-
1
-
-
34548014737
-
Revving the engine: signal transduction fuels T cell activation
-
Jones RG, Thompson CB. Revving the engine: signal transduction fuels T cell activation. Immunity (2007) 27:173-8. doi: 10.1016/j.immuni.2007.07.008
-
(2007)
Immunity
, vol.27
, pp. 173-178
-
-
Jones, R.G.1
Thompson, C.B.2
-
2
-
-
0027474296
-
Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes
-
Bental M, Deutsch C. Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes. Magn Reson Med (1993) 29:317-26. doi:10.1002/mrm.1910290307
-
(1993)
Magn Reson Med
, vol.29
, pp. 317-326
-
-
Bental, M.1
Deutsch, C.2
-
3
-
-
27744519400
-
Fuel feeds function: energy metabolism and the T-cell response
-
Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol (2005) 5:844-52. doi:10.1038/nri1710
-
(2005)
Nat Rev Immunol
, vol.5
, pp. 844-852
-
-
Fox, C.J.1
Hammerman, P.S.2
Thompson, C.B.3
-
4
-
-
0036069699
-
The CD28 signaling pathway regulates glucose metabolism
-
Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity (2002) 16:769-77. doi:10.1016/S1074-7613(02)00323-0
-
(2002)
Immunity
, vol.16
, pp. 769-777
-
-
Frauwirth, K.A.1
Riley, J.L.2
Harris, M.H.3
Parry, R.V.4
Rathmell, J.C.5
Plas, D.R.6
-
5
-
-
44449165597
-
Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways
-
Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ, et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol (2008) 180:4476-86. doi:10.4049/jimmunol.180.7.4476
-
(2008)
J Immunol
, vol.180
, pp. 4476-4486
-
-
Jacobs, S.R.1
Herman, C.E.2
Maciver, N.J.3
Wofford, J.A.4
Wieman, H.L.5
Hammen, J.J.6
-
6
-
-
33745006592
-
The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells
-
Alves NL, Derks IA, Berk E, Spijker R, van Lier RA, Eldering E. The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity (2006) 24:703-16. doi:10.1016/j.immuni.2006.03.018
-
(2006)
Immunity
, vol.24
, pp. 703-716
-
-
Alves, N.L.1
Derks, I.A.2
Berk, E.3
Spijker, R.4
van Lier, R.A.5
Eldering, E.6
-
7
-
-
79953157651
-
Akt requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells
-
Coloff JL, Mason EF, Altman BJ, Gerriets VA, Liu T, Nichols AN, et al. Akt requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells. J Biol Chem (2011) 286:5921-33. doi:10.1074/jbc.M110.179101
-
(2011)
J Biol Chem
, vol.286
, pp. 5921-5933
-
-
Coloff, J.L.1
Mason, E.F.2
Altman, B.J.3
Gerriets, V.A.4
Liu, T.5
Nichols, A.N.6
-
8
-
-
0027960973
-
Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production
-
Greiner EF, Guppy M, Brand K. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem (1994) 269:31484-90.
-
(1994)
J Biol Chem
, vol.269
, pp. 31484-31490
-
-
Greiner, E.F.1
Guppy, M.2
Brand, K.3
-
9
-
-
33846909503
-
A role for mammalian target of rapamycin in regulating T cell activation versus anergy
-
Zheng Y, Collins SL, Lutz MA, Allen AN, Kole TP, Zarek PE, et al. A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J Immunol (2007) 178:2163-70. doi:10.4049/jimmunol.178.4.2163
-
(2007)
J Immunol
, vol.178
, pp. 2163-2170
-
-
Zheng, Y.1
Collins, S.L.2
Lutz, M.A.3
Allen, A.N.4
Kole, T.P.5
Zarek, P.E.6
-
10
-
-
78049287331
-
mTOR signalling and metabolic regulation of T cell differentiation
-
Peter C, Waldmann H, Cobbold SP. mTOR signalling and metabolic regulation of T cell differentiation. Curr Opin Immunol (2010) 22:655-61. doi:10.1016/j.coi.2010.08.010
-
(2010)
Curr Opin Immunol
, vol.22
, pp. 655-661
-
-
Peter, C.1
Waldmann, H.2
Cobbold, S.P.3
-
11
-
-
77957054466
-
The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism
-
Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity (2010) 33:301-11. doi:10.1016/j.immuni.2010.09.002
-
(2010)
Immunity
, vol.33
, pp. 301-311
-
-
Powell, J.D.1
Delgoffe, G.M.2
-
12
-
-
0034716925
-
Regulatory T cells: key controllers of immunologic self-tolerance
-
Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell (2000) 101:455-8. doi:10.1016/S0092-8674(00)80856-9
-
(2000)
Cell
, vol.101
, pp. 455-458
-
-
Sakaguchi, S.1
-
13
-
-
0034084162
-
Regulatory T cells in autoimmmunity*
-
Shevach EM. Regulatory T cells in autoimmmunity*. Annu Rev Immunol (2000) 18:423-49. doi:10.1146/annurev.immunol.18.1.423
-
(2000)
Annu Rev Immunol
, vol.18
, pp. 423-449
-
-
Shevach, E.M.1
-
14
-
-
0035320679
-
Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide
-
Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol (2001) 2:301-6. doi:10.1038/86302
-
(2001)
Nat Immunol
, vol.2
, pp. 301-306
-
-
Jordan, M.S.1
Boesteanu, A.2
Reed, A.J.3
Petrone, A.L.4
Holenbeck, A.E.5
Lerman, M.A.6
-
15
-
-
34547098277
-
Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression
-
Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood (2007) 110:1225-32. doi:10.1182/blood-2006-12-064527
-
(2007)
Blood
, vol.110
, pp. 1225-1232
-
-
Borsellino, G.1
Kleinewietfeld, M.2
Di Mitri, D.3
Sternjak, A.4
Diamantini, A.5
Giometto, R.6
-
16
-
-
66949173728
-
The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
-
Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity (2009) 30:832-44. doi:10.1016/j.immuni.2009.04.014
-
(2009)
Immunity
, vol.30
, pp. 832-844
-
-
Delgoffe, G.M.1
Kole, T.P.2
Zheng, Y.3
Zarek, P.E.4
Matthews, K.L.5
Xiao, B.6
-
17
-
-
77953897189
-
Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
-
Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity (2010) 32:743-53. doi:10.1016/j.immuni.2010.06.002
-
(2010)
Immunity
, vol.32
, pp. 743-753
-
-
Lee, K.1
Gudapati, P.2
Dragovic, S.3
Spencer, C.4
Joyce, S.5
Killeen, N.6
-
18
-
-
78650188983
-
An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness
-
Procaccini C, De Rosa V, Galgani M, Abanni L, Cali G, Porcellini A, et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity (2010) 33:929-41. doi:10.1016/j.immuni.2010.11.024
-
(2010)
Immunity
, vol.33
, pp. 929-941
-
-
Procaccini, C.1
De Rosa, V.2
Galgani, M.3
Abanni, L.4
Cali, G.5
Porcellini, A.6
-
19
-
-
79953172571
-
Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
-
Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol (2011) 186:3299-303. doi:10.4049/jimmunol.1003613
-
(2011)
J Immunol
, vol.186
, pp. 3299-3303
-
-
Michalek, R.D.1
Gerriets, V.A.2
Jacobs, S.R.3
Macintyre, A.N.4
MacIver, N.J.5
Mason, E.F.6
-
20
-
-
79960369458
-
HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
-
Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med (2011) 208:1367-76. doi:10.1084/jem.20110278
-
(2011)
J Exp Med
, vol.208
, pp. 1367-1376
-
-
Shi, L.Z.1
Wang, R.2
Huang, G.3
Vogel, P.4
Neale, G.5
Green, D.R.6
-
21
-
-
34347220473
-
Defining the role of mTOR in cancer
-
Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell (2007) 12:9-22. doi:10.1016/j.ccr.2007.05.008
-
(2007)
Cancer Cell
, vol.12
, pp. 9-22
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
22
-
-
0038578823
-
The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3
-
Kane LP, Weiss A. The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunol Rev (2003) 192:7-20. doi:10.1034/j.1600-065X.2003.00008.x
-
(2003)
Immunol Rev
, vol.192
, pp. 7-20
-
-
Kane, L.P.1
Weiss, A.2
-
23
-
-
34247184208
-
Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking
-
Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell (2007) 18:1437-46. doi:10.1091/mbc.E06-07-0593
-
(2007)
Mol Biol Cell
, vol.18
, pp. 1437-1446
-
-
Wieman, H.L.1
Wofford, J.A.2
Rathmell, J.C.3
-
24
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (2009) 324:1029-33. doi:10.1126/science.1160809
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
25
-
-
84874226167
-
mTOR and metabolic pathways in T cell quiescence and functional activation
-
Yang K, Chi H. mTOR and metabolic pathways in T cell quiescence and functional activation. Semin Immunol (2012) 24:421-8. doi:10.1016/j.smim.2012.12.004
-
(2012)
Semin Immunol
, vol.24
, pp. 421-428
-
-
Yang, K.1
Chi, H.2
-
26
-
-
20444373376
-
Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells
-
Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood (2005) 105:4743-8. doi:10.1182/blood-2004-10-3932
-
(2005)
Blood
, vol.105
, pp. 4743-4748
-
-
Battaglia, M.1
Stabilini, A.2
Roncarolo, M.G.3
-
27
-
-
0033104824
-
Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation
-
Powell JD, Lerner CG, Schwartz RH. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol (1999) 162:2775-84.
-
(1999)
J Immunol
, vol.162
, pp. 2775-2784
-
-
Powell, J.D.1
Lerner, C.G.2
Schwartz, R.H.3
-
28
-
-
0035889885
-
Antagonistic roles for CTLA-4 and the mammalian target of rapamycin in the regulation of clonal anergy: enhanced cell cycle progression promotes recall antigen responsiveness
-
Vanasek TL, Khoruts A, Zell T, Mueller DL. Antagonistic roles for CTLA-4 and the mammalian target of rapamycin in the regulation of clonal anergy: enhanced cell cycle progression promotes recall antigen responsiveness. J Immunol (2001) 167:5636-44. doi:10.4049/jimmunol.167.10.5636
-
(2001)
J Immunol
, vol.167
, pp. 5636-5644
-
-
Vanasek, T.L.1
Khoruts, A.2
Zell, T.3
Mueller, D.L.4
-
29
-
-
84881192927
-
Chi H. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function
-
Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature (2013) 499:485-90. doi:10.1038/nature12297
-
(2013)
Nature
, vol.499
, pp. 485-490
-
-
Zeng, H.1
Yang, K.2
Cloer, C.3
Neale, G.4
Vogel, P.5
-
30
-
-
80053035284
-
AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function
-
Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev (2011) 25:1895-908. doi:10.1101/gad.17420111
-
(2011)
Genes Dev
, vol.25
, pp. 1895-1908
-
-
Hardie, D.G.1
-
31
-
-
33745225026
-
AMP-activated protein kinase - development of the energy sensor concept
-
Hardie DG, Hawley SA, Scott JW. AMP-activated protein kinase - development of the energy sensor concept. J Physiol (2006) 574:7-15. doi:10.1113/jphysiol.2006.108944
-
(2006)
J Physiol
, vol.574
, pp. 7-15
-
-
Hardie, D.G.1
Hawley, S.A.2
Scott, J.W.3
-
32
-
-
70449900928
-
TOR complex 2 a signaling pathway of its own
-
Cybulski N, Hall MN. TOR complex 2: a signaling pathway of its own. Trends Biochem Sci (2009) 34:620-7. doi:10.1016/j.tibs.2009.09.004
-
(2009)
Trends Biochem Sci
, vol.34
, pp. 620-627
-
-
Cybulski, N.1
Hall, M.N.2
-
33
-
-
79960470913
-
mTOR complex 2 signaling and functions
-
Oh WJ, Jacinto E. mTOR complex 2 signaling and functions. Cell Cycle (2011) 10:2305-16. doi:10.4161/cc.10.14.16586
-
(2011)
Cell Cycle
, vol.10
, pp. 2305-2316
-
-
Oh, W.J.1
Jacinto, E.2
-
34
-
-
33751348056
-
Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1
-
Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell (2006) 11:859-71. doi:10.1016/j.devcel.2006.10.007
-
(2006)
Dev Cell
, vol.11
, pp. 859-871
-
-
Guertin, D.A.1
Stevens, D.M.2
Thoreen, C.C.3
Burds, A.A.4
Kalaany, N.Y.5
Moffat, J.6
-
35
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science (2005) 307:1098-101. doi:10.1126/science.1106148
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
36
-
-
84906790156
-
Metabolic fuelling of proper T cell functions
-
Matarese G, Colamatteo A, De Rosa V. Metabolic fuelling of proper T cell functions. Immunol Lett (2014) 161:174-8. doi:10.1016/j.imlet.2013.12.012
-
(2014)
Immunol Lett
, vol.161
, pp. 174-178
-
-
Matarese, G.1
Colamatteo, A.2
De Rosa, V3
-
37
-
-
36749081539
-
mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
-
Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature (2007) 450:736-40. doi:10.1038/nature06322
-
(2007)
Nature
, vol.450
, pp. 736-740
-
-
Cunningham, J.T.1
Rodgers, J.T.2
Arlow, D.H.3
Vazquez, F.4
Mootha, V.K.5
Puigserver, P.6
-
39
-
-
0041884743
-
Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state
-
Fisson S, Darrasse-Jèze G, Litvinova E, Septier F, Klatzmann D, Liblau R, et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J Exp Med (2003) 198:737-46. doi:10.1084/jem.20030686
-
(2003)
J Exp Med
, vol.198
, pp. 737-746
-
-
Fisson, S.1
Darrasse-Jèze, G.2
Litvinova, E.3
Septier, F.4
Klatzmann, D.5
Liblau, R.6
-
40
-
-
33748296240
-
Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo
-
Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest (2006) 116:2423-33. doi:10.1172/JCI28941
-
(2006)
J Clin Invest
, vol.116
, pp. 2423-2433
-
-
Vukmanovic-Stejic, M.1
Zhang, Y.2
Cook, J.E.3
Fletcher, J.M.4
McQuaid, A.5
Masters, J.E.6
-
41
-
-
0031821875
-
CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production
-
Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med (1998) 188:287-96. doi:10.1084/jem.188.2.287
-
(1998)
J Exp Med
, vol.188
, pp. 287-296
-
-
Thornton, A.M.1
Shevach, E.M.2
-
42
-
-
0032572722
-
Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression
-
Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature (1998) 394:897-901. doi:10.1038/29795
-
(1998)
Nature
, vol.394
, pp. 897-901
-
-
Lord, G.M.1
Matarese, G.2
Howard, J.K.3
Baker, R.J.4
Bloom, S.R.5
Lechler, R.I.6
-
43
-
-
84873684726
-
Metabolic control of the Treg/Th17 axis
-
Barbi J, Pardoll D, Pan F. Metabolic control of the Treg/Th17 axis. Immunol Rev (2013) 252:52-77. doi:10.1111/imr.12029
-
(2013)
Immunol Rev
, vol.252
, pp. 52-77
-
-
Barbi, J.1
Pardoll, D.2
Pan, F.3
-
44
-
-
74649086985
-
The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation
-
Gulen MF, Kang Z, Bulek K, Youzhong W, Kim TW, Chen Y, et al. The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation. Immunity (2010) 32:54-66. doi:10.1016/j.immuni.2009.12.003
-
(2010)
Immunity
, vol.32
, pp. 54-66
-
-
Gulen, M.F.1
Kang, Z.2
Bulek, K.3
Youzhong, W.4
Kim, T.W.5
Chen, Y.6
-
46
-
-
84865301337
-
Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function
-
Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev (2012) 249:43-58. doi:10.1111/j.1600-065X.2012.01152.x
-
(2012)
Immunol Rev
, vol.249
, pp. 43-58
-
-
Waickman, A.T.1
-
47
-
-
79952985551
-
The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
-
Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol (2011) 12:295-303. doi:10.1038/ni.2005
-
(2011)
Nat Immunol
, vol.12
, pp. 295-303
-
-
Delgoffe, G.M.1
Pollizzi, K.N.2
Waickman, A.T.3
Heikamp, E.4
Meyers, D.J.5
Horton, M.R.6
-
48
-
-
79952931627
-
Integrated T-cell receptor and costimulatory signals determine TGF-b-dependent differentiation and maintenance of Foxp3+ regulatory T cells
-
Gabryšová L, Christensen JR, Wu X, Kissenpfennig A, Malissen B, O'Garra A. Integrated T-cell receptor and costimulatory signals determine TGF-β-dependent differentiation and maintenance of Foxp3+ regulatory T cells. Eur J Immunol (2011) 41:1242-8. doi:10.1002/eji.201041073
-
(2011)
Eur J Immunol
, vol.41
, pp. 1242-1248
-
-
Gabryšová, L.1
Christensen, J.R.2
Wu, X.3
Kissenpfennig, A.4
Malissen, B.5
O'Garra, A.6
-
49
-
-
25444454359
-
Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors
-
Sitkovsky M, Lukashev D. Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol (2005) 5:712-21. doi:10.1038/nri1685
-
(2005)
Nat Rev Immunol
, vol.5
, pp. 712-721
-
-
Sitkovsky, M.1
Lukashev, D.2
-
50
-
-
80052277906
-
Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1
-
Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell (2011) 146:772-84. doi:10.1016/j.cell.2011.07.033
-
(2011)
Cell
, vol.146
, pp. 772-784
-
-
Dang, E.V.1
Barbi, J.2
Yang, H.Y.3
Jinasena, D.4
Yu, H.5
Zheng, Y.6
-
51
-
-
84862986986
-
PPAR-g is a major driver of the accumulation and phenotype of adipose tissue Treg cells
-
Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature (2012) 486:549-53. doi:10.1038/nature11132
-
(2012)
Nature
, vol.486
, pp. 549-553
-
-
Cipolletta, D.1
Feuerer, M.2
Li, A.3
Kamei, N.4
Lee, J.5
Shoelson, S.E.6
-
52
-
-
68349148211
-
Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters
-
Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med (2009) 15:930-9. doi:10.1038/nm.2002
-
(2009)
Nat Med
, vol.15
, pp. 930-939
-
-
Feuerer, M.1
Herrero, L.2
Cipolletta, D.3
Naaz, A.4
Wong, J.5
Nayer, A.6
-
53
-
-
77951918926
-
Macrophages, inflammation, and insulin resistance
-
Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol (2010) 72:219-46. doi:10.1146/annurev-physiol-021909-135846
-
(2010)
Annu Rev Physiol
, vol.72
, pp. 219-246
-
-
Olefsky, J.M.1
Glass, C.K.2
-
54
-
-
68349137821
-
Normalization of obesity-associated insulin resistance through immunotherapy
-
Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med (2009) 15:921-9. doi:10.1038/nm.2001
-
(2009)
Nat Med
, vol.15
, pp. 921-929
-
-
Winer, S.1
Chan, Y.2
Paltser, G.3
Truong, D.4
Tsui, H.5
Bahrami, J.6
-
55
-
-
79551529432
-
Visceral adipose inflammation in obesity is associated with critical alterations in T regulatory cell numbers
-
Deiuliis J, Shah Z, Shah N, Needleman B, Mikami D, Narula V, et al. Visceral adipose inflammation in obesity is associated with critical alterations in T regulatory cell numbers. PLoS One (2011) 6:e16376. doi:10.1371/journal.pone.0016376
-
(2011)
PLoS One
, vol.6
, pp. e16376
-
-
Deiuliis, J.1
Shah, Z.2
Shah, N.3
Needleman, B.4
Mikami, D.5
Narula, V.6
-
56
-
-
84855303303
-
Intracellular metabolic pathways control immune tolerance
-
Procaccini C, Galgani M, De Rosa V, Matarese G. Intracellular metabolic pathways control immune tolerance. Trends Immunol (2012) 33:1-7. doi:10.1016/j.it.2011.09.002
-
(2012)
Trends Immunol
, vol.33
, pp. 1-7
-
-
Procaccini, C.1
Galgani, M.2
De Rosa, V.3
Matarese, G.4
-
58
-
-
77955475969
-
Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation
-
Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol (2010) 185:1037-44. doi:10.4049/jimmunol.0903586
-
(2010)
J Immunol
, vol.185
, pp. 1037-1044
-
-
Carr, E.L.1
Kelman, A.2
Wu, G.S.3
Gopaul, R.4
Senkevitch, E.5
Aghvanyan, A.6
-
59
-
-
0027770941
-
Exogenous glutamine requirement is confined to late events of T cell activation
-
Hörig H, Spagnoli GC, Filgueira L, Babst R, Gallati H, Harder F, et al. Exogenous glutamine requirement is confined to late events of T cell activation. J Cell Biochem (1993) 53:343-51. doi:10.1002/jcb.240530412
-
(1993)
J Cell Biochem
, vol.53
, pp. 343-351
-
-
Hörig, H.1
Spagnoli, G.C.2
Filgueira, L.3
Babst, R.4
Gallati, H.5
Harder, F.6
-
60
-
-
0032102990
-
Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype
-
Munder M, Eichmann K, Modolell M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol (1998) 160:5347-54.
-
(1998)
J Immunol
, vol.160
, pp. 5347-5354
-
-
Munder, M.1
Eichmann, K.2
Modolell, M.3
-
61
-
-
33748127113
-
Suppression of T-cell functions by human granulocyte arginase
-
Munder M, Schneider H, Luckner C, Giese T, Langhans CD, Fuentes JM, et al. Suppression of T-cell functions by human granulocyte arginase. Blood (2006) 108:1627-34. doi:10.1182/blood-2006-11-010389
-
(2006)
Blood
, vol.108
, pp. 1627-1634
-
-
Munder, M.1
Schneider, H.2
Luckner, C.3
Giese, T.4
Langhans, C.D.5
Fuentes, J.M.6
-
62
-
-
63849112500
-
The role of indoleamine 2. 3-dioxygenase in the induction of immune tolerance: focus on hematology
-
Curti A, Trabanelli S, Salvestrini V, Baccarani M, Lemoli RM. The role of indoleamine 2,3-dioxygenase in the induction of immune tolerance: focus on hematology. Blood (2009) 113:2394-401. doi:10.1182/blood-2008-07-144485
-
(2009)
Blood
, vol.113
, pp. 2394-2401
-
-
Curti, A.1
Trabanelli, S.2
Salvestrini, V.3
Baccarani, M.4
Lemoli, R.M.5
-
63
-
-
77951737056
-
Gut CD103+ dendritic cells express indoleamine 2. 3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction
-
Matteoli G, Mazzini E, Iliev ID, Mileti E, Fallarino F, Puccetti P, et al. Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut (2010) 59:595-604. doi:10.1136/gut.2009.185108
-
(2010)
Gut
, vol.59
, pp. 595-604
-
-
Matteoli, G.1
Mazzini, E.2
Iliev, I.D.3
Mileti, E.4
Fallarino, F.5
Puccetti, P.6
-
64
-
-
0037090313
-
Cells expressing indoleamine 2. 3-dioxygenase inhibit T cell responses
-
Mellor AL, Keskin DB, Johnson T, Chandler P, Munn DH. Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. J Immunol (2002) 168:3771-6. doi:10.4049/jimmunol.168.8.3771
-
(2002)
J Immunol
, vol.168
, pp. 3771-3776
-
-
Mellor, A.L.1
Keskin, D.B.2
Johnson, T.3
Chandler, P.4
Munn, D.H.5
-
65
-
-
84880688294
-
IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: a novel IDO effector pathway targeted by d-1-methyl-tryptophan
-
Metz R, Rust S, Duhadaway JB, Mautino MR, Munn DH, Vahanian NN, et al. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: a novel IDO effector pathway targeted by d-1-methyl-tryptophan. Oncoimmunology (2012) 1:1460-8. doi:10.4161/onci.21716
-
(2012)
Oncoimmunology
, vol.1
, pp. 1460-1468
-
-
Metz, R.1
Rust, S.2
Duhadaway, J.B.3
Mautino, M.R.4
Munn, D.H.5
Vahanian, N.N.6
-
66
-
-
67749091321
-
Infectious tolerance via the consumption of essential amino acids and mTOR signaling
-
Cobbold SP, Adams E, Farquhar CA, Nolan KF, Howie D, Lui KO, et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci U S A (2009) 106:12055-60. doi:10.1073/pnas.0903919106
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 12055-12060
-
-
Cobbold, S.P.1
Adams, E.2
Farquhar, C.A.3
Nolan, K.F.4
Howie, D.5
Lui, K.O.6
-
67
-
-
84919390016
-
Nutrient sensing via mTOR in T Cells maintains a tolerogenic microenvironment
-
Howie D, Waldmann H, Cobbold S. Nutrient sensing via mTOR in T Cells maintains a tolerogenic microenvironment. Front Immunol (2014) 5:409. doi:10.3389/fimmu.2014.00409
-
(2014)
Front Immunol
, vol.5
, pp. 409
-
-
Howie, D.1
Waldmann, H.2
Cobbold, S.3
-
68
-
-
84899442976
-
Beneficial metabolic effects of rapamycin are associated with enhanced regulatory cells in diet-induced obese mice
-
Makki K, Taront S, Molendi-Coste O, Bouchaert E, Neve B, Eury E, et al. Beneficial metabolic effects of rapamycin are associated with enhanced regulatory cells in diet-induced obese mice. PLoS One (2014) 9:e92684. doi:10.1371/journal.pone.0092684
-
(2014)
PLoS One
, vol.9
, pp. e92684
-
-
Makki, K.1
Taront, S.2
Molendi-Coste, O.3
Bouchaert, E.4
Neve, B.5
Eury, E.6
-
69
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science (2013) 341:569-73. doi:10.1126/science.1241165
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
Howitt, M.R.2
Panikov, N.3
Michaud, M.4
Gallini, C.A.5
Bohlooly, Y.M.6
|