메뉴 건너뛰기




Volumn 210, Issue 10, 2013, Pages 2025-2039

Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium

Author keywords

[No Author keywords available]

Indexed keywords

COLONY STIMULATING FACTOR 1; DIPHTHERIA TOXIN; GAMMA INTERFERON; GRANULOCYTE MACROPHAGE COLONY STIMULATING FACTOR; GRANULOCYTE MACROPHAGE COLONY STIMULATING FACTOR RECEPTOR; INTERLEUKIN 12; LYSOZYME;

EID: 84885464048     PISSN: 00221007     EISSN: 15409538     Source Type: Journal    
DOI: 10.1084/jem.20130903     Document Type: Article
Times cited : (148)

References (89)
  • 3
    • 84870876967 scopus 로고    scopus 로고
    • Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria
    • Basu, R., D.B. O'Quinn, D.J. Silberger, T.R. Schoeb, L. Fouser, W. Ouyang, R.D. Hatton, and C.T. Weaver. 2012. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity. 37:1061-1075. http://dx.doi.org/10.1016/j.immuni.2012.08.024
    • (2012) Immunity. , vol.37 , pp. 1061-1075
    • Basu, R.1    O'Quinn, D.B.2    Silberger, D.J.3    Schoeb, T.R.4    Fouser, L.5    Ouyang, W.6    Hatton, R.D.7    Weaver, C.T.8
  • 4
    • 85058248273 scopus 로고    scopus 로고
    • DC ablation in mice: promises, pitfalls, and challenges
    • Bennett, C.L., and B.E. Clausen. 2007. DC ablation in mice: promises, pitfalls, and challenges. Trends Immunol. 28:525-531. http://dx.doi.org/10.1016/j.it.2007.08.011
    • (2007) Trends Immunol. , vol.28 , pp. 525-531
    • Bennett, C.L.1    Clausen, B.E.2
  • 6
    • 84867856948 scopus 로고    scopus 로고
    • Mononuclear phagocyte diversity in the intestine
    • Bogunovic, M., A. Mortha, P.A. Muller, and M. Merad. 2012. Mononuclear phagocyte diversity in the intestine. Immunol. Res. 54:37-49. http://dx.doi.org/10.1007/s12026-012-8323-5
    • (2012) Immunol. Res. , vol.54 , pp. 37-49
    • Bogunovic, M.1    Mortha, A.2    Muller, P.A.3    Merad, M.4
  • 7
    • 0030809822 scopus 로고    scopus 로고
    • Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice
    • Boring, L., J. Gosling, S.W. Chensue, S.L. Kunkel, R.V. Farese Jr., H.E. Broxmeyer, and I.F. Charo. 1997. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest. 100:2552-2561. http://dx.doi.org/10.1172/JCI119798
    • (1997) J. Clin. Invest. , vol.100 , pp. 2552-2561
    • Boring, L.1    Gosling, J.2    Chensue, S.W.3    Kunkel, S.L.4    Farese Jr., R.V.5    Broxmeyer, H.E.6    Charo, I.F.7
  • 8
    • 0347364688 scopus 로고    scopus 로고
    • Critical role of T cell-dependent serum antibody, but not the gut-associated lymphoid tissue, for surviving acute mucosal infection with Citrobacter rodentium, an attaching and effacing pathogen
    • Bry, L., and M.B. Brenner. 2004. Critical role of T cell-dependent serum antibody, but not the gut-associated lymphoid tissue, for surviving acute mucosal infection with Citrobacter rodentium, an attaching and effacing pathogen. J. Immunol. 172:433-441.
    • (2004) J. Immunol. , vol.172 , pp. 433-441
    • Bry, L.1    Brenner, M.B.2
  • 9
    • 29644440606 scopus 로고    scopus 로고
    • +-T-cell effector functions and costimulatory requirements essential for surviving mucosal infection with Citrobacter rodentium
    • +-T-cell effector functions and costimulatory requirements essential for surviving mucosal infection with Citrobacter rodentium. Infect. Immun. 74:673-681. http://dx.doi.org/10.1128/IAI.74.1.673-681.2006
    • (2006) Infect. Immun. , vol.74 , pp. 673-681
    • Bry, L.1    Brigl, M.2    Brenner, M.B.3
  • 11
    • 80355136629 scopus 로고    scopus 로고
    • Studying the mononuclear phagocyte system in the molecular age
    • Chow, A., B.D. Brown, and M. Merad. 2011. Studying the mononuclear phagocyte system in the molecular age. Nat. Rev. Immunol. 11:788-798. http://dx.doi.org/10.1038/nri3087
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 788-798
    • Chow, A.1    Brown, B.D.2    Merad, M.3
  • 12
    • 0033177995 scopus 로고    scopus 로고
    • Conditional gene targeting in macrophages and granulocytes using LysMcre mice
    • Clausen, B.E., C. Burkhardt, W. Reith, R. Renkawitz, and I. Förster. 1999. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8:265-277. http://dx.doi.org/10.1023/A:1008942828960
    • (1999) Transgenic Res. , vol.8 , pp. 265-277
    • Clausen, B.E.1    Burkhardt, C.2    Reith, W.3    Renkawitz, R.4    Förster, I.5
  • 13
    • 0036092801 scopus 로고    scopus 로고
    • Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects
    • Dai, X.M., G.R. Ryan, A.J. Hapel, M.G. Dominguez, R.G. Russell, S. Kapp, V. Sylvestre, and E.R. Stanley. 2002. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 99:111-120. http://dx.doi.org/10.1182/blood.V99.1.111
    • (2002) Blood. , vol.99 , pp. 111-120
    • Dai, X.M.1    Ryan, G.R.2    Hapel, A.J.3    Dominguez, M.G.4    Russell, R.G.5    Kapp, S.6    Sylvestre, V.7    Stanley, E.R.8
  • 14
    • 34548764423 scopus 로고    scopus 로고
    • Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses
    • Denning, T.L., Y.C. Wang, S.R. Patel, I.R. Williams, and B. Pulendran. 2007. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8:1086-1094. http://dx.doi.org/10.1038/ni1511
    • (2007) Nat. Immunol. , vol.8 , pp. 1086-1094
    • Denning, T.L.1    Wang, Y.C.2    Patel, S.R.3    Williams, I.R.4    Pulendran, B.5
  • 15
    • 79960513242 scopus 로고    scopus 로고
    • Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization
    • Denning, T.L., B.A. Norris, O. Medina-Contreras, S. Manicassamy, D. Geem, R. Madan, C.L. Karp, and B. Pulendran. 2011. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization. J. Immunol. 187:733-747. http://dx.doi.org/10.4049/jimmunol.1002701
    • (2011) J. Immunol. , vol.187 , pp. 733-747
    • Denning, T.L.1    Norris, B.A.2    Medina-Contreras, O.3    Manicassamy, S.4    Geem, D.5    Madan, R.6    Karp, C.L.7    Pulendran, B.8
  • 16
    • 84874688283 scopus 로고    scopus 로고
    • Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells
    • Diehl, G.E., R.S. Longman, J.X. Zhang, B. Breart, C. Galan, A. Cuesta, S.R. Schwab, and D.R. Littman. 2013. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature. 494:116-120. http://dx.doi.org/10.1038/nature11809
    • (2013) Nature. , vol.494 , pp. 116-120
    • Diehl, G.E.1    Longman, R.S.2    Zhang, J.X.3    Breart, B.4    Galan, C.5    Cuesta, A.6    Schwab, S.R.7    Littman, D.R.8
  • 17
    • 48749107414 scopus 로고    scopus 로고
    • Gr1(+) inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii
    • Dunay, I.R., R.A. Damatta, B. Fux, R. Presti, S. Greco, M. Colonna, and L.D. Sibley. 2008. Gr1(+) inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity. 29:306-317. http://dx.doi.org/10.1016/j.immuni.2008.05.019
    • (2008) Immunity. , vol.29 , pp. 306-317
    • Dunay, I.R.1    Damatta, R.A.2    Fux, B.3    Presti, R.4    Greco, S.5    Colonna, M.6    Sibley, L.D.7
  • 18
    • 70350303830 scopus 로고    scopus 로고
    • CCR2-dependent intraepithelial lymphocytes mediate inflammatory gut pathology during Toxoplasma gondii infection
    • Egan, C.E., M.D. Craven, J. Leng, M. Mack, K.W. Simpson, and E.Y. Denkers. 2009. CCR2-dependent intraepithelial lymphocytes mediate inflammatory gut pathology during Toxoplasma gondii infection. Mucosal Immunol. 2:527-535. http://dx.doi.org/10.1038/mi.2009.105
    • (2009) Mucosal Immunol. , vol.2 , pp. 527-535
    • Egan, C.E.1    Craven, M.D.2    Leng, J.3    Mack, M.4    Simpson, K.W.5    Denkers, E.Y.6
  • 19
    • 84875489998 scopus 로고    scopus 로고
    • Luminal bacteria recruit CD103(+) dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation
    • Farache, J., I. Koren, I. Milo, I. Gurevich, K.W. Kim, E. Zigmond, G.C. Furtado, S.A. Lira, and G. Shakhar. 2013. Luminal bacteria recruit CD103(+) dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity. 38:581-595.
    • (2013) Immunity. , vol.38 , pp. 581-595
    • Farache, J.1    Koren, I.2    Milo, I.3    Gurevich, I.4    Kim, K.W.5    Zigmond, E.6    Furtado, G.C.7    Lira, S.A.8    Shakhar, G.9
  • 20
    • 30344444770 scopus 로고    scopus 로고
    • A clonogenic bone marrow progenitor specific for macrophages and dendritic cells
    • Fogg, D.K., C. Sibon, C. Miled, S. Jung, P. Aucouturier, D.R. Littman, A. Cumano, and F. Geissmann. 2006. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science. 311:83-87. http://dx.doi.org/10.1126/science.1117729
    • (2006) Science. , vol.311 , pp. 83-87
    • Fogg, D.K.1    Sibon, C.2    Miled, C.3    Jung, S.4    Aucouturier, P.5    Littman, D.R.6    Cumano, A.7    Geissmann, F.8
  • 21
    • 84867740805 scopus 로고    scopus 로고
    • Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
    • Immunological Genome Consortium
    • Gautier, E.L., T. Shay, J. Miller, M. Greter, C. Jakubzick, S. Ivanov, J. Helft, A. Chow, K.G. Elpek, S. Gordonov, et al; Immunological Genome Consortium. 2012. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13:1118-1128. http://dx.doi.org/10.1038/ni.2419
    • (2012) Nat. Immunol. , vol.13 , pp. 1118-1128
    • Gautier, E.L.1    Shay, T.2    Miller, J.3    Greter, M.4    Jakubzick, C.5    Ivanov, S.6    Helft, J.7    Chow, A.8    Elpek, K.G.9    Gordonov, S.10
  • 22
    • 46749135222 scopus 로고    scopus 로고
    • Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses
    • Geissmann, F., C. Auffray, R. Palframan, C. Wirrig, A. Ciocca, L. Campisi, E. Narni-Mancinelli, and G. Lauvau. 2008. Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol. Cell Biol. 86:398-408. http://dx.doi.org/10.1038/icb.2008.19
    • (2008) Immunol. Cell Biol. , vol.86 , pp. 398-408
    • Geissmann, F.1    Auffray, C.2    Palframan, R.3    Wirrig, C.4    Ciocca, A.5    Campisi, L.6    Narni-Mancinelli, E.7    Lauvau, G.8
  • 24
    • 76249095169 scopus 로고    scopus 로고
    • Development of monocytes, macrophages, and dendritic cells
    • Geissmann, F., M.G. Manz, S. Jung, M.H. Sieweke, M. Merad, and K. Ley. 2010b. Development of monocytes, macrophages, and dendritic cells. Science. 327:656-661. http://dx.doi.org/10.1126/science.1178331
    • (2010) Science. , vol.327 , pp. 656-661
    • Geissmann, F.1    Manz, M.G.2    Jung, S.3    Sieweke, M.H.4    Merad, M.5    Ley, K.6
  • 26
    • 84863007648 scopus 로고    scopus 로고
    • NK cell-derived interferon-γ orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection
    • Goldszmid, R.S., P. Caspar, A. Rivollier, S. White, A. Dzutsev, S. Hieny, B. Kelsall, G. Trinchieri, and A. Sher. 2012. NK cell-derived interferon-γ orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity. 36:1047-1059. http://dx.doi.org/10.1016/j.immuni.2012.03.026
    • (2012) Immunity. , vol.36 , pp. 1047-1059
    • Goldszmid, R.S.1    Caspar, P.2    Rivollier, A.3    White, S.4    Dzutsev, A.5    Hieny, S.6    Kelsall, B.7    Trinchieri, G.8    Sher, A.9
  • 27
    • 0031889474 scopus 로고    scopus 로고
    • Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection
    • Gorak, P.M., C.R. Engwerda, and P.M. Kaye. 1998. Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection. Eur. J. Immunol. 28:687-695. http://dx.doi.org/10.1002/(SICI)1521-4141(199802)28:023.0.CO;2-N
    • (1998) Eur. J. Immunol. , vol.28 , pp. 687-695
    • Gorak, P.M.1    Engwerda, C.R.2    Kaye, P.M.3
  • 28
    • 28544446111 scopus 로고    scopus 로고
    • Monocyte and macrophage heterogeneity
    • Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5:953-964. http://dx.doi.org/10.1038/nri1733
    • (2005) Nat. Rev. Immunol. , vol.5 , pp. 953-964
    • Gordon, S.1    Taylor, P.R.2
  • 30
    • 80053156515 scopus 로고    scopus 로고
    • Dendritic cell and macrophage heterogeneity in vivo
    • Hashimoto, D., J. Miller, and M. Merad. 2011. Dendritic cell and macrophage heterogeneity in vivo. Immunity. 35:323-335. http://dx.doi.org/10.1016/j.immuni.2011.09.007
    • (2011) Immunity. , vol.35 , pp. 323-335
    • Hashimoto, D.1    Miller, J.2    Merad, M.3
  • 31
    • 13344259977 scopus 로고    scopus 로고
    • Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells
    • Heufler, C., F. Koch, U. Stanzl, G. Topar, M. Wysocka, G. Trinchieri, A. Enk, R.M. Steinman, N. Romani, and G. Schuler. 1996. Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur. J. Immunol. 26:659-668. http://dx.doi.org/10.1002/eji.1830260323
    • (1996) Eur. J. Immunol. , vol.26 , pp. 659-668
    • Heufler, C.1    Koch, F.2    Stanzl, U.3    Topar, G.4    Wysocka, M.5    Trinchieri, G.6    Enk, A.7    Steinman, R.M.8    Romani, N.9    Schuler, G.10
  • 32
    • 0033022537 scopus 로고    scopus 로고
    • Citrobacter rodentium infection in mice elicits a mucosal Th1 cytokine response and lesions similar to those in murine inflammatory bowel disease
    • Higgins, L.M., G. Frankel, G. Douce, G. Dougan, and T.T. MacDonald. 1999. Citrobacter rodentium infection in mice elicits a mucosal Th1 cytokine response and lesions similar to those in murine inflammatory bowel disease. Infect. Immun. 67:3031-3039.
    • (1999) Infect. Immun. , vol.67 , pp. 3031-3039
    • Higgins, L.M.1    Frankel, G.2    Douce, G.3    Dougan, G.4    MacDonald, T.T.5
  • 33
    • 76249096437 scopus 로고    scopus 로고
    • GMCSF- facilitated dendritic cell recruitment and survival govern the intestinal mucosal response to a mouse enteric bacterial pathogen
    • Hirata, Y., L. Egea, S.M. Dann, L. Eckmann, and M.F. Kagnoff. 2010. GMCSF- facilitated dendritic cell recruitment and survival govern the intestinal mucosal response to a mouse enteric bacterial pathogen. Cell Host Microbe. 7:151-163. http://dx.doi.org/10.1016/j.chom.2010.01.006
    • (2010) Cell Host Microbe. , vol.7 , pp. 151-163
    • Hirata, Y.1    Egea, L.2    Dann, S.M.3    Eckmann, L.4    Kagnoff, M.F.5
  • 34
    • 71749100858 scopus 로고    scopus 로고
    • Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection
    • Hohl, T.M., A. Rivera, L. Lipuma, A. Gallegos, C. Shi, M. Mack, and E.G. Pamer. 2009. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe. 6:470-481. http://dx.doi.org/10.1016/j.chom.2009.10.007
    • (2009) Cell Host Microbe. , vol.6 , pp. 470-481
    • Hohl, T.M.1    Rivera, A.2    Lipuma, L.3    Gallegos, A.4    Shi, C.5    Mack, M.6    Pamer, E.G.7
  • 38
    • 0035179818 scopus 로고    scopus 로고
    • Distinct and regulated expression of Notch receptors in hematopoietic lineages and during myeloid differentiation
    • Jönsson, J.I., Z. Xiang, M. Pettersson, M. Lardelli, and G. Nilsson. 2001. Distinct and regulated expression of Notch receptors in hematopoietic lineages and during myeloid differentiation. Eur. J. Immunol. 31:3240-3247. http://dx.doi.org/10.1002/1521-4141(200111)31:113.0.CO;2-E
    • (2001) Eur. J. Immunol. , vol.31 , pp. 3240-3247
    • Jönsson, J.I.1    Xiang, Z.2    Pettersson, M.3    Lardelli, M.4    Nilsson, G.5
  • 39
    • 0034028817 scopus 로고    scopus 로고
    • Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion
    • Jung, S., J. Aliberti, P. Graemmel, M.J. Sunshine, G.W. Kreutzberg, A. Sher, and D.R. Littman. 2000. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20:4106-4114. http://dx.doi.org/10.1128/MCB.20.11.4106-4114.2000
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 4106-4114
    • Jung, S.1    Aliberti, J.2    Graemmel, P.3    Sunshine, M.J.4    Kreutzberg, G.W.5    Sher, A.6    Littman, D.R.7
  • 40
    • 18644375874 scopus 로고    scopus 로고
    • In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cellassociated antigens
    • Jung, S., D. Unutmaz, P. Wong, G. Sano, K. De los Santos, T. Sparwasser, S. Wu, S. Vuthoori, K. Ko, F. Zavala, et al. 2002. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cellassociated antigens. Immunity. 17:211-220. http://dx.doi.org/10.1016/S1074-7613(02)00365-5
    • (2002) Immunity. , vol.17 , pp. 211-220
    • Jung, S.1    Unutmaz, D.2    Wong, P.3    Sano, G.4    De los Santos, K.5    Sparwasser, T.6    Wu, S.7    Vuthoori, S.8    Ko, K.9    Zavala, F.10
  • 42
    • 79956319462 scopus 로고    scopus 로고
    • The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes
    • Kim, Y.G., N. Kamada, M.H. Shaw, N. Warner, G.Y. Chen, L. Franchi, and G. Núñez. 2011. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity. 34:769-780. http://dx.doi.org/10.1016/j.immuni.2011.04.013
    • (2011) Immunity. , vol.34 , pp. 769-780
    • Kim, Y.G.1    Kamada, N.2    Shaw, M.H.3    Warner, N.4    Chen, G.Y.5    Franchi, L.6    Núñez, G.7
  • 43
    • 0030691025 scopus 로고    scopus 로고
    • Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2
    • Kuziel, W.A., S.J. Morgan, T.C. Dawson, S. Griffin, O. Smithies, K. Ley, and N. Maeda. 1997. Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc. Natl. Acad. Sci. USA. 94:12053-12058. http://dx.doi.org/10.1073/pnas.94.22.12053
    • (1997) Proc. Natl. Acad. Sci. USA. , vol.94 , pp. 12053-12058
    • Kuziel, W.A.1    Morgan, S.J.2    Dawson, T.C.3    Griffin, S.4    Smithies, O.5    Ley, K.6    Maeda, N.7
  • 44
    • 84856826706 scopus 로고    scopus 로고
    • CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization
    • Langlet, C., S. Tamoutounour, S. Henri, H. Luche, L. Ardouin, C. Grégoire, B. Malissen, and M. Guilliams. 2012. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J. Immunol. 188:1751-1760. http://dx.doi.org/10.4049/jimmunol.1102744
    • (2012) J. Immunol. , vol.188 , pp. 1751-1760
    • Langlet, C.1    Tamoutounour, S.2    Henri, S.3    Luche, H.4    Ardouin, L.5    Grégoire, C.6    Malissen, B.7    Guilliams, M.8
  • 45
    • 0021958660 scopus 로고
    • Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80
    • Lee, S.H., P.M. Starkey, and S. Gordon. 1985. Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80. J. Exp. Med. 161:475-489. http://dx.doi.org/10.1084/jem.161.3.475
    • (1985) J. Exp. Med. , vol.161 , pp. 475-489
    • Lee, S.H.1    Starkey, P.M.2    Gordon, S.3
  • 46
    • 34247104151 scopus 로고    scopus 로고
    • Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania
    • León, B., M. López-Bravo, and C. Ardavín. 2007. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity. 26:519-531. http://dx.doi.org/10.1016/j.immuni.2007.01.017
    • (2007) Immunity. , vol.26 , pp. 519-531
    • León, B.1    López-Bravo, M.2    Ardavín, C.3
  • 48
    • 77349124883 scopus 로고    scopus 로고
    • Origin and development of dendritic cells
    • Liu, K., and M.C. Nussenzweig. 2010. Origin and development of dendritic cells. Immunol. Rev. 234:45-54. http://dx.doi.org/10.1111/j.0105-2896.2009.00879.x
    • (2010) Immunol. Rev. , vol.234 , pp. 45-54
    • Liu, K.1    Nussenzweig, M.C.2
  • 50
    • 78149462163 scopus 로고    scopus 로고
    • An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation
    • MacDonald, K.P., J.S. Palmer, S. Cronau, E. Seppanen, S. Olver, N.C. Raffelt, R. Kuns, A.R. Pettit, A. Clouston, B. Wainwright, et al. 2010. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood. 116:3955-3963. http://dx.doi.org/10.1182/blood-2010-02-266296
    • (2010) Blood. , vol.116 , pp. 3955-3963
    • MacDonald, K.P.1    Palmer, J.S.2    Cronau, S.3    Seppanen, E.4    Olver, S.5    Raffelt, N.C.6    Kuns, R.7    Pettit, A.R.8    Clouston, A.9    Wainwright, B.10
  • 58
    • 62849119018 scopus 로고    scopus 로고
    • Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses
    • Nakano, H., K.L. Lin, M. Yanagita, C. Charbonneau, D.N. Cook, T. Kakiuchi, and M.D. Gunn. 2009. Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nat. Immunol. 10:394-402. http://dx.doi.org/10.1038/ni.1707
    • (2009) Nat. Immunol. , vol.10 , pp. 394-402
    • Nakano, H.1    Lin, K.L.2    Yanagita, M.3    Charbonneau, C.4    Cook, D.N.5    Kakiuchi, T.6    Gunn, M.D.7
  • 59
    • 80052966918 scopus 로고    scopus 로고
    • IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium
    • Ota, N., K. Wong, P.A. Valdez, Y. Zheng, N.K. Crellin, L. Diehl, and W. Ouyang. 2011. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat. Immunol. 12:941-948. http://dx.doi.org/10.1038/ni.2089
    • (2011) Nat. Immunol. , vol.12 , pp. 941-948
    • Ota, N.1    Wong, K.2    Valdez, P.A.3    Zheng, Y.4    Crellin, N.K.5    Diehl, L.6    Ouyang, W.7
  • 60
    • 2942614999 scopus 로고    scopus 로고
    • CCR2-dependent trafficking of F4/80dim macrophages and CD11cdim/intermediate dendritic cells is crucial for T cell recruitment to lungs infected with Mycobacterium tuberculosis
    • Peters, W., J.G. Cyster, M. Mack, D. Schlöndorff, A.J. Wolf, J.D. Ernst, and I.F. Charo. 2004. CCR2-dependent trafficking of F4/80dim macrophages and CD11cdim/intermediate dendritic cells is crucial for T cell recruitment to lungs infected with Mycobacterium tuberculosis. J. Immunol. 172:7647-7653.
    • (2004) J. Immunol. , vol.172 , pp. 7647-7653
    • Peters, W.1    Cyster, J.G.2    Mack, M.3    Schlöndorff, D.4    Wolf, A.J.5    Ernst, J.D.6    Charo, I.F.7
  • 61
    • 33746190829 scopus 로고    scopus 로고
    • Visualization of IL-12/23p40 in vivo reveals immunostimulatory dendritic cell migrants that promote Th1 differentiation
    • Reinhardt, R.L., S. Hong, S.J. Kang, Z.E. Wang, and R.M. Locksley. 2006. Visualization of IL-12/23p40 in vivo reveals immunostimulatory dendritic cell migrants that promote Th1 differentiation. J. Immunol. 177:1618-1627.
    • (2006) J. Immunol. , vol.177 , pp. 1618-1627
    • Reinhardt, R.L.1    Hong, S.2    Kang, S.J.3    Wang, Z.E.4    Locksley, R.M.5
  • 62
    • 0000060327 scopus 로고    scopus 로고
    • In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas
    • Reis e Sousa, C., S. Hieny, T. Scharton-Kersten, D. Jankovic, H. Charest, R.N. Germain, and A. Sher. 1997. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186:1819-1829. http://dx.doi.org/10.1084/jem.186.11.1819
    • (1997) J. Exp. Med. , vol.186 , pp. 1819-1829
    • Reis e Sousa, C.1    Hieny, S.2    Scharton-Kersten, T.3    Jankovic, D.4    Charest, H.5    Germain, R.N.6    Sher, A.7
  • 63
    • 84856815290 scopus 로고    scopus 로고
    • Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon
    • Rivollier, A., J. He, A. Kole, V. Valatas, and B.L. Kelsall. 2012. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209:139-155. http://dx.doi.org/10.1084/jem.20101387
    • (2012) J. Exp. Med. , vol.209 , pp. 139-155
    • Rivollier, A.1    He, J.2    Kole, A.3    Valatas, V.4    Kelsall, B.L.5
  • 67
    • 33645902493 scopus 로고    scopus 로고
    • Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2
    • Serbina, N.V., and E.G. Pamer. 2006. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7:311-317. http://dx.doi.org/10.1038/ni1309
    • (2006) Nat. Immunol. , vol.7 , pp. 311-317
    • Serbina, N.V.1    Pamer, E.G.2
  • 68
    • 0037625155 scopus 로고    scopus 로고
    • TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection
    • Serbina, N.V., T.P. Salazar-Mather, C.A. Biron, W.A. Kuziel, and E.G. Pamer. 2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity. 19:59-70. http://dx.doi.org/10.1016/S1074-7613(03)00171-7
    • (2003) Immunity. , vol.19 , pp. 59-70
    • Serbina, N.V.1    Salazar-Mather, T.P.2    Biron, C.A.3    Kuziel, W.A.4    Pamer, E.G.5
  • 69
    • 42649108339 scopus 로고    scopus 로고
    • Monocyte-mediated defense against microbial pathogens
    • Serbina, N.V., T. Jia, T.M. Hohl, and E.G. Pamer. 2008. Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol. 26:421-452. http://dx.doi.org/10.1146/annurev.immunol.26.021607.090326
    • (2008) Annu. Rev. Immunol. , vol.26 , pp. 421-452
    • Serbina, N.V.1    Jia, T.2    Hohl, T.M.3    Pamer, E.G.4
  • 70
    • 33845898737 scopus 로고    scopus 로고
    • Steady-state and inflammatory dendriticcell development
    • Shortman, K., and S.H. Naik. 2007. Steady-state and inflammatory dendriticcell development. Nat. Rev. Immunol. 7:19-30. http://dx.doi.org/10.1038/nri1996
    • (2007) Nat. Rev. Immunol. , vol.7 , pp. 19-30
    • Shortman, K.1    Naik, S.H.2
  • 71
    • 0037083505 scopus 로고    scopus 로고
    • Impaired resistance and enhanced pathology during infection with a noninvasive, attaching-effacing enteric bacterial pathogen, Citrobacter rodentium, in mice lacking IL-12 or IFN-γ
    • Simmons, C.P., N.S. Goncalves, M. Ghaem-Maghami, M. Bajaj-Elliott, S. Clare, B. Neves, G. Frankel, G. Dougan, and T.T. MacDonald. 2002. Impaired resistance and enhanced pathology during infection with a noninvasive, attaching-effacing enteric bacterial pathogen, Citrobacter rodentium, in mice lacking IL-12 or IFN-γ. J. Immunol. 168:1804-1812.
    • (2002) J. Immunol. , vol.168 , pp. 1804-1812
    • Simmons, C.P.1    Goncalves, N.S.2    Ghaem-Maghami, M.3    Bajaj-Elliott, M.4    Clare, S.5    Neves, B.6    Frankel, G.7    Dougan, G.8    MacDonald, T.T.9
  • 72
    • 78751706261 scopus 로고    scopus 로고
    • CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut
    • Sonnenberg, G.F., L.A. Monticelli, M.M. Elloso, L.A. Fouser, and D. Artis. 2011. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity. 34:122-134. http://dx.doi.org/10.1016/j.immuni.2010.12.009
    • (2011) Immunity. , vol.34 , pp. 122-134
    • Sonnenberg, G.F.1    Monticelli, L.A.2    Elloso, M.M.3    Fouser, L.A.4    Artis, D.5
  • 73
    • 0042971652 scopus 로고    scopus 로고
    • Tolerogenic dendritic cells
    • Steinman, R.M., D. Hawiger, and M.C. Nussenzweig. 2003. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21:685-711. http://dx.doi.org/10.1146/annurev.immunol.21.120601.141040
    • (2003) Annu. Rev. Immunol. , vol.21 , pp. 685-711
    • Steinman, R.M.1    Hawiger, D.2    Nussenzweig, M.C.3
  • 74
    • 84871307366 scopus 로고    scopus 로고
    • CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis
    • Tamoutounour, S., S. Henri, H. Lelouard, B. de Bovis, C. de Haar, C.J. van der Woude, A.M. Woltman, Y. Reyal, D. Bonnet, D. Sichien, et al. 2012. CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur. J. Immunol. 42:3150-3166. http://dx.doi.org/10.1002/eji.201242847
    • (2012) Eur. J. Immunol. , vol.42 , pp. 3150-3166
    • Tamoutounour, S.1    Henri, S.2    Lelouard, H.3    de Bovis, B.4    de Haar, C.5    van der Woude, C.J.6    Woltman, A.M.7    Reyal, Y.8    Bonnet, D.9    Sichien, D.10
  • 75
    • 34147164049 scopus 로고    scopus 로고
    • Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites
    • Tsou, C.L., W. Peters, Y. Si, S. Slaymaker, A.M. Aslanian, S.P. Weisberg, M. Mack, and I.F. Charo. 2007. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 117:902-909. http://dx.doi.org/10.1172/JCI29919
    • (2007) J. Clin. Invest. , vol.117 , pp. 902-909
    • Tsou, C.L.1    Peters, W.2    Si, Y.3    Slaymaker, S.4    Aslanian, A.M.5    Weisberg, S.P.6    Mack, M.7    Charo, I.F.8
  • 76
    • 79960500206 scopus 로고    scopus 로고
    • Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge
    • Tumanov, A.V., E.P. Koroleva, X. Guo, Y. Wang, A. Kruglov, S. Nedospasov, and Y.X. Fu. 2011. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe. 10:44-53. http://dx.doi.org/10.1016/j.chom.2011.06.002
    • (2011) Cell Host Microbe. , vol.10 , pp. 44-53
    • Tumanov, A.V.1    Koroleva, E.P.2    Guo, X.3    Wang, Y.4    Kruglov, A.5    Nedospasov, S.6    Fu, Y.X.7
  • 80
    • 77952794397 scopus 로고    scopus 로고
    • Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria
    • Varol, C., E. Zigmond, and S. Jung. 2010. Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nat. Rev. Immunol. 10:415-426. http://dx.doi.org/10.1038/nri2778
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 415-426
    • Varol, C.1    Zigmond, E.2    Jung, S.3
  • 84
    • 33645054315 scopus 로고    scopus 로고
    • Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells
    • Worbs, T., U. Bode, S. Yan, M.W. Hoffmann, G. Hintzen, G. Bernhardt, R. Förster, and O. Pabst. 2006. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J. Exp. Med. 203:519-527. http://dx.doi.org/10.1084/jem.20052016
    • (2006) J. Exp. Med. , vol.203 , pp. 519-527
    • Worbs, T.1    Bode, U.2    Yan, S.3    Hoffmann, M.W.4    Hintzen, G.5    Bernhardt, G.6    Förster, R.7    Pabst, O.8
  • 85
    • 73849152201 scopus 로고    scopus 로고
    • Monocytes: subsets, origins, fates and functions
    • Yona, S., and S. Jung. 2010. Monocytes: subsets, origins, fates and functions. Curr. Opin. Hematol. 17:53-59. http://dx.doi.org/10.1097/MOH.0b013e3283324f80
    • (2010) Curr. Opin. Hematol. , vol.17 , pp. 53-59
    • Yona, S.1    Jung, S.2
  • 89
    • 84870900504 scopus 로고    scopus 로고
    • Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells
    • Zigmond, E., C. Varol, J. Farache, E. Elmaliah, A.T. Satpathy, G. Friedlander, M. Mack, N. Shpigel, I.G. Boneca, K.M. Murphy, et al. 2012. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity. 37:1076-1090. http://dx.doi.org/10.1016/j.immuni.2012.08.026
    • (2012) Immunity. , vol.37 , pp. 1076-1090
    • Zigmond, E.1    Varol, C.2    Farache, J.3    Elmaliah, E.4    Satpathy, A.T.5    Friedlander, G.6    Mack, M.7    Shpigel, N.8    Boneca, I.G.9    Murphy, K.M.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.