-
1
-
-
84896098517
-
Host immune response to infection and cancer: unexpected commonalities
-
Goldszmid RS, Dzutsev A, Trinchieri G. Host immune response to infection and cancer: unexpected commonalities. Cell Host Microbe (2014) 15:295-305. doi:10.1016/j.chom.2014.02.003.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 295-305
-
-
Goldszmid, R.S.1
Dzutsev, A.2
Trinchieri, G.3
-
3
-
-
79151475165
-
Immunometabolism: an emerging frontier
-
Mathis D, Shoelson SE. Immunometabolism: an emerging frontier. Nat Rev Immunol (2011) 11:81. doi:10.1038/nri2922.
-
(2011)
Nat Rev Immunol
, vol.11
, pp. 81
-
-
Mathis, D.1
Shoelson, S.E.2
-
4
-
-
84919394524
-
Metabolic regulation of regulatory T cell development and function
-
Coe DJ, Kishore M, Marelli-Berg F. Metabolic regulation of regulatory T cell development and function. Front Immunol (2014) 5:590. doi:10.3389/fimmu.2014.00590.
-
(2014)
Front Immunol
, vol.5
, pp. 590
-
-
Coe, D.J.1
Kishore, M.2
Marelli-Berg, F.3
-
5
-
-
84904057246
-
The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function
-
Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab (2014) 20:61-72. doi:10.1016/j.cmet.2014.05.004.
-
(2014)
Cell Metab
, vol.20
, pp. 61-72
-
-
Macintyre, A.N.1
Gerriets, V.A.2
Nichols, A.G.3
Michalek, R.D.4
Rudolph, M.C.5
Deoliveira, D.6
-
6
-
-
84926670025
-
Environmental and metabolic sensors that control T cell biology
-
Ramsay G, Cantrell D. Environmental and metabolic sensors that control T cell biology. Front Immunol (2015) 6:99. doi:10.3389/fimmu.2015.00099.
-
(2015)
Front Immunol
, vol.6
, pp. 99
-
-
Ramsay, G.1
Cantrell, D.2
-
7
-
-
84883501150
-
HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
-
Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest (2013) 123:3664-71. doi:10.1172/JCI67230.
-
(2013)
J Clin Invest
, vol.123
, pp. 3664-3671
-
-
Semenza, G.L.1
-
8
-
-
84946074699
-
Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia
-
Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B, et al. Hypoxia: a key player in antitumor immune response. A review in the theme: cellular responses to hypoxia. Am J Physiol Cell Physiol (2015) 309:C569-79. doi:10.1152/ajpcell.00207.2015.
-
(2015)
Am J Physiol Cell Physiol
, vol.309
, pp. C569-C579
-
-
Noman, M.Z.1
Hasmim, M.2
Messai, Y.3
Terry, S.4
Kieda, C.5
Janji, B.6
-
9
-
-
84893872087
-
A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells
-
Barsoum IB, Smallwood CA, Siemens DR, Graham CH. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res (2014) 74:665-74. doi:10.1158/0008-5472.CAN-13-0992.
-
(2014)
Cancer Res
, vol.74
, pp. 665-674
-
-
Barsoum, I.B.1
Smallwood, C.A.2
Siemens, D.R.3
Graham, C.H.4
-
10
-
-
84929145736
-
Immune response regulation in the tumor microenvironment by hypoxia
-
Labiano S, Palazon A, Melero I. Immune response regulation in the tumor microenvironment by hypoxia. Semin Oncol (2015) 42:378-86. doi:10.1053/j.seminoncol.2015.02.009.
-
(2015)
Semin Oncol
, vol.42
, pp. 378-386
-
-
Labiano, S.1
Palazon, A.2
Melero, I.3
-
11
-
-
84941655289
-
Metabolic reprogramming of immune cells in cancer progression
-
Biswas SK. Metabolic reprogramming of immune cells in cancer progression. Immunity (2015) 43:435-49. doi:10.1016/j.immuni.2015.09.001.
-
(2015)
Immunity
, vol.43
, pp. 435-449
-
-
Biswas, S.K.1
-
12
-
-
84872576236
-
Metabolism of inflammation limited by AMPK and pseudo-starvation
-
O'Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature (2013) 493:346-55. doi:10.1038/nature11862.
-
(2013)
Nature
, vol.493
, pp. 346-355
-
-
O'Neill, L.A.1
Hardie, D.G.2
-
13
-
-
84941637376
-
The cellular and molecular basis of translational immunometabolism
-
Norata GD, Caligiuri G, Chavakis T, Matarese G, Netea MG, Nicoletti A, et al. The cellular and molecular basis of translational immunometabolism. Immunity (2015) 43:421-34. doi:10.1016/j.immuni.2015.08.023.
-
(2015)
Immunity
, vol.43
, pp. 421-434
-
-
Norata, G.D.1
Caligiuri, G.2
Chavakis, T.3
Matarese, G.4
Netea, M.G.5
Nicoletti, A.6
-
14
-
-
84942936115
-
Nutrient and immune sensing are obligate pathways in metabolism, immunity, and disease
-
Iyer A, Brown L, Whitehead JP, Prins JB, Fairlie DP. Nutrient and immune sensing are obligate pathways in metabolism, immunity, and disease. FASEB J (2015) 29:3612-25. doi:10.1096/fj.15-271155.
-
(2015)
FASEB J
, vol.29
, pp. 3612-3625
-
-
Iyer, A.1
Brown, L.2
Whitehead, J.P.3
Prins, J.B.4
Fairlie, D.P.5
-
15
-
-
80255126307
-
Fats, inflammation and insulin resistance: insights to the role of macrophage and T-cell accumulation in adipose tissue
-
Harford KA, Reynolds CM, McGillicuddy FC, Roche HM. Fats, inflammation and insulin resistance: insights to the role of macrophage and T-cell accumulation in adipose tissue. Proc Nutr Soc (2011) 70:408-17. doi:10.1017/S0029665111000565.
-
(2011)
Proc Nutr Soc
, vol.70
, pp. 408-417
-
-
Harford, K.A.1
Reynolds, C.M.2
McGillicuddy, F.C.3
Roche, H.M.4
-
16
-
-
84888306948
-
Leptin-cytokine crosstalk in breast cancer
-
Newman G, Gonzalez-Perez RR. Leptin-cytokine crosstalk in breast cancer. Mol Cell Endocrinol (2014) 382:570-82. doi:10.1016/j.mce.2013.03.025.
-
(2014)
Mol Cell Endocrinol
, vol.382
, pp. 570-582
-
-
Newman, G.1
Gonzalez-Perez, R.R.2
-
17
-
-
84885670616
-
Fueling immunity: insights into metabolism and lymphocyte function
-
Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science (2013) 342:1242454. doi:10.1126/science.1242454.
-
(2013)
Science
, vol.342
-
-
Pearce, E.L.1
Poffenberger, M.C.2
Chang, C.H.3
Jones, R.G.4
-
18
-
-
0027511220
-
The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes
-
Guppy M, Greiner E, Brand K. The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur J Biochem (1993) 212:95-9. doi:10.1111/j.1432-1033.1993.tb17637.x.
-
(1993)
Eur J Biochem
, vol.212
, pp. 95-99
-
-
Guppy, M.1
Greiner, E.2
Brand, K.3
-
19
-
-
84863202384
-
Molecular mechanisms of metabolic reprogramming in proliferating cells: implications for T-cell-mediated immunity
-
Marelli-Berg FM, Fu H, Mauro C. Molecular mechanisms of metabolic reprogramming in proliferating cells: implications for T-cell-mediated immunity. Immunology (2012) 136:363-9. doi:10.1111/j.1365-2567.2012.03583.x.
-
(2012)
Immunology
, vol.136
, pp. 363-369
-
-
Marelli-Berg, F.M.1
Fu, H.2
Mauro, C.3
-
20
-
-
77955475969
-
Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation
-
Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol (2010) 185:1037-44. doi:10.4049/jimmunol.0903586.
-
(2010)
J Immunol
, vol.185
, pp. 1037-1044
-
-
Carr, E.L.1
Kelman, A.2
Wu, G.S.3
Gopaul, R.4
Senkevitch, E.5
Aghvanyan, A.6
-
21
-
-
44449165597
-
Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways
-
Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ, et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol (2008) 180:4476-86. doi:10.4049/jimmunol.180.7.4476.
-
(2008)
J Immunol
, vol.180
, pp. 4476-4486
-
-
Jacobs, S.R.1
Herman, C.E.2
Maciver, N.J.3
Wofford, J.A.4
Wieman, H.L.5
Hammen, J.J.6
-
22
-
-
84865291302
-
Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation
-
Wahl DR, Byersdorfer CA, Ferrara JL, Opipari AW Jr, Glick GD. Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation. Immunol Rev (2012) 249:104-15. doi:10.1111/j.1600-065X.2012.01148.x.
-
(2012)
Immunol Rev
, vol.249
, pp. 104-115
-
-
Wahl, D.R.1
Byersdorfer, C.A.2
Ferrara, J.L.3
Opipari, A.W.4
Glick, G.D.5
-
23
-
-
84924240022
-
Mitochondrial metabolism in T cell activation and senescence: a mini-review
-
Ron-Harel N, Sharpe AH, Haigis MC. Mitochondrial metabolism in T cell activation and senescence: a mini-review. Gerontology (2015) 61:131-8. doi:10.1159/000362502.
-
(2015)
Gerontology
, vol.61
, pp. 131-138
-
-
Ron-Harel, N.1
Sharpe, A.H.2
Haigis, M.C.3
-
24
-
-
33846909503
-
A role for mammalian target of rapamycin in regulating T cell activation versus anergy
-
Zheng Y, Collins SL, Lutz MA, Allen AN, Kole TP, Zarek PE, et al. A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J Immunol (2007) 178:2163-70. doi:10.4049/jimmunol.178.4.2163.
-
(2007)
J Immunol
, vol.178
, pp. 2163-2170
-
-
Zheng, Y.1
Collins, S.L.2
Lutz, M.A.3
Allen, A.N.4
Kole, T.P.5
Zarek, P.E.6
-
25
-
-
77952280516
-
Anergic T cells are metabolically anergic
-
Zheng Y, Delgoffe GM, Meyer CF, Chan W, Powell JD. Anergic T cells are metabolically anergic. J Immunol (2009) 183:6095-101. doi:10.4049/jimmunol.0803510.
-
(2009)
J Immunol
, vol.183
, pp. 6095-6101
-
-
Zheng, Y.1
Delgoffe, G.M.2
Meyer, C.F.3
Chan, W.4
Powell, J.D.5
-
26
-
-
84866562625
-
Metabolic checkpoints in activated T cells
-
Wang R, Green DR. Metabolic checkpoints in activated T cells. Nat Immunol (2012) 13:907-15. doi:10.1038/ni.2386.
-
(2012)
Nat Immunol
, vol.13
, pp. 907-915
-
-
Wang, R.1
Green, D.R.2
-
27
-
-
0030745596
-
Glutamine requirement of proliferating T lymphocytes
-
Yaqoob P, Calder PC. Glutamine requirement of proliferating T lymphocytes. Nutrition (1997) 13, 646-651.
-
(1997)
Nutrition
, vol.13
, pp. 646-651
-
-
Yaqoob, P.1
Calder, P.C.2
-
28
-
-
80054046029
-
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
-
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol (2011) 27:441-64. doi:10.1146/annurev-cellbio-092910-154237.
-
(2011)
Annu Rev Cell Dev Biol
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
29
-
-
84947591002
-
T cell metabolism drives immunity
-
Buck MD, O'Sullivan D, Pearce EL. T cell metabolism drives immunity. J Exp Med (2015) 212:1345-60. doi:10.1084/jem.20151159.
-
(2015)
J Exp Med
, vol.212
, pp. 1345-1360
-
-
Buck, M.D.1
O'Sullivan, D.2
Pearce, E.L.3
-
30
-
-
84875463042
-
Molecular mechanisms of T cell co-stimulation and co-inhibition
-
Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol (2013) 13:227-42. doi:10.1038/nri3405.
-
(2013)
Nat Rev Immunol
, vol.13
, pp. 227-242
-
-
Chen, L.1
Flies, D.B.2
-
31
-
-
1842581892
-
Regulation of T lymphocyte metabolism
-
Frauwirth KA, Thompson CB. Regulation of T lymphocyte metabolism. J Immunol (2004) 172:4661-5. doi:10.4049/jimmunol.172.8.4661.
-
(2004)
J Immunol
, vol.172
, pp. 4661-4665
-
-
Frauwirth, K.A.1
Thompson, C.B.2
-
32
-
-
84906971768
-
Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IkappaB kinase alpha (IKKalpha)
-
Dan HC, Ebbs A, Pasparakis M, Van Dyke T, Basseres DS, Baldwin AS. Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IkappaB kinase alpha (IKKalpha). J Biol Chem (2014) 289:25227-40. doi:10.1074/jbc. M114.554881.
-
(2014)
J Biol Chem
, vol.289
, pp. 25227-25240
-
-
Dan, H.C.1
Ebbs, A.2
Pasparakis, M.3
Van Dyke, T.4
Basseres, D.S.5
Baldwin, A.S.6
-
33
-
-
84923321725
-
mTOR coordinates protein synthesis, mitochondrial activity and proliferation
-
Morita M, Gravel SP, Hulea L, Larsson O, Pollak M, St-Pierre J, et al. mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle (2015) 14:473-80. doi:10.4161/15384101.2014.991572.
-
(2015)
Cell Cycle
, vol.14
, pp. 473-480
-
-
Morita, M.1
Gravel, S.P.2
Hulea, L.3
Larsson, O.4
Pollak, M.5
St-Pierre, J.6
-
34
-
-
67650553603
-
mTOR: taking cues from the immune microenvironment
-
Delgoffe GM, Powell JD. mTOR: taking cues from the immune microenvironment. Immunology (2009) 127:459-65. doi:10.1111/j.1365-2567.2009.03125.x.
-
(2009)
Immunology
, vol.127
, pp. 459-465
-
-
Delgoffe, G.M.1
Powell, J.D.2
-
35
-
-
78049287331
-
mTOR signalling and metabolic regulation of T cell differentiation
-
Peter C, Waldmann H, Cobbold SP. mTOR signalling and metabolic regulation of T cell differentiation. Curr Opin Immunol (2010) 22:655-61. doi:10.1016/j.coi.2010.08.010.
-
(2010)
Curr Opin Immunol
, vol.22
, pp. 655-661
-
-
Peter, C.1
Waldmann, H.2
Cobbold, S.P.3
-
36
-
-
77957054466
-
The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism
-
Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity (2010) 33:301-11. doi:10.1016/j.immuni.2010.09.002.
-
(2010)
Immunity
, vol.33
, pp. 301-311
-
-
Powell, J.D.1
Delgoffe, G.M.2
-
37
-
-
79960369458
-
HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
-
Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med (2011) 208:1367-76. doi:10.1084/jem.20110278.
-
(2011)
J Exp Med
, vol.208
, pp. 1367-1376
-
-
Shi, L.Z.1
Wang, R.2
Huang, G.3
Vogel, P.4
Neale, G.5
Green, D.R.6
-
38
-
-
80052277906
-
Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1
-
Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell (2011) 146:772-84. doi:10.1016/j.cell.2011.07.033.
-
(2011)
Cell
, vol.146
, pp. 772-784
-
-
Dang, E.V.1
Barbi, J.2
Yang, H.Y.3
Jinasena, D.4
Yu, H.5
Zheng, Y.6
-
39
-
-
84867381718
-
Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa
-
Clambey ET, McNamee EN, Westrich JA, Glover LE, Campbell EL, Jedlicka P, et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci U S A (2012) 109:E2784-93. doi:10.1073/pnas.1202366109.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. E2784-E2793
-
-
Clambey, E.T.1
McNamee, E.N.2
Westrich, J.A.3
Glover, L.E.4
Campbell, E.L.5
Jedlicka, P.6
-
40
-
-
77950346282
-
Immunity, inflammation, and cancer
-
Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell (2010) 140:883-99. doi:10.1016/j.cell.2010.01.025.
-
(2010)
Cell
, vol.140
, pp. 883-899
-
-
Grivennikov, S.I.1
Greten, F.R.2
Karin, M.3
-
41
-
-
84961875160
-
Special conference on tumor immunology and immunotherapy: a new chapter
-
Byrne KT, Vonderheide RH, Jaffee EM, Armstrong TD. Special conference on tumor immunology and immunotherapy: a new chapter. Cancer Immunol Res (2015) 3(6):1-8. doi:10.1158/2326-6066.CIR-15-0106.
-
(2015)
Cancer Immunol Res
, vol.3
, Issue.6
, pp. 1-8
-
-
Byrne, K.T.1
Vonderheide, R.H.2
Jaffee, E.M.3
Armstrong, T.D.4
-
42
-
-
84964581742
-
Tumor immunology: assembling the T cell
-
Miura G. Tumor immunology: assembling the T cell. Nat Chem Biol (2015) 11:902. doi:10.1038/nchembio.1969.
-
(2015)
Nat Chem Biol
, vol.11
, pp. 902
-
-
Miura, G.1
-
43
-
-
84926657567
-
Tumor immunology, toward a success story?
-
Sautes-Fridman C. Tumor immunology, toward a success story? Front Immunol (2015) 6:65. doi:10.3389/fimmu.2015.00065.
-
(2015)
Front Immunol
, vol.6
, pp. 65
-
-
Sautes-Fridman, C.1
-
44
-
-
78649378225
-
The role of regulatory T cells in cancer
-
Ha TY. The role of regulatory T cells in cancer. Immune Netw (2009) 9:209-35. doi:10.4110/in.2009.9.6.209.
-
(2009)
Immune Netw
, vol.9
, pp. 209-235
-
-
Ha, T.Y.1
-
45
-
-
84862135169
-
What are regulatory T cells (Treg) regulating in cancer and why?
-
Whiteside TL. What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol (2012) 22:327-34. doi:10.1016/j.semcancer.2012.03.004.
-
(2012)
Semin Cancer Biol
, vol.22
, pp. 327-334
-
-
Whiteside, T.L.1
-
46
-
-
77952310268
-
Functional anatomy of T cell activation and synapse formation
-
Fooksman DR, Vardhana S, Vasiliver-Shamis G, Liese J, Blair DA, Waite J, et al. Functional anatomy of T cell activation and synapse formation. Annu Rev Immunol (2010) 28:79-105. doi:10.1146/annurev-immunol-030409-101308.
-
(2010)
Annu Rev Immunol
, vol.28
, pp. 79-105
-
-
Fooksman, D.R.1
Vardhana, S.2
Vasiliver-Shamis, G.3
Liese, J.4
Blair, D.A.5
Waite, J.6
-
47
-
-
84925688346
-
PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation
-
Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun (2015) 6:6692. doi:10.1038/ncomms7692.
-
(2015)
Nat Commun
, vol.6
, pp. 6692
-
-
Patsoukis, N.1
Bardhan, K.2
Chatterjee, P.3
Sari, D.4
Liu, B.5
Bell, L.N.6
-
48
-
-
84961290082
-
Targeting T cell metabolism for therapy
-
O'Sullivan D, Pearce EL. Targeting T cell metabolism for therapy. Trends Immunol (2015) 36:71-80. doi:10.1016/j.it.2014.12.004.
-
(2015)
Trends Immunol
, vol.36
, pp. 71-80
-
-
O'Sullivan, D.1
Pearce, E.L.2
-
49
-
-
84958181736
-
Immune checkpoint inhibitors in clinical practice: update on management of immune-related toxicities
-
Villadolid J, Amin A. Immune checkpoint inhibitors in clinical practice: update on management of immune-related toxicities. Transl Lung Cancer Res (2015) 4:560-75. doi:10.3978/j.issn.2218-6751.2015.06.06.
-
(2015)
Transl Lung Cancer Res
, vol.4
, pp. 560-575
-
-
Villadolid, J.1
Amin, A.2
-
50
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell (2011) 144:646-74. doi:10.1016/j.cell.2011.02.013.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
51
-
-
84858604270
-
Metabolic reprogramming: a cancer hallmark even warburg did not anticipate
-
Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell (2012) 21:297-308. doi:10.1016/j.ccr.2012.02.014.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
Thompson, C.B.2
-
52
-
-
84897935083
-
Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies
-
Phan LM, Yeung SC, Lee MH. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol Med (2014) 11:1-19. doi:10.7497/j.issn.2095-3941.2014.01.001.
-
(2014)
Cancer Biol Med
, vol.11
, pp. 1-19
-
-
Phan, L.M.1
Yeung, S.C.2
Lee, M.H.3
-
53
-
-
37549061827
-
Creating immune privilege: active local suppression that benefits friends, but protects foes
-
Mellor AL, Munn DH. Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat Rev Immunol (2008) 8:74-80. doi:10.1038/nri2233.
-
(2008)
Nat Rev Immunol
, vol.8
, pp. 74-80
-
-
Mellor, A.L.1
Munn, D.H.2
-
54
-
-
84923197176
-
Immune escape mechanisms as a guide for cancer immunotherapy
-
Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res (2015) 21:687-92. doi:10.1158/1078-0432.CCR-14-1860.
-
(2015)
Clin Cancer Res
, vol.21
, pp. 687-692
-
-
Beatty, G.L.1
Gladney, W.L.2
-
55
-
-
84903464388
-
Immune-based antitumor effects of BRAF inhibitors rely on signaling by CD40L and IFNgamma
-
Ho PC, Meeth KM, Tsui YC, Srivastava B, Bosenberg MW, Kaech SM. Immune-based antitumor effects of BRAF inhibitors rely on signaling by CD40L and IFNgamma. Cancer Res (2014) 74:3205-17. doi:10.1158/0008-5472.CAN-13-3461.
-
(2014)
Cancer Res
, vol.74
, pp. 3205-3217
-
-
Ho, P.C.1
Meeth, K.M.2
Tsui, Y.C.3
Srivastava, B.4
Bosenberg, M.W.5
Kaech, S.M.6
-
56
-
-
84879187712
-
Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E)BRAF oncogene
-
Hall A, Meyle KD, Lange MK, Klima M, SanderhoffM, Dahl C, et al. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E)BRAF oncogene. Oncotarget (2013) 4:584-99. doi:10.18632/oncotarget.965.
-
(2013)
Oncotarget
, vol.4
, pp. 584-599
-
-
Hall, A.1
Meyle, K.D.2
Lange, M.K.3
Klima, M.4
Sanderhoff, M.5
Dahl, C.6
-
57
-
-
84876436850
-
Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF
-
Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell (2013) 23:302-15. doi:10.1016/j.ccr.2013.02.003.
-
(2013)
Cancer Cell
, vol.23
, pp. 302-315
-
-
Haq, R.1
Shoag, J.2
Andreu-Perez, P.3
Yokoyama, S.4
Edelman, H.5
Rowe, G.C.6
-
58
-
-
55249114228
-
Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells
-
Cham CM, Driessens G, O'Keefe JP, Gajewski TF. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol (2008) 38:2438-50. doi:10.1002/eji.200838289.
-
(2008)
Eur J Immunol
, vol.38
, pp. 2438-2450
-
-
Cham, C.M.1
Driessens, G.2
O'Keefe, J.P.3
Gajewski, T.F.4
-
59
-
-
34247352844
-
Inhibitory effect of tumor cell-derived lactic acid on human T cells
-
Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood (2007) 109:3812-9. doi:10.1182/blood-2006-07-035972.
-
(2007)
Blood
, vol.109
, pp. 3812-3819
-
-
Fischer, K.1
Hoffmann, P.2
Voelkl, S.3
Meidenbauer, N.4
Ammer, J.5
Edinger, M.6
-
60
-
-
20444429440
-
TCR engagement increases hypoxia-inducible factor-1 alpha protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells
-
Nakamura H, Makino Y, Okamoto K, Poellinger L, Ohnuma K, Morimoto C, et al. TCR engagement increases hypoxia-inducible factor-1 alpha protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells. J Immunol (2005) 174:7592-9. doi:10.4049/jimmunol.174.12.7592.
-
(2005)
J Immunol
, vol.174
, pp. 7592-7599
-
-
Nakamura, H.1
Makino, Y.2
Okamoto, K.3
Poellinger, L.4
Ohnuma, K.5
Morimoto, C.6
-
61
-
-
0035966119
-
Differential regulation of two alternatively spliced isoforms of hypoxia-inducible factor-1 alpha in activated T lymphocytes
-
Lukashev D, Caldwell C, Ohta A, Chen P, Sitkovsky M. Differential regulation of two alternatively spliced isoforms of hypoxia-inducible factor-1 alpha in activated T lymphocytes. J Biol Chem (2001) 276:48754-63. doi:10.1074/jbc. M104782200.
-
(2001)
J Biol Chem
, vol.276
, pp. 48754-48763
-
-
Lukashev, D.1
Caldwell, C.2
Ohta, A.3
Chen, P.4
Sitkovsky, M.5
-
62
-
-
84886672916
-
Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen
-
Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV, Yang E, et al. Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol (2013) 14:1173-82. doi:10.1038/ni.2714.
-
(2013)
Nat Immunol
, vol.14
, pp. 1173-1182
-
-
Doedens, A.L.1
Phan, A.T.2
Stradner, M.H.3
Fujimoto, J.K.4
Nguyen, J.V.5
Yang, E.6
-
63
-
-
84860507700
-
T-regulatory cells: key players in tumor immune escape and angiogenesis
-
Facciabene A, Motz GT, Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res (2012) 72:2162-71. doi:10.1158/0008-5472.CAN-11-3687.
-
(2012)
Cancer Res
, vol.72
, pp. 2162-2171
-
-
Facciabene, A.1
Motz, G.T.2
Coukos, G.3
-
64
-
-
78649720692
-
alpha5beta1-integrin expression is essential for tumor progression in experimental lung cancer
-
Roman J, Ritzenthaler JD, Roser-Page S, Sun X, Han S. alpha5beta1-integrin expression is essential for tumor progression in experimental lung cancer. Am J Respir Cell Mol Biol (2010) 43:684-91. doi:10.1165/rcmb.2009-0375OC.
-
(2010)
Am J Respir Cell Mol Biol
, vol.43
, pp. 684-691
-
-
Roman, J.1
Ritzenthaler, J.D.2
Roser-Page, S.3
Sun, X.4
Han, S.5
-
65
-
-
0028123367
-
Effects of hypoxia on interleukin-2 mRNA expression by T lymphocytes
-
Zuckerberg AL, Goldberg LI, Lederman HM. Effects of hypoxia on interleukin-2 mRNA expression by T lymphocytes. Crit Care Med (1994) 22:197-203. doi:10.1097/00003246-199402000-00008.
-
(1994)
Crit Care Med
, vol.22
, pp. 197-203
-
-
Zuckerberg, A.L.1
Goldberg, L.I.2
Lederman, H.M.3
-
66
-
-
34147205531
-
p66Shc is involved in promoting HIF-1alpha accumulation and cell death in hypoxic T cells
-
Carraro F, Pucci A, Pellegrini M, Pelicci PG, Baldari CT, Naldini A. p66Shc is involved in promoting HIF-1alpha accumulation and cell death in hypoxic T cells. J Cell Physiol (2007) 211:439-47. doi:10.1002/jcp.20951.
-
(2007)
J Cell Physiol
, vol.211
, pp. 439-447
-
-
Carraro, F.1
Pucci, A.2
Pellegrini, M.3
Pelicci, P.G.4
Baldari, C.T.5
Naldini, A.6
-
67
-
-
10744233368
-
Hypoxia-inducible factor regulates survival of antigen receptor-driven T cells
-
Makino Y, Nakamura H, Ikeda E, Ohnuma K, Yamauchi K, Yabe Y, et al. Hypoxia-inducible factor regulates survival of antigen receptor-driven T cells. J Immunol (2003) 171:6534-40. doi:10.4049/jimmunol.171.12.6534.
-
(2003)
J Immunol
, vol.171
, pp. 6534-6540
-
-
Makino, Y.1
Nakamura, H.2
Ikeda, E.3
Ohnuma, K.4
Yamauchi, K.5
Yabe, Y.6
-
68
-
-
84902124970
-
Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors
-
Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med (2014) 20:607-15. doi:10.1038/nm.3541.
-
(2014)
Nat Med
, vol.20
, pp. 607-615
-
-
Motz, G.T.1
Santoro, S.P.2
Wang, L.P.3
Garrabrant, T.4
Lastra, R.R.5
Hagemann, I.S.6
-
69
-
-
4644318828
-
Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor
-
AppelhoffRJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem (2004) 279:38458-65. doi:10.1074/jbc. M406026200.
-
(2004)
J Biol Chem
, vol.279
, pp. 38458-38465
-
-
Appelhoff, R.J.1
Tian, Y.M.2
Raval, R.R.3
Turley, H.4
Harris, A.L.5
Pugh, C.W.6
-
70
-
-
80055091802
-
Editorial: switching on arginase in M2 macrophages
-
Briken V, Mosser DM. Editorial: switching on arginase in M2 macrophages. J Leukoc Biol (2011) 90:839-41. doi:10.1189/jlb.0411203.
-
(2011)
J Leukoc Biol
, vol.90
, pp. 839-841
-
-
Briken, V.1
Mosser, D.M.2
-
71
-
-
84930958641
-
Understanding the mysterious M2 macrophage through activation markers and effector mechanisms
-
Roszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm (2015) 2015:816460. doi:10.1155/2015/816460.
-
(2015)
Mediators Inflamm
, vol.2015
-
-
Roszer, T.1
-
72
-
-
47249118348
-
Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway
-
Shime H, Yabu M, Akazawa T, Kodama K, Matsumoto M, Seya T, et al. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J Immunol (2008) 180:7175-83. doi:10.4049/jimmunol.180.11.7175.
-
(2008)
J Immunol
, vol.180
, pp. 7175-7183
-
-
Shime, H.1
Yabu, M.2
Akazawa, T.3
Kodama, K.4
Matsumoto, M.5
Seya, T.6
-
73
-
-
84891708632
-
Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality
-
Saha A, Aoyama K, Taylor PA, Koehn BH, Veenstra RG, Panoskaltsis-Mortari A, et al. Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality. Blood (2013) 122:3062-73. doi:10.1182/blood-2013-05-500801.
-
(2013)
Blood
, vol.122
, pp. 3062-3073
-
-
Saha, A.1
Aoyama, K.2
Taylor, P.A.3
Koehn, B.H.4
Veenstra, R.G.5
Panoskaltsis-Mortari, A.6
-
74
-
-
84931431126
-
Programmed death-1 controls T cell survival by regulating oxidative metabolism
-
Tkachev V, Goodell S, Opipari AW, Hao LY, Franchi L, Glick GD, et al. Programmed death-1 controls T cell survival by regulating oxidative metabolism. J Immunol (2015) 194:5789-800. doi:10.4049/jimmunol.1402180.
-
(2015)
J Immunol
, vol.194
, pp. 5789-5800
-
-
Tkachev, V.1
Goodell, S.2
Opipari, A.W.3
Hao, L.Y.4
Franchi, L.5
Glick, G.D.6
-
75
-
-
84939456588
-
Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer
-
He J, Hu Y, Hu M, Li B. Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep (2015) 5:13110. doi:10.1038/srep13110.
-
(2015)
Sci Rep
, vol.5
, pp. 13110
-
-
He, J.1
Hu, Y.2
Hu, M.3
Li, B.4
-
76
-
-
84865169609
-
Metabolic pathway alterations that support cell proliferation
-
Vander Heiden MG, Lunt SY, Dayton TL, Fiske BP, Israelsen WJ, Mattaini KR, et al. Metabolic pathway alterations that support cell proliferation. Cold Spring Harb Symp Quant Biol (2011) 76:325-34. doi:10.1101/sqb.2012.76.010900.
-
(2011)
Cold Spring Harb Symp Quant Biol
, vol.76
, pp. 325-334
-
-
Vander Heiden, M.G.1
Lunt, S.Y.2
Dayton, T.L.3
Fiske, B.P.4
Israelsen, W.J.5
Mattaini, K.R.6
-
77
-
-
84861982020
-
The regulation of cancer cell death and metabolism by extracellular matrix attachment
-
Buchheit CL, Rayavarapu RR, Schafer ZT. The regulation of cancer cell death and metabolism by extracellular matrix attachment. Semin Cell Dev Biol (2012) 23:402-11. doi:10.1016/j.semcdb.2012.04.007.
-
(2012)
Semin Cell Dev Biol
, vol.23
, pp. 402-411
-
-
Buchheit, C.L.1
Rayavarapu, R.R.2
Schafer, Z.T.3
-
78
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (2009) 324:1029-33. doi:10.1126/science.1160809.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
79
-
-
79251517382
-
Regulation of cancer cell metabolism
-
Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer (2011) 11:85-95. doi:10.1038/nrc2981.
-
(2011)
Nat Rev Cancer
, vol.11
, pp. 85-95
-
-
Cairns, R.A.1
Harris, I.S.2
Mak, T.W.3
-
80
-
-
79957991472
-
Glutaminase: a hot spot for regulation of cancer cell metabolism?
-
Erickson JW, Cerione RA. Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget (2010) 1:734-40. doi:10.18632/oncotarget.208.
-
(2010)
Oncotarget
, vol.1
, pp. 734-740
-
-
Erickson, J.W.1
Cerione, R.A.2
-
81
-
-
84868019043
-
Cancer cell metabolism: one hallmark, many faces
-
Cantor JR, Sabatini DM. Cancer cell metabolism: one hallmark, many faces. Cancer Discov (2012) 2:881-98. doi:10.1158/2159-8290.CD-12-0345.
-
(2012)
Cancer Discov
, vol.2
, pp. 881-898
-
-
Cantor, J.R.1
Sabatini, D.M.2
-
82
-
-
51849111556
-
PI3K pathway alterations in cancer: variations on a theme
-
Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene (2008) 27:5497-510. doi:10.1038/onc.2008.245.
-
(2008)
Oncogene
, vol.27
, pp. 5497-5510
-
-
Yuan, T.L.1
Cantley, L.C.2
-
83
-
-
33745307617
-
Ras, PI(3)K and mTOR signalling controls tumour cell growth
-
Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature (2006) 441:424-30. doi:10.1038/nature04869.
-
(2006)
Nature
, vol.441
, pp. 424-430
-
-
Shaw, R.J.1
Cantley, L.C.2
-
84
-
-
84940055374
-
Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma
-
Makinoshima H, Takita M, Saruwatari K, Umemura S, Obata Y, Ishii G, et al. Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma. J Biol Chem (2015) 290:17495-504. doi:10.1074/jbc. M115.660498.
-
(2015)
J Biol Chem
, vol.290
, pp. 17495-17504
-
-
Makinoshima, H.1
Takita, M.2
Saruwatari, K.3
Umemura, S.4
Obata, Y.5
Ishii, G.6
-
85
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell (2010) 39:171-83. doi:10.1016/j.molcel.2010.06.022.
-
(2010)
Mol Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
Yecies, J.L.2
Menon, S.3
Raman, P.4
Lipovsky, A.I.5
Souza, A.L.6
-
86
-
-
50149097983
-
Hypoxia, HIF1 and glucose metabolism in the solid tumour
-
Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer (2008) 8:705-13. doi:10.1038/nrc2468.
-
(2008)
Nat Rev Cancer
, vol.8
, pp. 705-713
-
-
Denko, N.C.1
-
87
-
-
33748171960
-
The c-Myc target gene network
-
Dang CV, O'Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol (2006) 16:253-64. doi:10.1016/j.semcancer.2006.07.014.
-
(2006)
Semin Cancer Biol
, vol.16
, pp. 253-264
-
-
Dang, C.V.1
O'Donnell, K.A.2
Zeller, K.I.3
Nguyen, T.4
Osthus, R.C.5
Li, F.6
-
88
-
-
84949319712
-
Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis
-
Wilde BR, Ayer DE. Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis. Br J Cancer (2015) 113:1529-33. doi:10.1038/bjc.2015.360.
-
(2015)
Br J Cancer
, vol.113
, pp. 1529-1533
-
-
Wilde, B.R.1
Ayer, D.E.2
-
89
-
-
84877676176
-
Two p53-related metabolic regulators, TIGAR and SCO2, contribute to oroxylin A-mediated glucose metabolism in human hepatoma HepG2 cells
-
Dai Q, Yin Y, Liu W, Wei L, Zhou Y, Li Z, et al. Two p53-related metabolic regulators, TIGAR and SCO2, contribute to oroxylin A-mediated glucose metabolism in human hepatoma HepG2 cells. Int J Biochem Cell Biol (2013) 45:1468-78. doi:10.1016/j.biocel.2013.04.015.
-
(2013)
Int J Biochem Cell Biol
, vol.45
, pp. 1468-1478
-
-
Dai, Q.1
Yin, Y.2
Liu, W.3
Wei, L.4
Zhou, Y.5
Li, Z.6
-
90
-
-
84898638844
-
Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease
-
Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci (2014) 15:6184-223. doi:10.3390/ijms15046184.
-
(2014)
Int J Mol Sci
, vol.15
, pp. 6184-6223
-
-
Jung, U.J.1
Choi, M.S.2
-
91
-
-
33745861300
-
Inflammation and insulin resistance
-
Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest (2006) 116:1793-801. doi:10.1172/JCI29069.
-
(2006)
J Clin Invest
, vol.116
, pp. 1793-1801
-
-
Shoelson, S.E.1
Lee, J.2
Goldfine, A.B.3
-
92
-
-
84901424065
-
Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity
-
Huh JY, Park YJ, Ham M, Kim JB. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells (2014) 37:365-71. doi:10.14348/molcells.2014.0074.
-
(2014)
Mol Cells
, vol.37
, pp. 365-371
-
-
Huh, J.Y.1
Park, Y.J.2
Ham, M.3
Kim, J.B.4
-
93
-
-
84857985148
-
The cellular and signaling networks linking the immune system and metabolism in disease
-
Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med (2012) 18:363-74. doi:10.1038/nm.2627.
-
(2012)
Nat Med
, vol.18
, pp. 363-374
-
-
Osborn, O.1
Olefsky, J.M.2
-
94
-
-
84925873107
-
Immune regulation of metabolic homeostasis in health and disease
-
BrestoffJR, Artis D. Immune regulation of metabolic homeostasis in health and disease. Cell (2015) 161:146-60. doi:10.1016/j.cell.2015.02.022.
-
(2015)
Cell
, vol.161
, pp. 146-160
-
-
Brestoff, J.R.1
Artis, D.2
-
95
-
-
84915803968
-
Interplay between the immune system and adipose tissue in obesity
-
Exley MA, Hand L, O'Shea D, Lynch L. Interplay between the immune system and adipose tissue in obesity. J Endocrinol (2014) 223:R41-8. doi:10.1530/JOE-13-0516.
-
(2014)
J Endocrinol
, vol.223
, pp. R41-R48
-
-
Exley, M.A.1
Hand, L.2
O'Shea, D.3
Lynch, L.4
-
96
-
-
56749164791
-
Nutrient sensing and inflammation in metabolic diseases
-
Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol (2008) 8:923-34. doi:10.1038/nri2449.
-
(2008)
Nat Rev Immunol
, vol.8
, pp. 923-934
-
-
Hotamisligil, G.S.1
Erbay, E.2
-
97
-
-
84881029152
-
Chronic adipose tissue inflammation: all immune cells on the stage
-
Cildir G, Akincilar SC, Tergaonkar V. Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol Med (2013) 19:487-500. doi:10.1016/j.molmed.2013.05.001.
-
(2013)
Trends Mol Med
, vol.19
, pp. 487-500
-
-
Cildir, G.1
Akincilar, S.C.2
Tergaonkar, V.3
-
98
-
-
33846026712
-
Obesity induces a phenotypic switch in adipose tissue macrophage polarization
-
Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest (2007) 117:175-84. doi:10.1172/JCI29881.
-
(2007)
J Clin Invest
, vol.117
, pp. 175-184
-
-
Lumeng, C.N.1
Bodzin, J.L.2
Saltiel, A.R.3
-
99
-
-
84890011257
-
Macrophages, fat, and the emergence of immunometabolism
-
Ferrante AW Jr. Macrophages, fat, and the emergence of immunometabolism. J Clin Invest (2013) 123:4992-3. doi:10.1172/JCI73658.
-
(2013)
J Clin Invest
, vol.123
, pp. 4992-4993
-
-
Ferrante, A.W.1
-
100
-
-
84904392112
-
Macrophages, immunity, and metabolic disease
-
McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity (2014) 41:36-48. doi:10.1016/j.immuni.2014.05.010.
-
(2014)
Immunity
, vol.41
, pp. 36-48
-
-
McNelis, J.C.1
Olefsky, J.M.2
-
101
-
-
84921275837
-
Metabolic mysteries of the inflammatory response: T cell polarization and plasticity
-
Fracchia KM, Walsh CM. Metabolic mysteries of the inflammatory response: T cell polarization and plasticity. Int Rev Immunol (2015) 34:3-18. doi:10.3109/08830185.2014.974748.
-
(2015)
Int Rev Immunol
, vol.34
, pp. 3-18
-
-
Fracchia, K.M.1
Walsh, C.M.2
-
102
-
-
68349150756
-
CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity
-
Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med (2009) 15:914-20. doi:10.1038/nm.1964.
-
(2009)
Nat Med
, vol.15
, pp. 914-920
-
-
Nishimura, S.1
Manabe, I.2
Nagasaki, M.3
Eto, K.4
Yamashita, H.5
Ohsugi, M.6
-
103
-
-
84878800136
-
Adipose tissue macrophages function as antigen-presenting cells and regulate adipose tissue CD4+ T cells in mice
-
Morris DL, Cho KW, Delproposto JL, Oatmen KE, Geletka LM, Martinez-Santibanez G, et al. Adipose tissue macrophages function as antigen-presenting cells and regulate adipose tissue CD4+ T cells in mice. Diabetes (2013) 62:2762-72. doi:10.2337/db12-1404.
-
(2013)
Diabetes
, vol.62
, pp. 2762-2772
-
-
Morris, D.L.1
Cho, K.W.2
Delproposto, J.L.3
Oatmen, K.E.4
Geletka, L.M.5
Martinez-Santibanez, G.6
-
104
-
-
84885464048
-
Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium
-
Schreiber HA, Loschko J, Karssemeijer RA, Escolano A, Meredith MM, Mucida D, et al. Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J Exp Med (2013) 210:2025-39. doi:10.1084/jem.20130903.
-
(2013)
J Exp Med
, vol.210
, pp. 2025-2039
-
-
Schreiber, H.A.1
Loschko, J.2
Karssemeijer, R.A.3
Escolano, A.4
Meredith, M.M.5
Mucida, D.6
-
105
-
-
84875883411
-
Improved insulin sensitivity despite increased visceral adiposity in mice deficient for the immune cell transcription factor T-bet
-
Stolarczyk E, Vong CT, Perucha E, Jackson I, Cawthorne MA, Wargent ET, et al. Improved insulin sensitivity despite increased visceral adiposity in mice deficient for the immune cell transcription factor T-bet. Cell Metab (2013) 17:520-33. doi:10.1016/j.cmet.2013.02.019.
-
(2013)
Cell Metab
, vol.17
, pp. 520-533
-
-
Stolarczyk, E.1
Vong, C.T.2
Perucha, E.3
Jackson, I.4
Cawthorne, M.A.5
Wargent, E.T.6
-
106
-
-
77953356804
-
Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity
-
Unger RH, Scherer PE. Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol Metab (2010) 21:345-52. doi:10.1016/j.tem.2010.01.009.
-
(2010)
Trends Endocrinol Metab
, vol.21
, pp. 345-352
-
-
Unger, R.H.1
Scherer, P.E.2
-
107
-
-
33750584214
-
TLR4 links innate immunity and fatty acid-induced insulin resistance
-
Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest (2006) 116:3015-25. doi:10.1172/JCI28898.
-
(2006)
J Clin Invest
, vol.116
, pp. 3015-3025
-
-
Shi, H.1
Kokoeva, M.V.2
Inouye, K.3
Tzameli, I.4
Yin, H.5
Flier, J.S.6
-
108
-
-
84924898436
-
Adipose tissue macrophages: the inflammatory link between obesity and cancer?
-
Wagner M, Samdal Steinskog ES, Wiig H. Adipose tissue macrophages: the inflammatory link between obesity and cancer? Expert Opin Ther Targets (2015) 19:527-38. doi:10.1517/14728222.2014.991311.
-
(2015)
Expert Opin Ther Targets
, vol.19
, pp. 527-538
-
-
Wagner, M.1
Samdal Steinskog, E.S.2
Wiig, H.3
-
109
-
-
0035901090
-
Inflammation and cancer: back to Virchow?
-
Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet (2001) 357:539-45. doi:10.1016/S0140-6736(00)04046-0.
-
(2001)
Lancet
, vol.357
, pp. 539-545
-
-
Balkwill, F.1
Mantovani, A.2
-
110
-
-
84875227258
-
Adipocytes: impact on tumor growth and potential sites for therapeutic intervention
-
Hefetz-Sela S, Scherer PE. Adipocytes: impact on tumor growth and potential sites for therapeutic intervention. Pharmacol Ther (2013) 138:197-210. doi:10.1016/j.pharmthera.2013.01.008.
-
(2013)
Pharmacol Ther
, vol.138
, pp. 197-210
-
-
Hefetz-Sela, S.1
Scherer, P.E.2
-
111
-
-
84890316374
-
Obesity, metabolism and the microenvironment: links to cancer
-
Sundaram S, Johnson AR, Makowski L. Obesity, metabolism and the microenvironment: links to cancer. J Carcinog (2013) 12:19. doi:10.4103/1477-3163.119606.
-
(2013)
J Carcinog
, vol.12
, pp. 19
-
-
Sundaram, S.1
Johnson, A.R.2
Makowski, L.3
-
112
-
-
84897162058
-
Obesity, energy balance, and cancer: a mechanistic perspective
-
Hursting SD. Obesity, energy balance, and cancer: a mechanistic perspective. Cancer Treat Res (2014) 159:21-33. doi:10.1007/978-3-642-38007-5_2.
-
(2014)
Cancer Treat Res
, vol.159
, pp. 21-33
-
-
Hursting, S.D.1
-
113
-
-
84862819412
-
Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells
-
Guo S, Liu M, Wang G, Torroella-Kouri M, Gonzalez-Perez RR. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochim Biophys Acta (2012) 1825:207-22. doi:10.1016/j.bbcan.2012.01.002.
-
(2012)
Biochim Biophys Acta
, vol.1825
, pp. 207-222
-
-
Guo, S.1
Liu, M.2
Wang, G.3
Torroella-Kouri, M.4
Gonzalez-Perez, R.R.5
-
114
-
-
84859985179
-
The multifactorial role of leptin in driving the breast cancer microenvironment
-
Ando S, Catalano S. The multifactorial role of leptin in driving the breast cancer microenvironment. Nat Rev Endocrinol (2012) 8:263-75. doi:10.1038/nrendo.2011.184.
-
(2012)
Nat Rev Endocrinol
, vol.8
, pp. 263-275
-
-
Ando, S.1
Catalano, S.2
-
115
-
-
0031965266
-
Leptin regulates proinflammatory immune responses
-
Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengman ML, Wang DJ, et al. Leptin regulates proinflammatory immune responses. FASEB J (1998) 12:57-65.
-
(1998)
FASEB J
, vol.12
, pp. 57-65
-
-
Loffreda, S.1
Yang, S.Q.2
Lin, H.Z.3
Karp, C.L.4
Brengman, M.L.5
Wang, D.J.6
-
117
-
-
84888798201
-
Tumor glycolysis as a target for cancer therapy: progress and prospects
-
Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer (2013) 12:152. doi:10.1186/1476-4598-12-152.
-
(2013)
Mol Cancer
, vol.12
, pp. 152
-
-
Ganapathy-Kanniappan, S.1
Geschwind, J.F.2
-
118
-
-
84908220531
-
2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy
-
Zhang D, Li J, Wang F, Hu J, Wang S, Sun Y. 2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Lett (2014) 355:176-83. doi:10.1016/j.canlet.2014.09.003.
-
(2014)
Cancer Lett
, vol.355
, pp. 176-183
-
-
Zhang, D.1
Li, J.2
Wang, F.3
Hu, J.4
Wang, S.5
Sun, Y.6
-
119
-
-
84878655372
-
Case report: sodium dichloroacetate (DCA) inhibition of the "Warburg effect" in a human cancer patient: complete response in non-Hodgkin's lymphoma after disease progression with rituximab-CHOP
-
Strum SB, Adalsteinsson O, Black RR, Segal D, Peress NL, Waldenfels J. Case report: sodium dichloroacetate (DCA) inhibition of the "Warburg effect" in a human cancer patient: complete response in non-Hodgkin's lymphoma after disease progression with rituximab-CHOP. J Bioenerg Biomembr (2013) 45:307-15. doi:10.1007/s10863-012-9496-2.
-
(2013)
J Bioenerg Biomembr
, vol.45
, pp. 307-315
-
-
Strum, S.B.1
Adalsteinsson, O.2
Black, R.R.3
Segal, D.4
Peress, N.L.5
Waldenfels, J.6
-
120
-
-
84905187426
-
Regulation of the pentose phosphate pathway in cancer
-
Jiang P, Du W, Wu M. Regulation of the pentose phosphate pathway in cancer. Protein Cell (2014) 5:592-602. doi:10.1007/s13238-014-0082-8.
-
(2014)
Protein Cell
, vol.5
, pp. 592-602
-
-
Jiang, P.1
Du, W.2
Wu, M.3
-
121
-
-
84906894979
-
Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth
-
Tsouko E, Khan AS, White MA, Han JJ, Shi Y, Merchant FA, et al. Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogenesis (2014) 3:e103. doi:10.1038/oncsis.2014.18.
-
(2014)
Oncogenesis
, vol.3
-
-
Tsouko, E.1
Khan, A.S.2
White, M.A.3
Han, J.J.4
Shi, Y.5
Merchant, F.A.6
-
122
-
-
54749095517
-
Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/rictor-independent Akt activation
-
Wang X, Yue P, Kim YA, Fu H, Khuri FR, Sun SY. Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/rictor-independent Akt activation. Cancer Res (2008) 68:7409-18. doi:10.1158/0008-5472.CAN-08-1522.
-
(2008)
Cancer Res
, vol.68
, pp. 7409-7418
-
-
Wang, X.1
Yue, P.2
Kim, Y.A.3
Fu, H.4
Khuri, F.R.5
Sun, S.Y.6
-
123
-
-
62549100016
-
Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway
-
Morgan TM, Koreckij TD, Corey E. Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway. Curr Cancer Drug Targets (2009) 9:237-49. doi:10.2174/156800909787580999.
-
(2009)
Curr Cancer Drug Targets
, vol.9
, pp. 237-249
-
-
Morgan, T.M.1
Koreckij, T.D.2
Corey, E.3
-
124
-
-
79958257007
-
mTOR inhibition in breast cancer: unraveling the complex mechanisms of mTOR signal transduction and its clinical implications in therapy
-
O'Regan R, Hawk NN. mTOR inhibition in breast cancer: unraveling the complex mechanisms of mTOR signal transduction and its clinical implications in therapy. Expert Opin Ther Targets (2011) 15:859-72. doi:10.1517/14728222.2011.575362.
-
(2011)
Expert Opin Ther Targets
, vol.15
, pp. 859-872
-
-
O'Regan, R.1
Hawk, N.N.2
-
125
-
-
84964586706
-
Targeting hypoxic response for cancer therapy
-
Paolicchi E, Gemignani F, Krstic-Demonacos M, Dedhar S, Mutti L, Landi S. Targeting hypoxic response for cancer therapy. Oncotarget (2016). doi:10.18632/oncotarget.7229.
-
(2016)
Oncotarget
-
-
Paolicchi, E.1
Gemignani, F.2
Krstic-Demonacos, M.3
Dedhar, S.4
Mutti, L.5
Landi, S.6
|