-
2
-
-
84903149605
-
Comprehensive review on lactate metabolism in human health
-
Adeva-Andany M, Lopez-Ojen M, Funcasta-Calderon R, Ameneiros-Rodriguez E, Donapetry-Garcia C, Vila-Altesor M, et al. Comprehensive review on lactate metabolism in human health. Mitochondrion (2014) 17:76-100. doi:10.1016/j.mito.2014.05.007.
-
(2014)
Mitochondrion
, vol.17
, pp. 76-100
-
-
Adeva-Andany, M.1
Lopez-Ojen, M.2
Funcasta-Calderon, R.3
Ameneiros-Rodriguez, E.4
Donapetry-Garcia, C.5
Vila-Altesor, M.6
-
3
-
-
0025162987
-
Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans
-
Consoli A, Nurjhan N, Reilly JJ Jr, Bier DM, Gerich JE. Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans. Am J Physiol (1990) 259:E677-84.
-
(1990)
Am J Physiol
, vol.259
, pp. E677-E684
-
-
Consoli, A.1
Nurjhan, N.2
Reilly, J.J.3
Bier, D.M.4
Gerich, J.E.5
-
4
-
-
77954325418
-
Lactate kinetics in human tissues at rest and during exercise
-
van Hall G. Lactate kinetics in human tissues at rest and during exercise. Acta Physiol (Oxf) (2010) 199:499-508. doi:10.1111/j.1748-1716.2010.02122.x.
-
(2010)
Acta Physiol (Oxf)
, vol.199
, pp. 499-508
-
-
van Hall, G.1
-
5
-
-
0014615613
-
Cori cycle activity in man
-
Waterhouse C, Keilson J. Cori cycle activity in man. J Clin Invest (1969) 48:2359-66. doi:10.1172/jci106202.
-
(1969)
J Clin Invest
, vol.48
, pp. 2359-2366
-
-
Waterhouse, C.1
Keilson, J.2
-
7
-
-
84928657294
-
Glycolysis at 75: is it time to tweak the first elucidated metabolic pathway in history?
-
Schurr A, Gozal E. Glycolysis at 75: is it time to tweak the first elucidated metabolic pathway in history? Front Neurosci (2015) 9:170. doi:10.3389/fnins.2015.00170.
-
(2015)
Front Neurosci
, vol.9
, pp. 170
-
-
Schurr, A.1
Gozal, E.2
-
8
-
-
85006768050
-
The metabolism of tumors in the body
-
Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol (1927) 8:519-30. doi:10.1085/jgp.8.6.519.
-
(1927)
J Gen Physiol
, vol.8
, pp. 519-530
-
-
Warburg, O.1
Wind, F.2
Negelein, E.3
-
9
-
-
37449034854
-
Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
-
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A (2007) 104:19345-50. doi:10.1073/pnas.0709747104.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 19345-19350
-
-
DeBerardinis, R.J.1
Mancuso, A.2
Daikhin, E.3
Nissim, I.4
Yudkoff, M.5
Wehrli, S.6
-
10
-
-
69949124867
-
Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells
-
Feron O. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol (2009) 92:329-33. doi:10.1016/j.radonc.2009.06.025.
-
(2009)
Radiother Oncol
, vol.92
, pp. 329-333
-
-
Feron, O.1
-
11
-
-
0030921103
-
c-Myc transactivation of LDH-A: implications for tumor metabolism and growth
-
Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A (1997) 94:6658-63. doi:10.1073/pnas.94.13.6658.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 6658-6663
-
-
Shim, H.1
Dolde, C.2
Lewis, B.C.3
Wu, C.S.4
Dang, G.5
Jungmann, R.A.6
-
12
-
-
70350217425
-
Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling
-
Yang C, Sudderth J, Dang T, Bachoo RM, McDonald JG, DeBerardinis RJ. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res (2009) 69:7986-93. doi:10.1158/0008-5472.can-09-2266.
-
(2009)
Cancer Res
, vol.69
, pp. 7986-7993
-
-
Yang, C.1
Sudderth, J.2
Dang, T.3
Bachoo, R.M.4
McDonald, J.G.5
DeBerardinis, R.J.6
-
13
-
-
77952562382
-
Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply
-
Choo AY, Kim SG, Vander Heiden MG, Mahoney SJ, Vu H, Yoon SO, et al. Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell (2010) 38:487-99. doi:10.1016/j.molcel.2010.05.007.
-
(2010)
Mol Cell
, vol.38
, pp. 487-499
-
-
Choo, A.Y.1
Kim, S.G.2
Vander Heiden, M.G.3
Mahoney, S.J.4
Vu, H.5
Yoon, S.O.6
-
14
-
-
84883497454
-
Glutamine and cancer: cell biology, physiology, and clinical opportunities
-
Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest (2013) 123:3678-84. doi:10.1172/jci69600.
-
(2013)
J Clin Invest
, vol.123
, pp. 3678-3684
-
-
Hensley, C.T.1
Wasti, A.T.2
DeBerardinis, R.J.3
-
15
-
-
0032881950
-
Determination of glutamine in muscle protein facilitates accurate assessment of proteolysis and de novo synthesis-derived endogenous glutamine production
-
Kuhn KS, Schuhmann K, Stehle P, Darmaun D, Furst P. Determination of glutamine in muscle protein facilitates accurate assessment of proteolysis and de novo synthesis-derived endogenous glutamine production. Am J Clin Nutr (1999) 70:484-9.
-
(1999)
Am J Clin Nutr
, vol.70
, pp. 484-489
-
-
Kuhn, K.S.1
Schuhmann, K.2
Stehle, P.3
Darmaun, D.4
Furst, P.5
-
16
-
-
75149148563
-
Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer
-
DeBerardinis RJ, Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene (2010) 29:313-24. doi:10.1038/onc.2009.358.
-
(2010)
Oncogene
, vol.29
, pp. 313-324
-
-
DeBerardinis, R.J.1
Cheng, T.2
-
17
-
-
33645855889
-
Oxidative stress is not required for the induction of apoptosis upon glutamine starvation of Sp2/0-Ag14 hybridoma cells
-
Guerin PJ, Furtak T, Eng K, Gauthier ER. Oxidative stress is not required for the induction of apoptosis upon glutamine starvation of Sp2/0-Ag14 hybridoma cells. Eur J Cell Biol (2006) 85:355-65. doi:10.1016/j.ejcb.2005.11.004.
-
(2006)
Eur J Cell Biol
, vol.85
, pp. 355-365
-
-
Guerin, P.J.1
Furtak, T.2
Eng, K.3
Gauthier, E.R.4
-
18
-
-
84942982260
-
Metabolic reprogramming in macrophages and dendritic cells in innate immunity
-
Kelly B, O'Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res (2015) 25:771-84. doi:10.1038/cr.2015.68.
-
(2015)
Cell Res
, vol.25
, pp. 771-784
-
-
Kelly, B.1
O'Neill, L.A.2
-
19
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (2009) 324:1029-33. doi:10.1126/science.1160809.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
20
-
-
0028920328
-
Substrate balances across colonic carcinomas in humans
-
Holm E, Hagmuller E, Staedt U, Schlickeiser G, Gunther HJ, Leweling H, et al. Substrate balances across colonic carcinomas in humans. Cancer Res (1995) 55:1373-8.
-
(1995)
Cancer Res
, vol.55
, pp. 1373-1378
-
-
Holm, E.1
Hagmuller, E.2
Staedt, U.3
Schlickeiser, G.4
Gunther, H.J.5
Leweling, H.6
-
21
-
-
84946052215
-
Macrophages, neutrophils, and cancer: a double edged sword
-
Mantovani A. Macrophages, neutrophils, and cancer: a double edged sword. New J Sci (2014) 2014:14. doi:10.1155/2014/271940.
-
(2014)
New J Sci
, vol.2014
, pp. 14
-
-
Mantovani, A.1
-
22
-
-
84925872136
-
Tumor-infiltrating dendritic cells in cancer pathogenesis
-
Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL. Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol (2015) 194:2985-91. doi:10.4049/jimmunol.1403134.
-
(2015)
J Immunol
, vol.194
, pp. 2985-2991
-
-
Tran Janco, J.M.1
Lamichhane, P.2
Karyampudi, L.3
Knutson, K.L.4
-
23
-
-
0023140462
-
Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages
-
Newsholme P, Gordon S, Newsholme EA. Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. Biochem J (1987) 242:631-6. doi:10.1042/bj2420631.
-
(1987)
Biochem J
, vol.242
, pp. 631-636
-
-
Newsholme, P.1
Gordon, S.2
Newsholme, E.A.3
-
24
-
-
84919452312
-
Metabolic reprograming in macrophage polarization
-
Galvan-Pena S, O'Neill LA. Metabolic reprograming in macrophage polarization. Front Immunol (2014) 5:420. doi:10.3389/fimmu.2014.00420.
-
(2014)
Front Immunol
, vol.5
, pp. 420
-
-
Galvan-Pena, S.1
O'Neill, L.A.2
-
25
-
-
48349102876
-
Macrophage polarization in tumour progression
-
Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, et al. Macrophage polarization in tumour progression. Semin Cancer Biol (2008) 18:349-55. doi:10.1016/j.semcancer.2008.03.004.
-
(2008)
Semin Cancer Biol
, vol.18
, pp. 349-355
-
-
Sica, A.1
Larghi, P.2
Mancino, A.3
Rubino, L.4
Porta, C.5
Totaro, M.G.6
-
26
-
-
84907223092
-
Functional polarization of tumour-associated macrophages by tumour-derived lactic acid
-
Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature (2014) 513:559-63. doi:10.1038/nature13490.
-
(2014)
Nature
, vol.513
, pp. 559-563
-
-
Colegio, O.R.1
Chu, N.Q.2
Szabo, A.L.3
Chu, T.4
Rhebergen, A.M.5
Jairam, V.6
-
27
-
-
84925546388
-
Dendritic cell metabolism
-
Pearce EJ, Everts B. Dendritic cell metabolism. Nat Rev Immunol (2015) 15:18-29. doi:10.1038/nri3771.
-
(2015)
Nat Rev Immunol
, vol.15
, pp. 18-29
-
-
Pearce, E.J.1
Everts, B.2
-
28
-
-
84864805602
-
An active mitochondrial biogenesis occurs during dendritic cell differentiation
-
Zaccagnino P, Saltarella M, Maiorano S, Gaballo A, Santoro G, Nico B, et al. An active mitochondrial biogenesis occurs during dendritic cell differentiation. Int J Biochem Cell Biol (2012) 44:1962-9. doi:10.1016/j.biocel.2012.07.024.
-
(2012)
Int J Biochem Cell Biol
, vol.44
, pp. 1962-1969
-
-
Zaccagnino, P.1
Saltarella, M.2
Maiorano, S.3
Gaballo, A.4
Santoro, G.5
Nico, B.6
-
29
-
-
77954735369
-
Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation
-
Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood (2010) 115:4742-9. doi:10.1182/blood-2009-10-249540.
-
(2010)
Blood
, vol.115
, pp. 4742-4749
-
-
Krawczyk, C.M.1
Holowka, T.2
Sun, J.3
Blagih, J.4
Amiel, E.5
DeBerardinis, R.J.6
-
30
-
-
44449117540
-
Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function
-
Jantsch J, Chakravortty D, Turza N, Prechtel AT, Buchholz B, Gerlach RG, et al. Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. J Immunol (2008) 180:4697-705. doi:10.4049/jimmunol.180.7.4697.
-
(2008)
J Immunol
, vol.180
, pp. 4697-4705
-
-
Jantsch, J.1
Chakravortty, D.2
Turza, N.3
Prechtel, A.T.4
Buchholz, B.5
Gerlach, R.G.6
-
31
-
-
84896654124
-
TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation
-
Everts B, Amiel E, Huang SC, Smith AM, Chang CH, Lam WY, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat Immunol (2014) 15:323-32. doi:10.1038/ni.2833.
-
(2014)
Nat Immunol
, vol.15
, pp. 323-332
-
-
Everts, B.1
Amiel, E.2
Huang, S.C.3
Smith, A.M.4
Chang, C.H.5
Lam, W.Y.6
-
32
-
-
84865197492
-
Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells
-
Everts B, Amiel E, van der Windt GJ, Freitas TC, Chott R, Yarasheski KE, et al. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood (2012) 120:1422-31. doi:10.1182/blood-2012-03-419747.
-
(2012)
Blood
, vol.120
, pp. 1422-1431
-
-
Everts, B.1
Amiel, E.2
van der Windt, G.J.3
Freitas, T.C.4
Chott, R.5
Yarasheski, K.E.6
-
33
-
-
0036069699
-
The CD28 signaling pathway regulates glucose metabolism
-
Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity (2002) 16:769-77. doi:10.1016/S1074-7613(02)00323-0.
-
(2002)
Immunity
, vol.16
, pp. 769-777
-
-
Frauwirth, K.A.1
Riley, J.L.2
Harris, M.H.3
Parry, R.V.4
Rathmell, J.C.5
Plas, D.R.6
-
34
-
-
44449165597
-
Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways
-
Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ, et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol (2008) 180:4476-86. doi:10.4049/jimmunol.180.7.4476.
-
(2008)
J Immunol
, vol.180
, pp. 4476-4486
-
-
Jacobs, S.R.1
Herman, C.E.2
Maciver, N.J.3
Wofford, J.A.4
Wieman, H.L.5
Hammen, J.J.6
-
35
-
-
84898606445
-
Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells
-
Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, Sun LD, et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol (2014) 192:3626-36. doi:10.4049/jimmunol.1302062.
-
(2014)
J Immunol
, vol.192
, pp. 3626-3636
-
-
Caro-Maldonado, A.1
Wang, R.2
Nichols, A.G.3
Kuraoka, M.4
Milasta, S.5
Sun, L.D.6
-
36
-
-
84255199079
-
The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
-
Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity (2011) 35:871-82. doi:10.1016/j.immuni.2011.09.021.
-
(2011)
Immunity
, vol.35
, pp. 871-882
-
-
Wang, R.1
Dillon, C.P.2
Shi, L.Z.3
Milasta, S.4
Carter, R.5
Finkelstein, D.6
-
37
-
-
84865294745
-
Metabolic reprogramming and metabolic dependency in T cells
-
Wang R, Green DR. Metabolic reprogramming and metabolic dependency in T cells. Immunol Rev (2012) 249:14-26. doi:10.1111/j.1600-065X.2012.01155.x.
-
(2012)
Immunol Rev
, vol.249
, pp. 14-26
-
-
Wang, R.1
Green, D.R.2
-
38
-
-
78149488860
-
CD20+ B cells: the other tumor-infiltrating lymphocytes
-
Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol (2010) 185:4977-82. doi:10.4049/jimmunol.1001323.
-
(2010)
J Immunol
, vol.185
, pp. 4977-4982
-
-
Nelson, B.H.1
-
39
-
-
84873668054
-
Tumor-infiltrating B cells: the ignored players in tumor immunology
-
Linnebacher M, Maletzki C. Tumor-infiltrating B cells: the ignored players in tumor immunology. Oncoimmunology (2012) 1:1186-8. doi:10.4161/onci.20641.
-
(2012)
Oncoimmunology
, vol.1
, pp. 1186-1188
-
-
Linnebacher, M.1
Maletzki, C.2
-
40
-
-
0015973650
-
Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate
-
Halestrap AP, Denton RM. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochem J (1974) 138:313-6. doi:10.1042/bj1380313.
-
(1974)
Biochem J
, vol.138
, pp. 313-316
-
-
Halestrap, A.P.1
Denton, R.M.2
-
41
-
-
0030592157
-
Mitochondrial metabolite transporters
-
Palmieri F, Bisaccia F, Capobianco L, Dolce V, Fiermonte G, Iacobazzi V, et al. Mitochondrial metabolite transporters. Biochim Biophys Acta (1996) 1275:127-32. doi:10.1016/0005-2728(96)00062-X.
-
(1996)
Biochim Biophys Acta
, vol.1275
, pp. 127-132
-
-
Palmieri, F.1
Bisaccia, F.2
Capobianco, L.3
Dolce, V.4
Fiermonte, G.5
Iacobazzi, V.6
-
42
-
-
0032518981
-
Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past
-
Price NT, Jackson VN, Halestrap AP. Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem J (1998) 329(Pt 2):321-8. doi:10.1042/bj3290321.
-
(1998)
Biochem J
, vol.329
, pp. 321-328
-
-
Price, N.T.1
Jackson, V.N.2
Halestrap, A.P.3
-
43
-
-
33749987728
-
The role of monocarboxylate transporters in uptake of lactic acid in HeLa cells
-
Cheeti S, Warrier BK, Lee CH. The role of monocarboxylate transporters in uptake of lactic acid in HeLa cells. Int J Pharm (2006) 325:48-54. doi:10.1016/j.ijpharm.2006.06.018.
-
(2006)
Int J Pharm
, vol.325
, pp. 48-54
-
-
Cheeti, S.1
Warrier, B.K.2
Lee, C.H.3
-
44
-
-
0028605480
-
The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF
-
Carpenter L, Halestrap AP. The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Biochem J (1994) 304(Pt 3):751-60. doi:10.1042/bj3040751.
-
(1994)
Biochem J
, vol.304
, pp. 751-760
-
-
Carpenter, L.1
Halestrap, A.P.2
-
45
-
-
0026670589
-
Lactic acid secretion by human neutrophils. Evidence for an H++ lactate-cotransport system
-
Simchowitz L, Textor JA. Lactic acid secretion by human neutrophils. Evidence for an H+ + lactate-cotransport system. J Gen Physiol (1992) 100:341-67. doi:10.1085/jgp.100.2.341.
-
(1992)
J Gen Physiol
, vol.100
, pp. 341-367
-
-
Simchowitz, L.1
Textor, J.A.2
-
46
-
-
84855444042
-
The monocarboxylate transporter family-structure and functional characterization
-
Halestrap AP. The monocarboxylate transporter family-structure and functional characterization. IUBMB Life (2012) 64:1-9. doi:10.1002/iub.573.
-
(2012)
IUBMB Life
, vol.64
, pp. 1-9
-
-
Halestrap, A.P.1
-
47
-
-
0034663601
-
The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells
-
Dimmer KS, Friedrich B, Lang F, Deitmer JW, Broer S. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J (2000) 350(Pt 1):219-27. doi:10.1042/0264-6021:3500219.
-
(2000)
Biochem J
, vol.350
, pp. 219-227
-
-
Dimmer, K.S.1
Friedrich, B.2
Lang, F.3
Deitmer, J.W.4
Broer, S.5
-
48
-
-
84883514161
-
Targeting lactate metabolism for cancer therapeutics
-
Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest (2013) 123:3685-92. doi:10.1172/jci69741.
-
(2013)
J Clin Invest
, vol.123
, pp. 3685-3692
-
-
Doherty, J.R.1
Cleveland, J.L.2
-
49
-
-
84864200035
-
Oligodendroglia metabolically support axons and contribute to neurodegeneration
-
Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature (2012) 487:443-8. doi:10.1038/nature11314.
-
(2012)
Nature
, vol.487
, pp. 443-448
-
-
Lee, Y.1
Morrison, B.M.2
Li, Y.3
Lengacher, S.4
Farah, M.H.5
Hoffman, P.N.6
-
50
-
-
34247862319
-
Lactate: link between glycolytic and oxidative metabolism
-
Brooks GA. Lactate: link between glycolytic and oxidative metabolism. Sports Med (2007) 37:341-3. doi:10.2165/00007256-200737040-00017.
-
(2007)
Sports Med
, vol.37
, pp. 341-343
-
-
Brooks, G.A.1
-
51
-
-
39749181643
-
A lactatic perspective on metabolism
-
Gladden LB. A lactatic perspective on metabolism. Med Sci Sports Exerc (2008) 40:477-85. doi:10.1249/MSS.0b013e31815fa580.
-
(2008)
Med Sci Sports Exerc
, vol.40
, pp. 477-485
-
-
Gladden, L.B.1
-
52
-
-
57449097020
-
Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice
-
Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest (2008) 118:3930-42. doi:10.1172/jci36843.
-
(2008)
J Clin Invest
, vol.118
, pp. 3930-3942
-
-
Sonveaux, P.1
Vegran, F.2
Schroeder, T.3
Wergin, M.C.4
Verrax, J.5
Rabbani, Z.N.6
-
53
-
-
33751091519
-
The H+-linked monocarboxylate transporter (MCT1/SLC16A1): a potential therapeutic target for high-risk neuroblastoma
-
Fang J, Quinones QJ, Holman TL, Morowitz MJ, Wang Q, Zhao H, et al. The H+-linked monocarboxylate transporter (MCT1/SLC16A1): a potential therapeutic target for high-risk neuroblastoma. Mol Pharmacol (2006) 70:2108-15. doi:10.1124/mol.106.026245.
-
(2006)
Mol Pharmacol
, vol.70
, pp. 2108-2115
-
-
Fang, J.1
Quinones, Q.J.2
Holman, T.L.3
Morowitz, M.J.4
Wang, Q.5
Zhao, H.6
-
54
-
-
39149130681
-
Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas
-
Pinheiro C, Longatto-Filho A, Scapulatempo C, Ferreira L, Martins S, Pellerin L, et al. Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas. Virchows Arch (2008) 452:139-46. doi:10.1007/s00428-007-0558-5.
-
(2008)
Virchows Arch
, vol.452
, pp. 139-146
-
-
Pinheiro, C.1
Longatto-Filho, A.2
Scapulatempo, C.3
Ferreira, L.4
Martins, S.5
Pellerin, L.6
-
55
-
-
84858703378
-
Co-expression of monocarboxylate transporter 1 (MCT1) and its chaperone (CD147) is associated with low survival in patients with gastrointestinal stromal tumors (GISTs)
-
de Oliveira AT, Pinheiro C, Longatto-Filho A, Brito MJ, Martinho O, Matos D, et al. Co-expression of monocarboxylate transporter 1 (MCT1) and its chaperone (CD147) is associated with low survival in patients with gastrointestinal stromal tumors (GISTs). J Bioenerg Biomembr (2012) 44:171-8. doi:10.1007/s10863-012-9408-5.
-
(2012)
J Bioenerg Biomembr
, vol.44
, pp. 171-178
-
-
de Oliveira, A.T.1
Pinheiro, C.2
Longatto-Filho, A.3
Brito, M.J.4
Martinho, O.5
Matos, D.6
-
56
-
-
84877150506
-
Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer
-
Curry JM, Tuluc M, Whitaker-Menezes D, Ames JA, Anantharaman A, Butera A, et al. Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer. Cell Cycle (2013) 12:1371-84. doi:10.4161/cc.24092.
-
(2013)
Cell Cycle
, vol.12
, pp. 1371-1384
-
-
Curry, J.M.1
Tuluc, M.2
Whitaker-Menezes, D.3
Ames, J.A.4
Anantharaman, A.5
Butera, A.6
-
57
-
-
84917706145
-
Mitochondria as new therapeutic targets for eradicating cancer stem cells: quantitative proteomics and functional validation via MCT1/2 inhibition
-
Lamb R, Harrison H, Hulit J, Smith DL, Lisanti MP, Sotgia F. Mitochondria as new therapeutic targets for eradicating cancer stem cells: quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget (2014) 5:11029-37. doi:10.18632/oncotarget.2789.
-
(2014)
Oncotarget
, vol.5
, pp. 11029-11037
-
-
Lamb, R.1
Harrison, H.2
Hulit, J.3
Smith, D.L.4
Lisanti, M.P.5
Sotgia, F.6
-
58
-
-
85028203737
-
Inhibition of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner
-
Lim KS, Lim KJ, Price AC, Orr BA, Eberhart CG, Bar EE. Inhibition of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner. Oncogene (2014) 33:4433-41. doi:10.1038/onc.2013.390.
-
(2014)
Oncogene
, vol.33
, pp. 4433-4441
-
-
Lim, K.S.1
Lim, K.J.2
Price, A.C.3
Orr, B.A.4
Eberhart, C.G.5
Bar, E.E.6
-
59
-
-
84900296103
-
Targeting lactate dehydrogenase-a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells
-
Xie H, Hanai J, Ren JG, Kats L, Burgess K, Bhargava P, et al. Targeting lactate dehydrogenase-a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Cell Metab (2014) 19:795-809. doi:10.1016/j.cmet.2014.03.003.
-
(2014)
Cell Metab
, vol.19
, pp. 795-809
-
-
Xie, H.1
Hanai, J.2
Ren, J.G.3
Kats, L.4
Burgess, K.5
Bhargava, P.6
-
60
-
-
34247352844
-
Inhibitory effect of tumor cell-derived lactic acid on human T cells
-
Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood (2007) 109:3812-9. doi:10.1182/blood-2006-07-035972.
-
(2007)
Blood
, vol.109
, pp. 3812-3819
-
-
Fischer, K.1
Hoffmann, P.2
Voelkl, S.3
Meidenbauer, N.4
Ammer, J.5
Edinger, M.6
-
61
-
-
84861545489
-
Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation
-
Mendler AN, Hu B, Prinz PU, Kreutz M, Gottfried E, Noessner E. Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer (2012) 131:633-40. doi:10.1002/ijc.26410.
-
(2012)
Int J Cancer
, vol.131
, pp. 633-640
-
-
Mendler, A.N.1
Hu, B.2
Prinz, P.U.3
Kreutz, M.4
Gottfried, E.5
Noessner, E.6
-
62
-
-
84892409564
-
Tumor-derived lactate and myeloid-derived suppressor cells: linking metabolism to cancer immunology
-
Husain Z, Seth P, Sukhatme VP. Tumor-derived lactate and myeloid-derived suppressor cells: linking metabolism to cancer immunology. Oncoimmunology (2013) 2:e26383. doi:10.4161/onci.26383.
-
(2013)
Oncoimmunology
, vol.2
-
-
Husain, Z.1
Seth, P.2
Sukhatme, V.P.3
-
63
-
-
84861861104
-
Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes
-
Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A, et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res (2012) 72:2746-56. doi:10.1158/0008-5472.can-11-1272.
-
(2012)
Cancer Res
, vol.72
, pp. 2746-2756
-
-
Calcinotto, A.1
Filipazzi, P.2
Grioni, M.3
Iero, M.4
De Milito, A.5
Ricupito, A.6
-
64
-
-
84880120014
-
Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite?
-
Choi SY, Collins CC, Gout PW, Wang Y. Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol (2013) 230:350-5. doi:10.1002/path.4218.
-
(2013)
J Pathol
, vol.230
, pp. 350-355
-
-
Choi, S.Y.1
Collins, C.C.2
Gout, P.W.3
Wang, Y.4
-
65
-
-
33847272134
-
Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization
-
Nagae M, Hiraga T, Yoneda T. Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization. J Bone Miner Metab (2007) 25:99-104. doi:10.1007/s00774-006-0734-8.
-
(2007)
J Bone Miner Metab
, vol.25
, pp. 99-104
-
-
Nagae, M.1
Hiraga, T.2
Yoneda, T.3
-
66
-
-
34249790593
-
Acidic extracellular pH increases calcium influx-triggered phospholipase D activity along with acidic sphingomyelinase activation to induce matrix metalloproteinase-9 expression in mouse metastatic melanoma
-
Kato Y, Ozawa S, Tsukuda M, Kubota E, Miyazaki K, St-Pierre Y, et al. Acidic extracellular pH increases calcium influx-triggered phospholipase D activity along with acidic sphingomyelinase activation to induce matrix metalloproteinase-9 expression in mouse metastatic melanoma. FEBS J (2007) 274:3171-83. doi:10.1111/j.1742-4658.2007.05848.x.
-
(2007)
FEBS J
, vol.274
, pp. 3171-3183
-
-
Kato, Y.1
Ozawa, S.2
Tsukuda, M.3
Kubota, E.4
Miyazaki, K.5
St-Pierre, Y.6
-
67
-
-
0026667311
-
Induction of 103-kDa gelatinase/type IV collagenase by acidic culture conditions in mouse metastatic melanoma cell lines
-
Kato Y, Nakayama Y, Umeda M, Miyazaki K. Induction of 103-kDa gelatinase/type IV collagenase by acidic culture conditions in mouse metastatic melanoma cell lines. J Biol Chem (1992) 267:11424-30.
-
(1992)
J Biol Chem
, vol.267
, pp. 11424-11430
-
-
Kato, Y.1
Nakayama, Y.2
Umeda, M.3
Miyazaki, K.4
-
68
-
-
0035881307
-
Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo
-
Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res (2001) 61:6020-4.
-
(2001)
Cancer Res
, vol.61
, pp. 6020-6024
-
-
Fukumura, D.1
Xu, L.2
Chen, Y.3
Gohongi, T.4
Seed, B.5
Jain, R.K.6
-
69
-
-
0037192802
-
Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF
-
Xu L, Fukumura D, Jain RK. Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF. J Biol Chem (2002) 277:11368-74. doi:10.1074/jbc.M108347200.
-
(2002)
J Biol Chem
, vol.277
, pp. 11368-11374
-
-
Xu, L.1
Fukumura, D.2
Jain, R.K.3
-
70
-
-
0032712997
-
Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic
-
Shi Q, Abbruzzese JL, Huang S, Fidler IJ, Xiong Q, Xie K. Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res (1999) 5:3711-21.
-
(1999)
Clin Cancer Res
, vol.5
, pp. 3711-3721
-
-
Shi, Q.1
Abbruzzese, J.L.2
Huang, S.3
Fidler, I.J.4
Xiong, Q.5
Xie, K.6
-
71
-
-
0033661527
-
Regulation of interleukin-8 expression by cellular pH in human pancreatic adenocarcinoma cells
-
Shi Q, Le X, Wang B, Xiong Q, Abbruzzese JL, Xie K. Regulation of interleukin-8 expression by cellular pH in human pancreatic adenocarcinoma cells. J Interferon Cytokine Res (2000) 20:1023-8. doi:10.1089/10799900050198471.
-
(2000)
J Interferon Cytokine Res
, vol.20
, pp. 1023-1028
-
-
Shi, Q.1
Le, X.2
Wang, B.3
Xiong, Q.4
Abbruzzese, J.L.5
Xie, K.6
-
72
-
-
0034662635
-
Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells
-
Xu L, Fidler IJ. Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells. Cancer Res (2000) 60:4610-6.
-
(2000)
Cancer Res
, vol.60
, pp. 4610-4616
-
-
Xu, L.1
Fidler, I.J.2
-
73
-
-
34447536662
-
Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms
-
Hunt TK, Aslam RS, Beckert S, Wagner S, Ghani QP, Hussain MZ, et al. Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal (2007) 9:1115-24. doi:10.1089/ars.2007.1674.
-
(2007)
Antioxid Redox Signal
, vol.9
, pp. 1115-1124
-
-
Hunt, T.K.1
Aslam, R.S.2
Beckert, S.3
Wagner, S.4
Ghani, Q.P.5
Hussain, M.Z.6
-
74
-
-
84875053754
-
Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice
-
Porporato PE, Payen VL, De Saedeleer CJ, Preat V, Thissen JP, Feron O, et al. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis (2012) 15:581-92. doi:10.1007/s10456-012-9282-0.
-
(2012)
Angiogenesis
, vol.15
, pp. 581-592
-
-
Porporato, P.E.1
Payen, V.L.2
De Saedeleer, C.J.3
Preat, V.4
Thissen, J.P.5
Feron, O.6
-
75
-
-
79953329777
-
Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis
-
Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res (2011) 71:2550-60. doi:10.1158/0008-5472.can-10-2828.
-
(2011)
Cancer Res
, vol.71
, pp. 2550-2560
-
-
Vegran, F.1
Boidot, R.2
Michiels, C.3
Sonveaux, P.4
Feron, O.5
-
76
-
-
74849087878
-
The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma
-
Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle (2009) 8:3984-4001. doi:10.4161/cc.8.23.10238.
-
(2009)
Cell Cycle
, vol.8
, pp. 3984-4001
-
-
Pavlides, S.1
Whitaker-Menezes, D.2
Castello-Cros, R.3
Flomenberg, N.4
Witkiewicz, A.K.5
Frank, P.G.6
-
77
-
-
84055225365
-
Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis
-
Pavlides S, Vera I, Gandara R, Sneddon S, Pestell RG, Mercier I, et al. Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal (2012) 16:1264-84. doi:10.1089/ars.2011.4243.
-
(2012)
Antioxid Redox Signal
, vol.16
, pp. 1264-1284
-
-
Pavlides, S.1
Vera, I.2
Gandara, R.3
Sneddon, S.4
Pestell, R.G.5
Mercier, I.6
-
78
-
-
0021732164
-
The relevance of tumour pH to the treatment of malignant disease
-
Wike-Hooley JL, Haveman J, Reinhold HS. The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol (1984) 2:343-66. doi:10.1016/S0167-8140(84)80077-8.
-
(1984)
Radiother Oncol
, vol.2
, pp. 343-366
-
-
Wike-Hooley, J.L.1
Haveman, J.2
Reinhold, H.S.3
-
79
-
-
84870886414
-
Mitochondria "fuel" breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells
-
Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Salem AF, Tsirigos A, Lamb R, et al. Mitochondria "fuel" breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle (2012) 11:4390-401. doi:10.4161/cc.22777.
-
(2012)
Cell Cycle
, vol.11
, pp. 4390-4401
-
-
Sotgia, F.1
Whitaker-Menezes, D.2
Martinez-Outschoorn, U.E.3
Salem, A.F.4
Tsirigos, A.5
Lamb, R.6
-
80
-
-
82755195292
-
Tumor cell metabolism: an integral view
-
Romero-Garcia S, Lopez-Gonzalez JS, Baez-Viveros JL, Aguilar-Cazares D, Prado-Garcia H. Tumor cell metabolism: an integral view. Cancer Biol Ther (2011) 12:939-48. doi:10.4161/cbt.12.11.18140.
-
(2011)
Cancer Biol Ther
, vol.12
, pp. 939-948
-
-
Romero-Garcia, S.1
Lopez-Gonzalez, J.S.2
Baez-Viveros, J.L.3
Aguilar-Cazares, D.4
Prado-Garcia, H.5
-
81
-
-
0034652620
-
High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers
-
Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfør K, Rofstad EK, et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res (2000) 60:916-21.
-
(2000)
Cancer Res
, vol.60
, pp. 916-921
-
-
Walenta, S.1
Wetterling, M.2
Lehrke, M.3
Schwickert, G.4
Sundfør, K.5
Rofstad, E.K.6
-
82
-
-
84920507166
-
The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages
-
Tan Z, Xie N, Banerjee S, Cui H, Fu M, Thannickal VJ, et al. The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages. J Biol Chem (2015) 290:46-55. doi:10.1074/jbc.M114.603589.
-
(2015)
J Biol Chem
, vol.290
, pp. 46-55
-
-
Tan, Z.1
Xie, N.2
Banerjee, S.3
Cui, H.4
Fu, M.5
Thannickal, V.J.6
-
83
-
-
79952470343
-
Warburg phenotype in renal cell carcinoma: high expression of glucose-transporter 1 (GLUT-1) correlates with low CD8(+) T-cell infiltration in the tumor
-
Singer K, Kastenberger M, Gottfried E, Hammerschmied CG, Buttner M, Aigner M, et al. Warburg phenotype in renal cell carcinoma: high expression of glucose-transporter 1 (GLUT-1) correlates with low CD8(+) T-cell infiltration in the tumor. Int J Cancer (2011) 128:2085-95. doi:10.1002/ijc.25543.
-
(2011)
Int J Cancer
, vol.128
, pp. 2085-2095
-
-
Singer, K.1
Kastenberger, M.2
Gottfried, E.3
Hammerschmied, C.G.4
Buttner, M.5
Aigner, M.6
-
84
-
-
34247233078
-
Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes
-
Feder-Mengus C, Ghosh S, Weber WP, Wyler S, Zajac P, Terracciano L, et al. Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes. Br J Cancer (2007) 96:1072-82. doi:10.1038/sj.bjc.6603664.
-
(2007)
Br J Cancer
, vol.96
, pp. 1072-1082
-
-
Feder-Mengus, C.1
Ghosh, S.2
Weber, W.P.3
Wyler, S.4
Zajac, P.5
Terracciano, L.6
-
85
-
-
84926151098
-
Tumor cells hijack macrophages via lactic acid
-
Bronte V. Tumor cells hijack macrophages via lactic acid. Immunol Cell Biol (2014) 92:647-9. doi:10.1038/icb.2014.67.
-
(2014)
Immunol Cell Biol
, vol.92
, pp. 647-649
-
-
Bronte, V.1
-
86
-
-
84879203221
-
Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity
-
Ohashi T, Akazawa T, Aoki M, Kuze B, Mizuta K, Ito Y, et al. Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity. Int J Cancer (2013) 133:1107-18. doi:10.1002/ijc.28114.
-
(2013)
Int J Cancer
, vol.133
, pp. 1107-1118
-
-
Ohashi, T.1
Akazawa, T.2
Aoki, M.3
Kuze, B.4
Mizuta, K.5
Ito, Y.6
-
87
-
-
84922706922
-
Lactic acid delays the inflammatory response of human monocytes
-
Peter K, Rehli M, Singer K, Renner-Sattler K, Kreutz M. Lactic acid delays the inflammatory response of human monocytes. Biochem Biophys Res Commun (2015) 457:412-8. doi:10.1016/j.bbrc.2015.01.005.
-
(2015)
Biochem Biophys Res Commun
, vol.457
, pp. 412-418
-
-
Peter, K.1
Rehli, M.2
Singer, K.3
Renner-Sattler, K.4
Kreutz, M.5
-
88
-
-
33344467760
-
Tumor-derived lactic acid modulates dendritic cell activation and antigen expression
-
Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood (2006) 107:2013-21. doi:10.1182/blood-2005-05-1795.
-
(2006)
Blood
, vol.107
, pp. 2013-2021
-
-
Gottfried, E.1
Kunz-Schughart, L.A.2
Ebner, S.3
Mueller-Klieser, W.4
Hoves, S.5
Andreesen, R.6
-
89
-
-
84884225414
-
Dendritic cell reprogramming by endogenously produced lactic acid
-
Nasi A, Fekete T, Krishnamurthy A, Snowden S, Rajnavolgyi E, Catrina AI, et al. Dendritic cell reprogramming by endogenously produced lactic acid. J Immunol (2013) 191:3090-9. doi:10.4049/jimmunol.1300772.
-
(2013)
J Immunol
, vol.191
, pp. 3090-3099
-
-
Nasi, A.1
Fekete, T.2
Krishnamurthy, A.3
Snowden, S.4
Rajnavolgyi, E.5
Catrina, A.I.6
-
90
-
-
84895521323
-
Metabolic influences that regulate dendritic cell function in tumors
-
Dong H, Bullock TN. Metabolic influences that regulate dendritic cell function in tumors. Front Immunol (2014) 5:24. doi:10.3389/fimmu.2014.00024.
-
(2014)
Front Immunol
, vol.5
, pp. 24
-
-
Dong, H.1
Bullock, T.N.2
-
91
-
-
84880648196
-
Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells
-
Husain Z, Huang Y, Seth P, Sukhatme VP. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol (2013) 191:1486-95. doi:10.4049/jimmunol.1202702.
-
(2013)
J Immunol
, vol.191
, pp. 1486-1495
-
-
Husain, Z.1
Huang, Y.2
Seth, P.3
Sukhatme, V.P.4
-
92
-
-
16844379997
-
Immunosuppressive networks in the tumour environment and their therapeutic relevance
-
Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer (2005) 5:263-74. doi:10.1038/nrc1586.
-
(2005)
Nat Rev Cancer
, vol.5
, pp. 263-274
-
-
Zou, W.1
-
93
-
-
33947259319
-
Immunosuppressive strategies that are mediated by tumor cells
-
Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol (2007) 25:267-96. doi:10.1146/annurev.immunol.25.022106.141609.
-
(2007)
Annu Rev Immunol
, vol.25
, pp. 267-296
-
-
Rabinovich, G.A.1
Gabrilovich, D.2
Sotomayor, E.M.3
-
94
-
-
84907227971
-
Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients
-
Crane CA, Austgen K, Haberthur K, Hofmann C, Moyes KW, Avanesyan L, et al. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients. Proc Natl Acad Sci U S A (2014) 111:12823-8. doi:10.1073/pnas.1413933111.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 12823-12828
-
-
Crane, C.A.1
Austgen, K.2
Haberthur, K.3
Hofmann, C.4
Moyes, K.W.5
Avanesyan, L.6
-
95
-
-
77950672300
-
Lactate-dehydrogenase 5 is overexpressed in non-small cell lung cancer and correlates with the expression of the transketolase-like protein 1
-
Kayser G, Kassem A, Sienel W, Schulte-Uentrop L, Mattern D, Aumann K, et al. Lactate-dehydrogenase 5 is overexpressed in non-small cell lung cancer and correlates with the expression of the transketolase-like protein 1. Diagn Pathol (2010) 5:22. doi:10.1186/1746-1596-5-22.
-
(2010)
Diagn Pathol
, vol.5
, pp. 22
-
-
Kayser, G.1
Kassem, A.2
Sienel, W.3
Schulte-Uentrop, L.4
Mattern, D.5
Aumann, K.6
-
96
-
-
70449673054
-
Lactate dehydrogenase 5 expression in squamous cell head and neck cancer relates to prognosis following radical or postoperative radiotherapy
-
Koukourakis MI, Giatromanolaki A, Winter S, Leek R, Sivridis E, Harris AL. Lactate dehydrogenase 5 expression in squamous cell head and neck cancer relates to prognosis following radical or postoperative radiotherapy. Oncology (2009) 77:285-92. doi:10.1159/000259260.
-
(2009)
Oncology
, vol.77
, pp. 285-292
-
-
Koukourakis, M.I.1
Giatromanolaki, A.2
Winter, S.3
Leek, R.4
Sivridis, E.5
Harris, A.L.6
-
97
-
-
84900837970
-
Lactate dehydrogenase A is a potential prognostic marker in clear cell renal cell carcinoma
-
Girgis H, Masui O, White NM, Scorilas A, Rotondo F, Seivwright A, et al. Lactate dehydrogenase A is a potential prognostic marker in clear cell renal cell carcinoma. Mol Cancer (2014) 13:101. doi:10.1186/1476-4598-13-101.
-
(2014)
Mol Cancer
, vol.13
, pp. 101
-
-
Girgis, H.1
Masui, O.2
White, N.M.3
Scorilas, A.4
Rotondo, F.5
Seivwright, A.6
-
98
-
-
47249118348
-
Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway
-
Shime H, Yabu M, Akazawa T, Kodama K, Matsumoto M, Seya T, et al. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J Immunol (2008) 180:7175-83. doi:10.4049/jimmunol.180.11.7175.
-
(2008)
J Immunol
, vol.180
, pp. 7175-7183
-
-
Shime, H.1
Yabu, M.2
Akazawa, T.3
Kodama, K.4
Matsumoto, M.5
Seya, T.6
-
99
-
-
0035812313
-
Discovery and mapping of ten novel G protein-coupled receptor genes
-
Lee DK, Nguyen T, Lynch KR, Cheng R, Vanti WB, Arkhitko O, et al. Discovery and mapping of ten novel G protein-coupled receptor genes. Gene (2001) 275:83-91. doi:10.1016/S0378-1119(01)00651-5.
-
(2001)
Gene
, vol.275
, pp. 83-91
-
-
Lee, D.K.1
Nguyen, T.2
Lynch, K.R.3
Cheng, R.4
Vanti, W.B.5
Arkhitko, O.6
-
100
-
-
56249083891
-
Role of GPR81 in lactate-mediated reduction of adipose lipolysis
-
Cai TQ, Ren N, Jin L, Cheng K, Kash S, Chen R, et al. Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem Biophys Res Commun (2008) 377:987-91. doi:10.1016/j.bbrc.2008.10.088.
-
(2008)
Biochem Biophys Res Commun
, vol.377
, pp. 987-991
-
-
Cai, T.Q.1
Ren, N.2
Jin, L.3
Cheng, K.4
Kash, S.5
Chen, R.6
-
101
-
-
59149094602
-
Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor
-
Liu C, Wu J, Zhu J, Kuei C, Yu J, Shelton J, et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor. GPR81 J Biol Chem (2009) 284:2811-22. doi:10.1074/jbc.M806409200.
-
(2009)
GPR81 J Biol Chem
, vol.284
, pp. 2811-2822
-
-
Liu, C.1
Wu, J.2
Zhu, J.3
Kuei, C.4
Yu, J.5
Shelton, J.6
-
103
-
-
84861559049
-
3,5-Dihydroxybenzoic acid, a specific agonist for hydroxycarboxylic acid 1, inhibits lipolysis in adipocytes
-
Liu C, Kuei C, Zhu J, Yu J, Zhang L, Shih A, et al. 3,5-Dihydroxybenzoic acid, a specific agonist for hydroxycarboxylic acid 1, inhibits lipolysis in adipocytes. J Pharmacol Exp Ther (2012) 341:794-801. doi:10.1124/jpet.112.192799.
-
(2012)
J Pharmacol Exp Ther
, vol.341
, pp. 794-801
-
-
Liu, C.1
Kuei, C.2
Zhu, J.3
Yu, J.4
Zhang, L.5
Shih, A.6
-
104
-
-
84929046195
-
Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism
-
Lauritzen KH, Morland C, Puchades M, Holm-Hansen S, Hagelin EM, Lauritzen F, et al. Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex (2014) 24:2784-95. doi:10.1093/cercor/bht136.
-
(2014)
Cereb Cortex
, vol.24
, pp. 2784-2795
-
-
Lauritzen, K.H.1
Morland, C.2
Puchades, M.3
Holm-Hansen, S.4
Hagelin, E.M.5
Lauritzen, F.6
-
105
-
-
84907486950
-
Cell surface lactate receptor GPR81 is crucial for cancer cell survival
-
Roland CL, Arumugam T, Deng D, Liu SH, Philip B, Gomez S, et al. Cell surface lactate receptor GPR81 is crucial for cancer cell survival. Cancer Res (2014) 74:5301-10. doi:10.1158/0008-5472.can-14-0319.
-
(2014)
Cancer Res
, vol.74
, pp. 5301-5310
-
-
Roland, C.L.1
Arumugam, T.2
Deng, D.3
Liu, S.H.4
Philip, B.5
Gomez, S.6
-
106
-
-
84906308932
-
Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons
-
Yang J, Ruchti E, Petit JM, Jourdain P, Grenningloh G, Allaman I, et al. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci U S A (2014) 111:12228-33. doi:10.1073/pnas.1322912111.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 12228-12233
-
-
Yang, J.1
Ruchti, E.2
Petit, J.M.3
Jourdain, P.4
Grenningloh, G.5
Allaman, I.6
-
107
-
-
84938895687
-
Targeting lactate transport suppresses in vivo breast tumour growth
-
Morais-Santos F, Granja S, Miranda-Goncalves V, Moreira AH, Queiros S, Vilaca JL, et al. Targeting lactate transport suppresses in vivo breast tumour growth. Oncotarget (2015) 6:19177-89. doi:10.18632/oncotarget.3910.
-
(2015)
Oncotarget
, vol.6
, pp. 19177-19189
-
-
Morais-Santos, F.1
Granja, S.2
Miranda-Goncalves, V.3
Moreira, A.H.4
Queiros, S.5
Vilaca, J.L.6
-
108
-
-
34249293335
-
Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231
-
Gallagher SM, Castorino JJ, Wang D, Philp NJ. Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res (2007) 67:4182-9. doi:10.1158/0008-5472.can-06-3184.
-
(2007)
Cancer Res
, vol.67
, pp. 4182-4189
-
-
Gallagher, S.M.1
Castorino, J.J.2
Wang, D.3
Philp, N.J.4
-
109
-
-
79954603194
-
Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer cells
-
Izumi H, Takahashi M, Uramoto H, Nakayama Y, Oyama T, Wang KY, et al. Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer cells. Cancer Sci (2011) 102:1007-13. doi:10.1111/j.1349-7006.2011.01908.x.
-
(2011)
Cancer Sci
, vol.102
, pp. 1007-1013
-
-
Izumi, H.1
Takahashi, M.2
Uramoto, H.3
Nakayama, Y.4
Oyama, T.5
Wang, K.Y.6
-
110
-
-
10044278250
-
Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study
-
Mathupala SP, Parajuli P, Sloan AE. Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study. Neurosurgery (2004) 55:1410-9. doi:10.1227/01.NEU.0000143034.62913.59.
-
(2004)
Neurosurgery
, vol.55
, pp. 1410-1419
-
-
Mathupala, S.P.1
Parajuli, P.2
Sloan, A.E.3
-
111
-
-
33845641599
-
Metabolic remodeling of malignant gliomas for enhanced sensitization during radiotherapy: an in vitro study
-
Colen CB, Seraji-Bozorgzad N, Marples B, Galloway MP, Sloan AE, Mathupala SP. Metabolic remodeling of malignant gliomas for enhanced sensitization during radiotherapy: an in vitro study. Neurosurgery (2006) 59:1313-23. doi:10.1227/01.neu.0000249218.65332.bf.
-
(2006)
Neurosurgery
, vol.59
, pp. 1313-1323
-
-
Colen, C.B.1
Seraji-Bozorgzad, N.2
Marples, B.3
Galloway, M.P.4
Sloan, A.E.5
Mathupala, S.P.6
-
112
-
-
84875731196
-
Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets
-
Miranda-Goncalves V, Honavar M, Pinheiro C, Martinho O, Pires MM, Pinheiro C, et al. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro Oncol (2013) 15:172-88. doi:10.1093/neuonc/nos298.
-
(2013)
Neuro Oncol
, vol.15
, pp. 172-188
-
-
Miranda-Goncalves, V.1
Honavar, M.2
Pinheiro, C.3
Martinho, O.4
Pires, M.M.5
Pinheiro, C.6
-
113
-
-
84896701206
-
Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer
-
Polanski R, Hodgkinson CL, Fusi A, Nonaka D, Priest L, Kelly P, et al. Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res (2014) 20:926-37. doi:10.1158/1078-0432.ccr-13-2270.
-
(2014)
Clin Cancer Res
, vol.20
, pp. 926-937
-
-
Polanski, R.1
Hodgkinson, C.L.2
Fusi, A.3
Nonaka, D.4
Priest, L.5
Kelly, P.6
-
115
-
-
74349094033
-
AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10
-
Ovens MJ, Davies AJ, Wilson MC, Murray CM, Halestrap AP. AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10. Biochem J (2010) 425:523-30. doi:10.1042/bj20091515.
-
(2010)
Biochem J
, vol.425
, pp. 523-530
-
-
Ovens, M.J.1
Davies, A.J.2
Wilson, M.C.3
Murray, C.M.4
Halestrap, A.P.5
-
116
-
-
33746879141
-
Glycolysis inhibition for anticancer treatment
-
Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene (2006) 25:4633-46. doi:10.1038/sj.onc.1209597.
-
(2006)
Oncogene
, vol.25
, pp. 4633-4646
-
-
Pelicano, H.1
Martin, D.S.2
Xu, R.H.3
Huang, P.4
-
117
-
-
84863397848
-
The monocarboxylate transporter family-role and regulation
-
Halestrap AP, Wilson MC. The monocarboxylate transporter family-role and regulation. IUBMB Life (2012) 64:109-19. doi:10.1002/iub.572.
-
(2012)
IUBMB Life
, vol.64
, pp. 109-119
-
-
Halestrap, A.P.1
Wilson, M.C.2
-
118
-
-
84871965497
-
MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors
-
Birsoy K, Wang T, Possemato R, Yilmaz OH, Koch CE, Chen WW, et al. MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat Genet (2013) 45:104-8. doi:10.1038/ng.2471.
-
(2013)
Nat Genet
, vol.45
, pp. 104-108
-
-
Birsoy, K.1
Wang, T.2
Possemato, R.3
Yilmaz, O.H.4
Koch, C.E.5
Chen, W.W.6
-
119
-
-
78650968872
-
On-target inhibition of tumor fermentative glycolysis as visualized by hyperpolarized pyruvate
-
Seth P, Grant A, Tang J, Vinogradov E, Wang X, Lenkinski R, et al. On-target inhibition of tumor fermentative glycolysis as visualized by hyperpolarized pyruvate. Neoplasia (2011) 13:60-71. doi:10.1593/neo.101020.
-
(2011)
Neoplasia
, vol.13
, pp. 60-71
-
-
Seth, P.1
Grant, A.2
Tang, J.3
Vinogradov, E.4
Wang, X.5
Lenkinski, R.6
-
121
-
-
84958164141
-
Acute tumor lactate perturbations as a biomarker of genotoxic stress: development of a biochemical model
-
Sandulache VC, Chen Y, Skinner HD, Lu T, Feng L, Court LE, et al. Acute tumor lactate perturbations as a biomarker of genotoxic stress: development of a biochemical model. Mol Cancer Ther (2015) 14:2901-8. doi:10.1158/1535-7163.mct-15-0217.
-
(2015)
Mol Cancer Ther
, vol.14
, pp. 2901-2908
-
-
Sandulache, V.C.1
Chen, Y.2
Skinner, H.D.3
Lu, T.4
Feng, L.5
Court, L.E.6
-
122
-
-
84952949373
-
Lactate as a predictive marker for tumor recurrence in patients with head and neck squamous cell carcinoma (HNSCC) post radiation: a prospective study over 15 years
-
Blatt S, Voelxen N, Sagheb K, Pabst AM, Walenta S, Schroeder T, et al. Lactate as a predictive marker for tumor recurrence in patients with head and neck squamous cell carcinoma (HNSCC) post radiation: a prospective study over 15 years. Clin Oral Investig (2016). doi:10.1007/s00784-015-1699-6.
-
(2016)
Clin Oral Investig
-
-
Blatt, S.1
Voelxen, N.2
Sagheb, K.3
Pabst, A.M.4
Walenta, S.5
Schroeder, T.6
|