고
    • Protective action of phospholipid hydroperoxideglutathione peroxidase againstmembrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides
    • Thomas JP, Maiorino M, Ursini F, Girotti AW. Protective action of phospholipid hydroperoxideglutathione peroxidase againstmembrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides. J. Biol. Chem. 265: 454-461 (1990).
    • (1990) J. Biol. Chem , vol.265 , pp. 454-461
    • Thomas, J.P.1    Maiorino, M.2    Ursini, F.3    Girotti, A.W.4
  • 99
    • 0026044283 scopus 로고
    • Reactivity of phospholipid hydroperoxide glutathione peroxidase with membrane and lipoprotein lipid hydroperoxides
    • Maiorino M, Thomas JP, Girotti AW, Ursini F. Reactivity of phospholipid hydroperoxide glutathione peroxidase with membrane and lipoprotein lipid hydroperoxides. Free Radic. Res. Commun. 12-13 (Pt 1): 131-135 (1991).
    • (1991) Free Radic. Res. Commun , vol.12-13 , pp. 131-135
    • Maiorino, M.1    Thomas, J.P.2    Girotti, A.W.3    Ursini, F.4
  • 100
    • 0030786577 scopus 로고    scopus 로고
    • Reduction of thymine hydroperoxide by phospholipid hydroperoxide glutathione peroxidase and glutathione transferases
    • Bao Y, Jemth P, Mannervik B, Williamson G. Reduction of thymine hydroperoxide by phospholipid hydroperoxide glutathione peroxidase and glutathione transferases. FEBS Lett. 410: 210-212 (1997).
    • (1997) FEBS Lett , vol.410 , pp. 210-212
    • Bao, Y.1    Jemth, P.2    Mannervik, B.3    Williamson, G.4
  • 101
    • 0037438730 scopus 로고    scopus 로고
    • Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells
    • Imai H, Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic. Biol. Med. 34: 145-169 (2003).
    • (2003) Free Radic. Biol. Med , vol.34 , pp. 145-169
    • Imai, H.1    Nakagawa, Y.2
  • 103
    • 0033582533 scopus 로고    scopus 로고
    • Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays amajor role in preventing oxidative injury to cells
    • Arai M, Imai H, Koumura T, Yoshida M, Emoto K, Umeda M, Chiba N, Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays amajor role in preventing oxidative injury to cells. J. Biol. Chem. 274: 4924-4933 (1999).
    • (1999) J. Biol. Chem , vol.274 , pp. 4924-4933
    • Arai, M.1    Imai, H.2    Koumura, T.3    Yoshida, M.4    Emoto, K.5    Umeda, M.6    Chiba, N.7    Nakagawa, Y.8
  • 104
    • 0034306791 scopus 로고    scopus 로고
    • Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis
    • Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem. J. 351: 183-193 (2000).
    • (2000) Biochem. J , vol.351 , pp. 183-193
    • Nomura, K.1    Imai, H.2    Koumura, T.3    Kobayashi, T.4    Nakagawa, Y.5
  • 107
    • 0028825467 scopus 로고
    • Rat phospholipid-hydroperoxide glutathione peroxidase. cDNA cloning and identification of multiple transcription and translation start sites
    • Pushpa-Rekha TR, Burdsall AL, Oleksa LM, Chisolm GM, Driscoll DM. Rat phospholipid-hydroperoxide glutathione peroxidase. cDNA cloning and identification of multiple transcription and translation start sites. J. Biol. Chem. 270: 26993-26999 (1995).
    • (1995) J. Biol. Chem , vol.270 , pp. 26993-26999
    • Pushpa-Rekha, T.R.1    Burdsall, A.L.2    Oleksa, L.M.3    Chisolm, G.M.4    Driscoll, D.M.5
  • 108
    • 0025886108 scopus 로고
    • Distribution of glutathione peroxidases and glutathione reductase in rat brain mitochondria
    • Panfili E, Sandri G, Ernster L. Distribution of glutathione peroxidases and glutathione reductase in rat brain mitochondria. FEBS Lett. 290: 35-37 (1991).
    • (1991) FEBS Lett , vol.290 , pp. 35-37
    • Panfili, E.1    Sandri, G.2    Ernster, L.3
  • 109
    • 0028205403 scopus 로고
    • Distribution of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis mitochondria
    • Godeas C, Sandri G, Panfili E. Distribution of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis mitochondria. Biochim. Biophys. Acta 1191: 147-150 (1994).
    • (1994) Biochim. Biophys. Acta , vol.1191 , pp. 147-150
    • Godeas, C.1    Sandri, G.2    Panfili, E.3
  • 110
    • 0029064257 scopus 로고
    • Superoxide radical and iron modulate aconitase activity in mammalian cells
    • Gardner PR, Raineri I, Epstein LB, White CW. Superoxide radical and iron modulate aconitase activity in mammalian cells. J. Biol. Chem. 270: 13399-13405 (1995).
    • (1995) J. Biol. Chem , vol.270 , pp. 13399-13405
    • Gardner, P.R.1    Raineri, I.2    Epstein, L.B.3    White, C.W.4
  • 114
    • 0032730408 scopus 로고    scopus 로고
    • Survival, lung injury, and lung protein nitration in heterozygous MnSOD knockout mice in hyperoxia
    • Jackson RM, Helton ES, Viera L, Ohman T. Survival, lung injury, and lung protein nitration in heterozygous MnSOD knockout mice in hyperoxia. Exp. Lung. Res. 25: 631-646 (1999).
    • (1999) Exp. Lung. Res , vol.25 , pp. 631-646
    • Jackson, R.M.1    Helton, E.S.2    Viera, L.3    Ohman, T.4
  • 117
    • 0032561328 scopus 로고    scopus 로고
    • Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice
    • Williams MD, Van Remmen H, Conrad CC, Huang TT, Epstein CJ, Richardson A. Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J. Biol. Chem. 273: 28510-28515 (1998).
    • (1998) J. Biol. Chem , vol.273 , pp. 28510-28515
    • Williams, M.D.1    Van Remmen, H.2    Conrad, C.C.3    Huang, T.T.4    Epstein, C.J.5    Richardson, A.6
  • 118
    • 0033102629 scopus 로고    scopus 로고
    • Characterization of the antioxidant status of the heterozygous manganese superoxide dismutase knockout mouse
    • Van Remmen H, Salvador C, Yang H, Huang TT, Epstein CJ, Richardson A. Characterization of the antioxidant status of the heterozygous manganese superoxide dismutase knockout mouse. Arch. Biochem. Biophys. 363: 91-97 (1999).
    • (1999) Arch. Biochem. Biophys , vol.363 , pp. 91-97
    • Van Remmen, H.1    Salvador, C.2    Yang, H.3    Huang, T.T.4    Epstein, C.J.5    Richardson, A.6
  • 119
    • 0035887747 scopus 로고    scopus 로고
    • Strain-dependent high-level expression of a transgene for manganese superoxide dismutase is associated with growth retardation and decreased fertility
    • Raineri I, Carlson EJ, Gacayan R, Carra S, Oberley TD, Huang TT, Epstein CJ. Strain-dependent high-level expression of a transgene for manganese superoxide dismutase is associated with growth retardation and decreased fertility. Free Radic. Biol. Med. 31: 1018-1030 (2001).
    • (2001) Free Radic. Biol. Med , vol.31 , pp. 1018-1030
    • Raineri, I.1    Carlson, E.J.2    Gacayan, R.3    Carra, S.4    Oberley, T.D.5    Huang, T.T.6    Epstein, C.J.7
  • 120
    • 0022790702 scopus 로고
    • The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport
    • Hackenbrock CR, Chazotte B, Gupte SS. The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J. Bioenerg. Biomembr. 18: 331-368 (1986).
    • (1986) J. Bioenerg. Biomembr , vol.18 , pp. 331-368
    • Hackenbrock, C.R.1    Chazotte, B.2    Gupte, S.S.3
  • 121
    • 0014961734 scopus 로고
    • The utility of superoxide dismutase in studying free radical reactions. II. The mechanism of the mediation of cytochrome c reduction by a variety of electron carriers
    • McCord JM, Fridovich I. The utility of superoxide dismutase in studying free radical reactions. II. The mechanism of the mediation of cytochrome c reduction by a variety of electron carriers. J. Biol. Chem. 245: 1374-1377 (1970).
    • (1970) J. Biol. Chem , vol.245 , pp. 1374-1377
    • McCord, J.M.1    Fridovich, I.2
  • 123
    • 0025003089 scopus 로고
    • Superoxide radical as electron donor for oxidative phosphorylation of ADP
    • Mailer K. Superoxide radical as electron donor for oxidative phosphorylation of ADP. Biochem. Biophys. Res. Commun. 170: 59-64 (1990).
    • (1990) Biochem. Biophys. Res. Commun , vol.170 , pp. 59-64
    • Mailer, K.1
  • 124
    • 3543040601 scopus 로고    scopus 로고
    • Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury
    • Ho YS, Xiong Y, Ma W, Spector A, Ho DS. Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J. Biol. Chem. 279: 32804-32812 (2004).
    • (2004) J. Biol. Chem , vol.279 , pp. 32804-32812
    • Ho, Y.S.1    Xiong, Y.2    Ma, W.3    Spector, A.4    Ho, D.S.5
  • 126
    • 0024521808 scopus 로고
    • Subcellular localization of superoxide dismutases, glutathione peroxidase and catalase in developing rat cerebral cortex
    • DelMaestro R, McDonald W. Subcellular localization of superoxide dismutases, glutathione peroxidase and catalase in developing rat cerebral cortex. Mech. Ageing. Dev. 48: 15-31 (1989).
    • (1989) Mech. Ageing. Dev , vol.48 , pp. 15-31
    • DelMaestro, R.1    McDonald, W.2
  • 128
    • 0034672943 scopus 로고    scopus 로고
    • Metabolism and functions of glutathione in brain
    • Dringen R. Metabolism and functions of glutathione in brain. Prog. Neurobiol. 62: 649-671 (2000).
    • (2000) Prog. Neurobiol , vol.62 , pp. 649-671
    • Dringen, R.1
  • 129
    • 0037505644 scopus 로고    scopus 로고
    • Analysis of glutathione: Implication in redox and detoxification
    • Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clin. Chim. Acta 333: 19-39 (2003).
    • (2003) Clin. Chim. Acta , vol.333 , pp. 19-39
    • Pastore, A.1    Federici, G.2    Bertini, E.3    Piemonte, F.4
  • 130
    • 0018320433 scopus 로고
    • Hepatic mitochondrial and cytosolic glutathione content and the subcellular distribution of GSH-Stransferases
    • Wahllander A, Soboll S, Sies H, Linke I, Muller M. Hepatic mitochondrial and cytosolic glutathione content and the subcellular distribution of GSH-Stransferases. FEBS Lett. 97: 138-140 (1979).
    • (1979) FEBS Lett , vol.97 , pp. 138-140
    • Wahllander, A.1    Soboll, S.2    Sies, H.3    Linke, I.4    Muller, M.5
  • 131
    • 0001547757 scopus 로고
    • Origin and turnover of mitochondrial glutathione
    • Griffith OW, Meister A. Origin and turnover of mitochondrial glutathione. Proc. Natl. Acad. Sci. USA 82: 4668-4672 (1985).
    • (1985) Proc. Natl. Acad. Sci. USA , vol.82 , pp. 4668-4672
    • Griffith, O.W.1    Meister, A.2
  • 132
    • 0025049139 scopus 로고
    • High-affinity transport of glutathione is part of a multicomponent system essential for mitochondrial function
    • Martensson J, Lai JC, Meister A. High-affinity transport of glutathione is part of a multicomponent system essential for mitochondrial function. Proc. Natl. Acad. Sci. USA 87: 7185-7189 (1990).
    • (1990) Proc. Natl. Acad. Sci. USA , vol.87 , pp. 7185-7189
    • Martensson, J.1    Lai, J.C.2    Meister, A.3
  • 133
    • 0031836944 scopus 로고    scopus 로고
    • Evidence formitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers
    • Chen Z, Lash LH. Evidence formitochondrial uptake of glutathione by dicarboxylate and 2-oxoglutarate carriers. J. Pharmacol. Exp. Ther. 285: 608-618 (1998).
    • (1998) J. Pharmacol. Exp. Ther , vol.285 , pp. 608-618
    • Chen, Z.1    Lash, L.H.2
  • 134
    • 0041326831 scopus 로고    scopus 로고
    • Effects of age and caloric restriction on glutathione redox state in mice
    • Rebrin I, Kamzalov S, Sohal RS. Effects of age and caloric restriction on glutathione redox state in mice. Free Radic. Biol. Med. 35: 626-635 (2003).
    • (2003) Free Radic. Biol. Med , vol.35 , pp. 626-635
    • Rebrin, I.1    Kamzalov, S.2    Sohal, R.S.3
  • 135
    • 0032716145 scopus 로고    scopus 로고
    • The regeneration of reduced glutathione in rat forebrain mitochondria identifies metabolic pathways providing the NADPH required
    • Vogel R, Wiesinger H, Hamprecht B, Dringen R. The regeneration of reduced glutathione in rat forebrain mitochondria identifies metabolic pathways providing the NADPH required. Neurosci. Lett. 275: 97-100 (1999).
    • (1999) Neurosci. Lett , vol.275 , pp. 97-100
    • Vogel, R.1    Wiesinger, H.2    Hamprecht, B.3    Dringen, R.4
  • 137
    • 0142210179 scopus 로고    scopus 로고
    • Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria
    • Han D, Canali R, Rettori D, Kaplowitz N. Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria. Mol. Pharmacol. 64: 1136-1144 (2003).
    • (2003) Mol. Pharmacol , vol.64 , pp. 1136-1144
    • Han, D.1    Canali, R.2    Rettori, D.3    Kaplowitz, N.4
  • 138
    • 0037103764 scopus 로고    scopus 로고
    • Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress
    • Raza H, Robin MA, Fang JK, Avadhani NG. Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem. J. 366: 45-55 (2002).
    • (2002) Biochem. J , vol.366 , pp. 45-55
    • Raza, H.1    Robin, M.A.2    Fang, J.K.3    Avadhani, N.G.4
  • 139
    • 0023846096 scopus 로고
    • Retention of oxidized glutathione by isolated rat liver mitochondria during hydroperoxide treatment
    • Olafsdottir K, Reed DJ. Retention of oxidized glutathione by isolated rat liver mitochondria during hydroperoxide treatment. Biochim. Biophys. Acta 964: 377-382 (1988).
    • (1988) Biochim. Biophys. Acta , vol.964 , pp. 377-382
    • Olafsdottir, K.1    Reed, D.J.2
  • 140
    • 0027723966 scopus 로고
    • The subcellular distribution of the glutathione system enzymes in the brain tissue of the rat
    • Kozhemiakin LA, Bulavin DV, Udintsev AV, Smirnov VV. The subcellular distribution of the glutathione system enzymes in the brain tissue of the rat. Tsitologiia 35: 58-63 (1993).
    • (1993) Tsitologiia , vol.35 , pp. 58-63
    • Kozhemiakin, L.A.1    Bulavin, D.V.2    Udintsev, A.V.3    Smirnov, V.V.4
  • 141
    • 0034673552 scopus 로고    scopus 로고
    • Structural organization of the human glutathione reductase gene: Determination of correct cDNA sequence and identification of a mitochondrial leader sequence
    • Kelner MJ, Montoya MA. Structural organization of the human glutathione reductase gene: determination of correct cDNA sequence and identification of a mitochondrial leader sequence. Biochem. Biophys. Res. Commun. 269: 366-368 (2000).
    • (2000) Biochem. Biophys. Res. Commun , vol.269 , pp. 366-368
    • Kelner, M.J.1    Montoya, M.A.2
  • 143
    • 0023681148 scopus 로고
    • Physiological roles of nicotinamide nucleotide transhydrogenase
    • Hoek JB, Rydstrom J. Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem. J. 254: 1-10 (1988).
    • (1988) Biochem. J , vol.254 , pp. 1-10
    • Hoek, J.B.1    Rydstrom, J.2
  • 145
    • 0018786017 scopus 로고
    • Genetic control of mitochondrial malic enzyme in mouse brain
    • Bernstine EG. Genetic control of mitochondrial malic enzyme in mouse brain. J. Biol. Chem. 254: 83-87 (1979).
    • (1979) J. Biol. Chem , vol.254 , pp. 83-87
    • Bernstine, E.G.1
  • 146
    • 0014085975 scopus 로고
    • Diphosphopyridine nucleotide specific isocitric dehydrogenase of mammalianmitochondria. I. On the roles of pyridine nucleotide transhydrogenase and the isocitric dehydrogenases in the respiration of mitochondria of normal and neoplastic tissues
    • Stein AM, Stein JH, Kirkman SK. Diphosphopyridine nucleotide specific isocitric dehydrogenase of mammalianmitochondria. I. On the roles of pyridine nucleotide transhydrogenase and the isocitric dehydrogenases in the respiration of mitochondria of normal and neoplastic tissues. Biochemistry 6: 1370-1379 (1967).
    • (1967) Biochemistry , vol.6 , pp. 1370-1379
    • Stein, A.M.1    Stein, J.H.2    Kirkman, S.K.3
  • 147
    • 0034912851 scopus 로고    scopus 로고
    • NAD(P)H, a directly operating antioxidant?
    • Kirsch M, De Groot H. NAD(P)H, a directly operating antioxidant? FASEB J. 15: 1569-1574 (2001).
    • (2001) FASEB J , vol.15 , pp. 1569-1574
    • Kirsch, M.1    De Groot, H.2
  • 148
    • 0017332157 scopus 로고
    • Effect of ammonia on mitochondrial and cytosolic NADH and NADPH systems in isolated rat liver cells
    • Tischler ME, Hecht P, Williamson JR. Effect of ammonia on mitochondrial and cytosolic NADH and NADPH systems in isolated rat liver cells. FEBS Lett. 76: 99-104 (1977).
    • (1977) FEBS Lett , vol.76 , pp. 99-104
    • Tischler, M.E.1    Hecht, P.2    Williamson, J.R.3
  • 149
    • 0029984682 scopus 로고    scopus 로고
    • Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues
    • Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic. Biol. Med. 20: 463-466 (1996).
    • (1996) Free Radic. Biol. Med , vol.20 , pp. 463-466
    • Lenzen, S.1    Drinkgern, J.2    Tiedge, M.3
  • 150
    • 0025770091 scopus 로고
    • Exact ultrastructural localization of glutathione peroxidase in normal rat hepatocytes: Advantages of microwave fixation
    • Utsunomiya H, Komatsu N, Yoshimura S, Tsutsumi Y, Watanabe K. Exact ultrastructural localization of glutathione peroxidase in normal rat hepatocytes: advantages of microwave fixation. J. Histochem. Cytochem. 39: 1167-1174 (1991).
    • (1991) J. Histochem. Cytochem , vol.39 , pp. 1167-1174
    • Utsunomiya, H.1    Komatsu, N.2    Yoshimura, S.3    Tsutsumi, Y.4    Watanabe, K.5
  • 151
    • 0028169847 scopus 로고
    • Purification and immunoelectron microscopic localization of cellular glutathione peroxidase in rat hepatocytes: Quantitative analysis by postembedding method
    • Asayama K, Yokota S, Dobashi K, Hayashibe H, Kawaoi A, Nakazawa S. Purification and immunoelectron microscopic localization of cellular glutathione peroxidase in rat hepatocytes: quantitative analysis by postembedding method. Histochemistry 102: 213-219 (1994).
    • (1994) Histochemistry , vol.102 , pp. 213-219
    • Asayama, K.1    Yokota, S.2    Dobashi, K.3    Hayashibe, H.4    Kawaoi, A.5    Nakazawa, S.6
  • 152
    • 0031128356 scopus 로고    scopus 로고
    • The Gpx1 gene encodes mitochondrial glutathione peroxidase in the mouse liver
    • Esworthy RS, Ho YS, Chu FF. The Gpx1 gene encodes mitochondrial glutathione peroxidase in the mouse liver. Arch. Biochem. Biophys. 340: 59-63 (1997).
    • (1997) Arch. Biochem. Biophys , vol.340 , pp. 59-63
    • Esworthy, R.S.1    Ho, Y.S.2    Chu, F.F.3
  • 153
    • 0018776894 scopus 로고
    • Hydroperoxide metabolism in mammalian organs
    • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527-605 (1979).
    • (1979) Physiol. Rev , vol.59 , pp. 527-605
    • Chance, B.1    Sies, H.2    Boveris, A.3
  • 154
    • 0025786654 scopus 로고
    • Overexpression of seleno-glutathione peroxidase by gene transfer enhances the resistance of T47D human breast cells to clastogenic oxidants
    • Mirault ME, Tremblay A, Beaudoin N, Tremblay M. Overexpression of seleno-glutathione peroxidase by gene transfer enhances the resistance of T47D human breast cells to clastogenic oxidants. J. Biol. Chem. 266: 20752-20760 (1991).
    • (1991) J. Biol. Chem , vol.266 , pp. 20752-20760
    • Mirault, M.E.1    Tremblay, A.2    Beaudoin, N.3    Tremblay, M.4
  • 155
    • 0030834975 scopus 로고    scopus 로고
    • Glutathione peroxidase protects against peroxynitrite-mediated oxidations. Anewfunction for selenoproteins as peroxynitrite reductase
    • Sies H, Sharov VS, Klotz LO, Briviba K. Glutathione peroxidase protects against peroxynitrite-mediated oxidations. Anewfunction for selenoproteins as peroxynitrite reductase. J. Biol. Chem. 272: 27812-27817 (1997).
    • (1997) J. Biol. Chem , vol.272 , pp. 27812-27817
    • Sies, H.1    Sharov, V.S.2    Klotz, L.O.3    Briviba, K.4
  • 157
    • 0030816391 scopus 로고    scopus 로고
    • Cellular glutathione peroxidase knockout mice express normal levels of seleniumdependent plasma and phospholipid hydroperoxide glutathione peroxidases in various tissues
    • Cheng WH, Ho YS, Ross DA, Valentine BA, Combs GF, Lei XG. Cellular glutathione peroxidase knockout mice express normal levels of seleniumdependent plasma and phospholipid hydroperoxide glutathione peroxidases in various tissues. J. Nutr. 127: 1445-1450 (1997).
    • (1997) J. Nutr , vol.127 , pp. 1445-1450
    • Cheng, W.H.1    Ho, Y.S.2    Ross, D.A.3    Valentine, B.A.4    Combs, G.F.5    Lei, X.G.6
  • 158
    • 0030971057 scopus 로고    scopus 로고
    • Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia
    • Ho YS, Magnenat JL, Bronson RT, Cao J, Gargano M, Sugawara M, Funk CD. Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J. Biol. Chem. 272: 16644-16651 (1997).
    • (1997) J. Biol. Chem , vol.272 , pp. 16644-16651
    • Ho, Y.S.1    Magnenat, J.L.2    Bronson, R.T.3    Cao, J.4    Gargano, M.5    Sugawara, M.6    Funk, C.D.7
  • 159
    • 0031870668 scopus 로고    scopus 로고
    • Cellular glutathione peroxidase is the mediator of body selenium to protect against paraquat lethality in transgenic mice
    • Cheng WH, Ho YS, Valentine BA, Ross DA, Combs GF, Jr, Lei XG. Cellular glutathione peroxidase is the mediator of body selenium to protect against paraquat lethality in transgenic mice. J. Nutr. 128: 1070-1076 (1998).
    • (1998) J. Nutr , vol.128 , pp. 1070-1076
    • Cheng, W.H.1    Ho, Y.S.2    Valentine, B.A.3    Ross, D.A.4    Combs, G.F.5    Lei, X.G.6
  • 162
    • 0033969953 scopus 로고    scopus 로고
    • Enhanced N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice deficient in CuZn-superoxide dismutase or glutathione peroxidase
    • Zhang J, Graham DG, Montine TJ, Ho YS. Enhanced N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice deficient in CuZn-superoxide dismutase or glutathione peroxidase. J. Neuropathol. Exp. Neurol. 59: 53-61 (2000).
    • (2000) J. Neuropathol. Exp. Neurol , vol.59 , pp. 53-61
    • Zhang, J.1    Graham, D.G.2    Montine, T.J.3    Ho, Y.S.4
  • 163
    • 0036287739 scopus 로고    scopus 로고
    • Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein
    • Fujii J, Ikeda Y. Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox. Rep. 7: 123-130 (2002).
    • (2002) Redox. Rep , vol.7 , pp. 123-130
    • Fujii, J.1    Ikeda, Y.2
  • 165
    • 0001445231 scopus 로고    scopus 로고
    • Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin
    • Chae HZ, Kim HJ, Kang SW, Rhee SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res. Clin. Pract. 45: 101-112 (1999).
    • (1999) Diabetes Res. Clin. Pract , vol.45 , pp. 101-112
    • Chae, H.Z.1    Kim, H.J.2    Kang, S.W.3    Rhee, S.G.4
  • 166
    • 0345528189 scopus 로고    scopus 로고
    • Cloning of bovine peroxiredoxins-gene expression in bovine tissues and amino acid sequence comparison with rat, mouse and primate peroxiredoxins
    • Leyens G, Donnay I, Knoops B. Cloning of bovine peroxiredoxins-gene expression in bovine tissues and amino acid sequence comparison with rat, mouse and primate peroxiredoxins. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 136: 943-955 (2003).
    • (2003) Comp. Biochem. Physiol. B Biochem. Mol. Biol , vol.136 , pp. 943-955
    • Leyens, G.1    Donnay, I.2    Knoops, B.3
  • 168
    • 0042731713 scopus 로고    scopus 로고
    • Mitochondrial peroxiredoxin-3 protects hippocampal neurons from excitotoxic injury in vivo
    • Hattori F, Murayama N, Noshita T, Oikawa S. Mitochondrial peroxiredoxin-3 protects hippocampal neurons from excitotoxic injury in vivo. J. Neurochem. 86: 860-868 (2003).
    • (2003) J. Neurochem , vol.86 , pp. 860-868
    • Hattori, F.1    Murayama, N.2    Noshita, T.3    Oikawa, S.4
  • 169
    • 0346056899 scopus 로고    scopus 로고
    • Overexpression of human peroxiredoxin 5 in subcellular compartments of Chinese hamster ovary cells: Effects on cytotoxicity and DNA damage caused by peroxides
    • Banmeyer I, Marchand C, Verhaeghe C, Vucic B, Rees JF, Knoops B. Overexpression of human peroxiredoxin 5 in subcellular compartments of Chinese hamster ovary cells: effects on cytotoxicity and DNA damage caused by peroxides. Free Radic. Biol. Med. 36: 65-77 (2004).
    • (2004) Free Radic. Biol. Med , vol.36 , pp. 65-77
    • Banmeyer, I.1    Marchand, C.2    Verhaeghe, C.3    Vucic, B.4    Rees, J.F.5    Knoops, B.6
  • 170
    • 1542320094 scopus 로고    scopus 로고
    • Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase
    • Johansson C, Lillig CH, Holmgren A. Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J. Biol. Chem. 279: 7537-7543 (2004).
    • (2004) J. Biol. Chem , vol.279 , pp. 7537-7543
    • Johansson, C.1    Lillig, C.H.2    Holmgren, A.3
  • 171
    • 0348230942 scopus 로고    scopus 로고
    • Glutaredoxins: Glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system
    • Fernandes AP, Holmgren A. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid. Redox. Signal 6: 63-74 (2004).
    • (2004) Antioxid. Redox. Signal , vol.6 , pp. 63-74
    • Fernandes, A.P.1    Holmgren, A.2
  • 172
    • 0242277285 scopus 로고    scopus 로고
    • The thioredoxin system - from science to clinic
    • Gromer S, Urig S, Becker K. The thioredoxin system - from science to clinic. Med. Res. Rev. 24: 40-89 (2004).
    • (2004) Med. Res. Rev , vol.24 , pp. 40-89
    • Gromer, S.1    Urig, S.2    Becker, K.3
  • 173
    • 0242580835 scopus 로고    scopus 로고
    • Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse
    • Jurado J, Prieto-Alamo MJ, Madrid-Risquez J, Pueyo C. Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse. J. Biol. Chem. 278: 45546-45554 (2003).
    • (2003) J. Biol. Chem , vol.278 , pp. 45546-45554
    • Jurado, J.1    Prieto-Alamo, M.J.2    Madrid-Risquez, J.3    Pueyo, C.4
  • 174
    • 0037305881 scopus 로고    scopus 로고
    • The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice
    • Nonn L, Williams RR, Erickson RP, Powis G. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol. Cell. Biol. 23: 916-922 (2003).
    • (2003) Mol. Cell. Biol , vol.23 , pp. 916-922
    • Nonn, L.1    Williams, R.R.2    Erickson, R.P.3    Powis, G.4
  • 175
    • 3042602196 scopus 로고    scopus 로고
    • Mitochondrial thioredoxin system: Effects of TrxR2 overexpression on redox balance, cell growth, and apoptosis
    • Patenaude A, Murthy MR, Mirault ME. Mitochondrial thioredoxin system: effects of TrxR2 overexpression on redox balance, cell growth, and apoptosis. J. Biol. Chem. 279: 27302-27314 (2004).
    • (2004) J. Biol. Chem , vol.279 , pp. 27302-27314
    • Patenaude, A.1    Murthy, M.R.2    Mirault, M.E.3
  • 176
    • 0036086130 scopus 로고    scopus 로고
    • Free radicals in the physiological control of cell function
    • Droge W. Free radicals in the physiological control of cell function. Physiol. Rev. 82: 47-95 (2002).
    • (2002) Physiol. Rev , vol.82 , pp. 47-95
    • Droge, W.1
  • 177
    • 0030056515 scopus 로고    scopus 로고
    • Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase
    • Pitkanen S, Robinson BH. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J. Clin. Invest. 98: 345-351 (1996).
    • (1996) J. Clin. Invest , vol.98 , pp. 345-351
    • Pitkanen, S.1    Robinson, B.H.2
  • 179
    • 1842338036 scopus 로고    scopus 로고
    • Excessive formation of hydroxyl radicals and aldehydic lipid peroxidation products in cultured skin fibroblasts from patients with complex I deficiency
    • Luo X, Pitkanen S, Kassovska-Bratinova S, Robinson BH, Lehotay DC. Excessive formation of hydroxyl radicals and aldehydic lipid peroxidation products in cultured skin fibroblasts from patients with complex I deficiency. J. Clin. Invest. 99: 2877-2882 (1997).
    • (1997) J. Clin. Invest , vol.99 , pp. 2877-2882
    • Luo, X.1    Pitkanen, S.2    Kassovska-Bratinova, S.3    Robinson, B.H.4    Lehotay, D.C.5
  • 180
    • 0033522924 scopus 로고    scopus 로고
    • Titrating the effects of mitochondrial complex I impairment in the cell physiology
    • Barrientos A, Moraes CT. Titrating the effects of mitochondrial complex I impairment in the cell physiology. J. Biol. Chem. 274: 16188-16197 (1999).
    • (1999) J. Biol. Chem , vol.274 , pp. 16188-16197
    • Barrientos, A.1    Moraes, C.T.2
  • 182
    • 0033767317 scopus 로고    scopus 로고
    • An out-of-frame cytochrome b gene deletion from a patient with Parkinsonism is associated with impaired complex III assembly and an increase in free radical production
    • Rana M, de Coo I, Diaz F, Smeets H, Moraes CT. An out-of-frame cytochrome b gene deletion from a patient with Parkinsonism is associated with impaired complex III assembly and an increase in free radical production. Ann. Neurol. 48: 774-781 (2000).
    • (2000) Ann. Neurol , vol.48 , pp. 774-781
    • Rana, M.1    de Coo, I.2    Diaz, F.3    Smeets, H.4    Moraes, C.T.5
  • 183
    • 1942453308 scopus 로고    scopus 로고
    • The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants
    • Mattiazzi M, Vijayvergiya C, Gajewski CD, DeVivo DC, Lenaz G, Wiedmann M, Manfredi G. The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. Hum. Mol. Genet. 13: 869-879 (2004).
    • (2004) Hum. Mol. Genet , vol.13 , pp. 869-879
    • Mattiazzi, M.1    Vijayvergiya, C.2    Gajewski, C.D.3    DeVivo, D.C.4    Lenaz, G.5    Wiedmann, M.6    Manfredi, G.7
  • 184
    • 1142297598 scopus 로고    scopus 로고
    • New concepts in reactive oxygen species and cardiovascular reperfusion physiology
    • Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc. Res. 61: 461-470 (2004).
    • (2004) Cardiovasc. Res , vol.61 , pp. 461-470
    • Becker, L.B.1
  • 185
    • 0022115873 scopus 로고
    • Generation of superoxide radicals by ischemic heart mitochondria
    • Ledenev AN, Ruuge EK. Generation of superoxide radicals by ischemic heart mitochondria. Bull. Eksp. Biol. Med. 100: 303-305 (1985).
    • (1985) Bull. Eksp. Biol. Med , vol.100 , pp. 303-305
    • Ledenev, A.N.1    Ruuge, E.K.2
  • 186
    • 84907037809 scopus 로고
    • Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues
    • Turrens JF, Beconi M, Barilla J, Chavez UB, McCord JM. Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues. Free Radic. Res. Commun. 12-13 (Pt 2): 681-689 (1991).
    • (1991) Free Radic. Res. Commun , vol.12-13 , pp. 681-689
    • Turrens, J.F.1    Beconi, M.2    Barilla, J.3    Chavez, U.B.4    McCord, J.M.5
  • 187
    • 0037387920 scopus 로고    scopus 로고
    • Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: Role of reactive oxygen species and cardiolipin
    • Petrosillo G, Ruggiero FM, Di Venosa N, Paradies G. Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB. J. 17: 714-716 (2003).
    • (2003) FASEB. J , vol.17 , pp. 714-716
    • Petrosillo, G.1    Ruggiero, F.M.2    Di Venosa, N.3    Paradies, G.4
  • 188
    • 0346059551 scopus 로고    scopus 로고
    • Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: Involvement of reactive oxygen species and cardiolipin
    • Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM. Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ. Res. 94: 53-59 (2004).
    • (2004) Circ. Res , vol.94 , pp. 53-59
    • Paradies, G.1    Petrosillo, G.2    Pistolese, M.3    Di Venosa, N.4    Federici, A.5    Ruggiero, F.M.6
  • 189
    • 18344405929 scopus 로고    scopus 로고
    • Generation of superoxide anion by mitochondria and impairment of their functions during anoxia and reoxygenation in vitro
    • Du G, Mouithys-Mickalad A, Sluse FE. Generation of superoxide anion by mitochondria and impairment of their functions during anoxia and reoxygenation in vitro. Free Radic. Biol. Med. 25: 1066-1074 (1998).
    • (1998) Free Radic. Biol. Med , vol.25 , pp. 1066-1074
    • Du, G.1    Mouithys-Mickalad, A.2    Sluse, F.E.3
  • 190
    • 0024548927 scopus 로고
    • Generation of hydrogen peroxide by brain mitochondria: The effect of reoxygenation following postdecapitative ischemia
    • Cino M, Del Maestro RF. Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia. Arch. Biochem. Biophys. 269: 623-638 (1989).
    • (1989) Arch. Biochem. Biophys , vol.269 , pp. 623-638
    • Cino, M.1    Del Maestro, R.F.2
  • 191
    • 0023220472 scopus 로고
    • Calcium in the mitochondria following brief ischemia of gerbil brain
    • Dux E, Mies G, Hossmann KA, Siklos L. Calcium in the mitochondria following brief ischemia of gerbil brain. Neurosci. Lett. 78: 295-300 (1987).
    • (1987) Neurosci. Lett , vol.78 , pp. 295-300
    • Dux, E.1    Mies, G.2    Hossmann, K.A.3    Siklos, L.4
  • 192
    • 0028090533 scopus 로고
    • The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and recirculation in the rat
    • Zaidan E, Sims NR. The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and recirculation in the rat. J. Neurochem. 63: 1812-1819 (1994).
    • (1994) J. Neurochem , vol.63 , pp. 1812-1819
    • Zaidan, E.1    Sims, N.R.2
  • 193
    • 0033782296 scopus 로고    scopus 로고
    • Mitochondrial participation in ischemic and traumatic neural cell death
    • Fiskum G. Mitochondrial participation in ischemic and traumatic neural cell death. J. Neurotrauma. 17: 843-855 (2000).
    • (2000) J. Neurotrauma , vol.17 , pp. 843-855
    • Fiskum, G.1
  • 194
    • 0033971898 scopus 로고    scopus 로고
    • Mitochondria and neuronal survival
    • Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol. Rev. 80: 315-360 (2000).
    • (2000) Physiol. Rev , vol.80 , pp. 315-360
    • Nicholls, D.G.1    Budd, S.L.2
  • 195
    • 0036788941 scopus 로고    scopus 로고
    • Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax
    • Starkov AA, Polster BM, Fiskum G. Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax. J. Neurochem. 83: 220-228 (2002).
    • (2002) J. Neurochem , vol.83 , pp. 220-228
    • Starkov, A.A.1    Polster, B.M.2    Fiskum, G.3
  • 196
    • 0031680036 scopus 로고    scopus 로고
    • Role of mitochondrial calcium transport in the control of substrate oxidation
    • Hansford RG, Zorov D. Role of mitochondrial calcium transport in the control of substrate oxidation. Mol. Cell. Biochem. 184: 359-369 (1998).
    • (1998) Mol. Cell. Biochem , vol.184 , pp. 359-369
    • Hansford, R.G.1    Zorov, D.2
  • 197
    • 0036140053 scopus 로고    scopus 로고
    • Mitochondrial calcium homeostasis: Mechanisms and molecules
    • Vandecasteele G, Szabadkai G, Rizzuto R. Mitochondrial calcium homeostasis: mechanisms and molecules. IUBMB Life 52: 213-219 (2001).
    • (2001) IUBMB Life , vol.52 , pp. 213-219
    • Vandecasteele, G.1    Szabadkai, G.2    Rizzuto, R.3
  • 198
    • 0022972426 scopus 로고
    • Brain alpha-ketoglutarate dehydrogenase complex: Kinetic properties, regional distribution, and effects of inhibitors
    • Lai JC, Cooper AJ. Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J. Neurochem. 47: 1376-1386 (1986).
    • (1986) J. Neurochem , vol.47 , pp. 1376-1386
    • Lai, J.C.1    Cooper, A.J.2
  • 199
    • 0024235934 scopus 로고
    • Pyruvate dehydrogenase complex is inhibited in calcium-loaded cerebrocortical mitochondria
    • Lai JC, DiLorenzo JC, Sheu KF. Pyruvate dehydrogenase complex is inhibited in calcium-loaded cerebrocortical mitochondria. Neurochem. Res. 13: 1043-1048 (1988).
    • (1988) Neurochem. Res , vol.13 , pp. 1043-1048
    • Lai, J.C.1    DiLorenzo, J.C.2    Sheu, K.F.3
  • 201
    • 0019469676 scopus 로고
    • The interaction of calcium transport and ADP phosphorylation in brain mitochondria
    • Roman I, Clark A, Swanson PD. The interaction of calcium transport and ADP phosphorylation in brain mitochondria. Membr. Biochem. 4: 1-9 (1981).
    • (1981) Membr. Biochem , vol.4 , pp. 1-9
    • Roman, I.1    Clark, A.2    Swanson, P.D.3
  • 202
    • 0029116916 scopus 로고
    • The mitochondrial permeability transition
    • Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim. Biophys. Acta 1241: 139-176 (1995).
    • (1995) Biochim. Biophys. Acta , vol.1241 , pp. 139-176
    • Zoratti, M.1    Szabo, I.2
  • 203
    • 0030868479 scopus 로고    scopus 로고
    • Themitochondrial permeability transition in toxic, hypoxic and reperfusion injury
    • Lemasters JJ, Nieminen AL, Qian T, Trost LC, Herman B. Themitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Mol. Cell. Biochem. 174: 159-165 (1997).
    • (1997) Mol. Cell. Biochem , vol.174 , pp. 159-165
    • Lemasters, J.J.1    Nieminen, A.L.2    Qian, T.3    Trost, L.C.4    Herman, B.5
  • 206
    • 0037070178 scopus 로고    scopus 로고
    • Regulated and unregulated mitochondrial permeability transition pores: A new paradigm of pore structure and function?
    • He L, Lemasters JJ. Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett. 512: 1-7 (2002).
    • (2002) FEBS Lett , vol.512 , pp. 1-7
    • He, L.1    Lemasters, J.J.2
  • 207
    • 0035951823 scopus 로고    scopus 로고
    • + and is a causative event in the death of myocytes in postischemic reperfusion of the heart
    • + and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J. Biol. Chem. 276: 2571-2575 (2001).
    • (2001) J. Biol. Chem , vol.276 , pp. 2571-2575
    • Di Lisa, F.1    Menabo, R.2    Canton, M.3    Barile, M.4    Bernardi, P.5
  • 208
    • 0036313070 scopus 로고    scopus 로고
    • The effects of focal ischemia and reperfusion on the glutathione content of mitochondria fromrat brain subregions
    • Anderson MF, Sims NR. The effects of focal ischemia and reperfusion on the glutathione content of mitochondria fromrat brain subregions. J. Neurochem. 81: 541-549 (2002).
    • (2002) J. Neurochem , vol.81 , pp. 541-549
    • Anderson, M.F.1    Sims, N.R.2
  • 209
    • 0035667431 scopus 로고    scopus 로고
    • 2+-induced membrane permeability transition in brain mitochondria
    • 2+-induced membrane permeability transition in brain mitochondria. J. Neurochem. 79: 1237-1245 (2001).
    • (2001) J. Neurochem , vol.79 , pp. 1237-1245
    • Maciel, E.N.1    Vercesi, A.E.2    Castilho, R.F.3
  • 210
    • 0000236120 scopus 로고    scopus 로고
    • In vitro ischemia promotes glutamate-mediated free radical generation and intracellular calcium accumulation in hippocampal pyramidal neurons
    • Perez Velazquez JL, Frantseva MV, Carlen PL. In vitro ischemia promotes glutamate-mediated free radical generation and intracellular calcium accumulation in hippocampal pyramidal neurons. J. Neurosci. 17: 9085-9094 (1997).
    • (1997) J. Neurosci , vol.17 , pp. 9085-9094
    • Perez Velazquez, J.L.1    Frantseva, M.V.2    Carlen, P.L.3
  • 211
    • 0034596947 scopus 로고    scopus 로고
    • Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes
    • Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med. 192: 1001-1014 (2000).
    • (2000) J. Exp. Med , vol.192 , pp. 1001-1014
    • Zorov, D.B.1    Filburn, C.R.2    Klotz, L.O.3    Zweier, J.L.4    Sollott, S.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.