메뉴 건너뛰기




Volumn 36, Issue , 2016, Pages 99-115

Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing

Author keywords

Acetylating acetaldehyde dehydrogenase; ATP citrate lyase; Carnitine shuttle; Phosphoketolase; Pyruvate dehydrogenase; Pyruvate formate lyase

Indexed keywords

CELL ENGINEERING; COENZYMES; ENERGY CONSERVATION; FREE ENERGY; GLUCOSE; METABOLIC ENGINEERING; METABOLISM; PALMITIC ACID; STOICHIOMETRY; YEAST;

EID: 84961626309     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2016.03.006     Document Type: Review
Times cited : (115)

References (154)
  • 1
    • 84878629644 scopus 로고    scopus 로고
    • Agp2, a member of the yeast amino acid permease family, positively regulates polyamine transport at the transcriptional level
    • Aouida M., Rubio-Texeira M., Rubio Texeira M., Thevelein J.M., Poulin R., Ramotar D. Agp2, a member of the yeast amino acid permease family, positively regulates polyamine transport at the transcriptional level. PLoS One 2013, 8:e65717.
    • (2013) PLoS One , vol.8 , pp. e65717
    • Aouida, M.1    Rubio-Texeira, M.2    Rubio Texeira, M.3    Thevelein, J.M.4    Poulin, R.5    Ramotar, D.6
  • 2
    • 84877256074 scopus 로고    scopus 로고
    • Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
    • Avalos J.L., Fink G.R., Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 2013, 31:335-341.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 335-341
    • Avalos, J.L.1    Fink, G.R.2    Stephanopoulos, G.3
  • 5
    • 84938858793 scopus 로고    scopus 로고
    • Determination of the in vivo NAD:NADH ratio in Saccharomyces cerevisiae under anaerobic conditions, using alcohol dehydrogenase as sensor reaction
    • Yeast
    • Bekers, K.M., Heijnen, J.J., Van Gulik, W.M., 2015. Determination of the in vivo NAD:NADH ratio in Saccharomyces cerevisiae under anaerobic conditions, using alcohol dehydrogenase as sensor reaction. Yeast 32, 541-557.
    • (2015) , vol.32 , pp. 541-557
    • Bekers, K.M.1    Heijnen, J.J.2    Van Gulik, W.M.3
  • 7
    • 84886947479 scopus 로고    scopus 로고
    • Synthetic non-oxidative glycolysis enables complete carbon conservation
    • Bogorad I.W., Lin T.-S., Liao J.C. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 2013, 502:693-697.
    • (2013) Nature , vol.502 , pp. 693-697
    • Bogorad, I.W.1    Lin, T.-S.2    Liao, J.C.3
  • 8
    • 0019836936 scopus 로고
    • Correlation of lipid accumulation in yeasts with possession of ATP:citrate lyase
    • Boulton C.A., Ratledge C. Correlation of lipid accumulation in yeasts with possession of ATP:citrate lyase. Microbiology 1981, 127:169-176.
    • (1981) Microbiology , vol.127 , pp. 169-176
    • Boulton, C.A.1    Ratledge, C.2
  • 10
    • 0015895976 scopus 로고
    • Effect of (-)-hydroxycitrate on ethanol metabolism
    • Brunengraber H., Lowenstein J.M. Effect of (-)-hydroxycitrate on ethanol metabolism. FEBS Lett. 1973, 36:130-132.
    • (1973) FEBS Lett. , vol.36 , pp. 130-132
    • Brunengraber, H.1    Lowenstein, J.M.2
  • 11
    • 0025697659 scopus 로고
    • A reverse KREBS cycle in photosynthesis: consensus at last
    • Buchanan B.B., Arnon D.I. A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth. Res. 1990, 24:47-53.
    • (1990) Photosynth. Res. , vol.24 , pp. 47-53
    • Buchanan, B.B.1    Arnon, D.I.2
  • 12
    • 0038269064 scopus 로고    scopus 로고
    • Functional characterization and localization of acetyl-CoA hydrolase, Ach1p, in Saccharomyces cerevisiae
    • Buu L.-M., Chen Y.-C., Lee F.-J.S. Functional characterization and localization of acetyl-CoA hydrolase, Ach1p, in Saccharomyces cerevisiae. J. Biol. Chem. 2003, 278:17203-17209.
    • (2003) J. Biol. Chem. , vol.278 , pp. 17203-17209
    • Buu, L.-M.1    Chen, Y.-C.2    Lee, F.-J.S.3
  • 13
    • 46249123194 scopus 로고    scopus 로고
    • Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions
    • Canelas A.B., Van Gulik W.M., Heijnen J.J. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol. Bioeng. 2008, 100:734-743.
    • (2008) Biotechnol. Bioeng. , vol.100 , pp. 734-743
    • Canelas, A.B.1    Van Gulik, W.M.2    Heijnen, J.J.3
  • 14
    • 0037142769 scopus 로고    scopus 로고
    • Metabolic pathway analysis of a recombinant yeast for rational strain development
    • Carlson R., Fell D., Srienc F. Metabolic pathway analysis of a recombinant yeast for rational strain development. Biotechnol. Bioeng. 2002, 79:121-134.
    • (2002) Biotechnol. Bioeng. , vol.79 , pp. 121-134
    • Carlson, R.1    Fell, D.2    Srienc, F.3
  • 16
    • 77952919496 scopus 로고    scopus 로고
    • Identification and functional characterization of a novel mitochondrial carrier for citrate and oxoglutarate in Saccharomyces cerevisiae
    • Castegna A., Scarcia P., Agrimi G., Palmieri L., Rottensteiner H., Spera I., Germinario L., Palmieri F. Identification and functional characterization of a novel mitochondrial carrier for citrate and oxoglutarate in Saccharomyces cerevisiae. J. Biol. Chem. 2010, 285:17359-17370.
    • (2010) J. Biol. Chem. , vol.285 , pp. 17359-17370
    • Castegna, A.1    Scarcia, P.2    Agrimi, G.3    Palmieri, L.4    Rottensteiner, H.5    Spera, I.6    Germinario, L.7    Palmieri, F.8
  • 17
    • 84883800631 scopus 로고    scopus 로고
    • Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints
    • Chakrabarti A., Miskovic L., Soh K.C., Hatzimanikatis V. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol. J. 2013, 8:1043-1057.
    • (2013) Biotechnol. J. , vol.8 , pp. 1043-1057
    • Chakrabarti, A.1    Miskovic, L.2    Soh, K.C.3    Hatzimanikatis, V.4
  • 19
    • 33644763488 scopus 로고
    • Coenzyme A dependence and acetyl donor function of the pyruvate-formate exchange system
    • Chantrenne H., Lipmann F. Coenzyme A dependence and acetyl donor function of the pyruvate-formate exchange system. J. Biol. Chem. 1950, 187:757-767.
    • (1950) J. Biol. Chem. , vol.187 , pp. 757-767
    • Chantrenne, H.1    Lipmann, F.2
  • 20
    • 84938644338 scopus 로고    scopus 로고
    • Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase
    • 15, fov015
    • Chen Y., Zhang Y., Siewers V., Nielsen J. Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase. FEMS Yeast Res. 2015, 15, fov015.
    • (2015) FEMS Yeast Res.
    • Chen, Y.1    Zhang, Y.2    Siewers, V.3    Nielsen, J.4
  • 21
    • 84905818450 scopus 로고    scopus 로고
    • Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase
    • Choi J.W., Da Silva N.A. Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase. J. Biotechnol. 2014, 187:56-59.
    • (2014) J. Biotechnol. , vol.187 , pp. 56-59
    • Choi, J.W.1    Da Silva, N.A.2
  • 22
    • 26444504579 scopus 로고    scopus 로고
    • Function, attachment and synthesis of lipoic acid in Escherichia coli
    • Cronan J.E., Zhao X., Jiang Y. Function, attachment and synthesis of lipoic acid in Escherichia coli. Adv. Microb. Physiol. 2005, 50:103-146.
    • (2005) Adv. Microb. Physiol. , vol.50 , pp. 103-146
    • Cronan, J.E.1    Zhao, X.2    Jiang, Y.3
  • 23
    • 84940447039 scopus 로고    scopus 로고
    • Thermodynamics-based design of microbial cell factories for anaerobic product formation
    • Cueto-Rojas H.F., Van Maris A.J.A., Wahl S.A., Heijnen J.J. Thermodynamics-based design of microbial cell factories for anaerobic product formation. Trends Biotechnol. 2015, 33:534-546.
    • (2015) Trends Biotechnol. , vol.33 , pp. 534-546
    • Cueto-Rojas, H.F.1    Van Maris, A.J.A.2    Wahl, S.A.3    Heijnen, J.J.4
  • 24
    • 0033215210 scopus 로고    scopus 로고
    • Pathway alignment: application to the comparative analysis of glycolytic enzymes
    • Dandekar T., Schuster S., Snel B., Huynen M., Bork P. Pathway alignment: application to the comparative analysis of glycolytic enzymes. Biochem. J. 1999, 343(Pt 1):115-124.
    • (1999) Biochem. J. , vol.343 , pp. 115-124
    • Dandekar, T.1    Schuster, S.2    Snel, B.3    Huynen, M.4    Bork, P.5
  • 25
    • 84899154669 scopus 로고    scopus 로고
    • Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway
    • De Jong B.W., Shi S., Siewers V., Nielsen J. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb. Cell. Fact. 2014, 13:39.
    • (2014) Microb. Cell. Fact. , vol.13 , pp. 39
    • De Jong, B.W.1    Shi, S.2    Siewers, V.3    Nielsen, J.4
  • 26
    • 84860258944 scopus 로고    scopus 로고
    • Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering
    • De Kok S., Kozak B.U., Pronk J.T., Van Maris A.J.A. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering. FEMS Yeast Res. 2012, 12:387-397.
    • (2012) FEMS Yeast Res. , vol.12 , pp. 387-397
    • De Kok, S.1    Kozak, B.U.2    Pronk, J.T.3    Van Maris, A.J.A.4
  • 29
    • 0029058992 scopus 로고
    • Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene
    • Elgersma Y., Van Roermund C.W., Wanders R.J., Tabak H.F. Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J. 1995, 14:3472-3479.
    • (1995) EMBO J. , vol.14 , pp. 3472-3479
    • Elgersma, Y.1    Van Roermund, C.W.2    Wanders, R.J.3    Tabak, H.F.4
  • 30
    • 0021213396 scopus 로고
    • Induction of xylulose-5-phosphate phosphoketolase in a variety of yeasts grown on d-xylose: the key to efficient xylose metabolism
    • Evans C.T., Ratledge C. Induction of xylulose-5-phosphate phosphoketolase in a variety of yeasts grown on d-xylose: the key to efficient xylose metabolism. Arch. Microbiol. 1984, 48-52.
    • (1984) Arch. Microbiol. , pp. 48-52
    • Evans, C.T.1    Ratledge, C.2
  • 33
    • 77949447610 scopus 로고    scopus 로고
    • Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates
    • Fendt S.-M., Sauer U. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates. BMC Syst. Biol. 2010, 4:12.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 12
    • Fendt, S.-M.1    Sauer, U.2
  • 34
    • 84861429699 scopus 로고    scopus 로고
    • EQuilibrator - the biochemical thermodynamics calculator
    • Flamholz A., Noor E., Bar-Even A., Milo R. eQuilibrator - the biochemical thermodynamics calculator. Nucleic Acids Res. 2012, 40:770-775.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 770-775
    • Flamholz, A.1    Noor, E.2    Bar-Even, A.3    Milo, R.4
  • 35
    • 67349179514 scopus 로고    scopus 로고
    • Re-characterisation of Saccharomyces cerevisiae Ach1p: fungal CoA-transferases are involved in acetic acid detoxification
    • Fleck C.B., Brock M. Re-characterisation of Saccharomyces cerevisiae Ach1p: fungal CoA-transferases are involved in acetic acid detoxification. Fungal Genet. Biol. 2009, 46:473-485.
    • (2009) Fungal Genet. Biol. , vol.46 , pp. 473-485
    • Fleck, C.B.1    Brock, M.2
  • 36
  • 37
    • 44349152327 scopus 로고    scopus 로고
    • Carnitine and carnitine acetyltransferases in the yeast Saccharomyces cerevisiae: a role for carnitine in stress protection
    • Franken J., Kroppenstedt S., Swiegers J.H., Bauer F.F. Carnitine and carnitine acetyltransferases in the yeast Saccharomyces cerevisiae: a role for carnitine in stress protection. Curr. Genet. 2008, 53:347-360.
    • (2008) Curr. Genet. , vol.53 , pp. 347-360
    • Franken, J.1    Kroppenstedt, S.2    Swiegers, J.H.3    Bauer, F.F.4
  • 39
    • 84912019905 scopus 로고    scopus 로고
    • Protein acetylation and acetyl coenzyme A metabolism in budding yeast
    • Galdieri L., Zhang T., Rogerson D., Lleshi R., Vancura A. Protein acetylation and acetyl coenzyme A metabolism in budding yeast. Eukaryot. Cell. 2014, 13:1472-1483.
    • (2014) Eukaryot. Cell. , vol.13 , pp. 1472-1483
    • Galdieri, L.1    Zhang, T.2    Rogerson, D.3    Lleshi, R.4    Vancura, A.5
  • 40
    • 0015100291 scopus 로고
    • Inactivation of fructose-1,6-diphosphatase by glucose in yeast
    • Gancedo C. Inactivation of fructose-1,6-diphosphatase by glucose in yeast. J. Bacteriol. 1971, 107:401-405.
    • (1971) J. Bacteriol. , vol.107 , pp. 401-405
    • Gancedo, C.1
  • 41
    • 0031810672 scopus 로고    scopus 로고
    • Yeast carbon catabolite repression
    • Gancedo J.M. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 1998, 62:334-361.
    • (1998) Microbiol. Mol. Biol. Rev. , vol.62 , pp. 334-361
    • Gancedo, J.M.1
  • 42
    • 0014977781 scopus 로고
    • Fructose-1, 6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts
    • Gancedo J.M., Gancedo C. Fructose-1, 6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts. Arch. Microbiol. 1971, 138:132-138.
    • (1971) Arch. Microbiol. , vol.138 , pp. 132-138
    • Gancedo, J.M.1    Gancedo, C.2
  • 44
    • 33751279921 scopus 로고    scopus 로고
    • Engineering NADH metabolism in Saccharomyces cerevisiae: Formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures
    • Geertman J.-M.A., Van Dijken J.P., Pronk J.T. Engineering NADH metabolism in Saccharomyces cerevisiae: Formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res. 2006, 6:1193-1203.
    • (2006) FEMS Yeast Res. , vol.6 , pp. 1193-1203
    • Geertman, J.-M.A.1    Van Dijken, J.P.2    Pronk, J.T.3
  • 46
    • 84961642828 scopus 로고    scopus 로고
    • Use of phosphoketolase and phosphotransacetylase for production of acetyl-coenzyme a derived compounds. WO2014144135A3
    • Hawkins, K.M., Mahatdejkul-Meadows, T.T., Meadows, A.L., Pickens, L.B., Tai, A., Tsong, A.E., 2014. Use of phosphoketolase and phosphotransacetylase for production of acetyl-coenzyme a derived compounds. WO2014144135A3.
    • (2014)
    • Hawkins, K.M.1    Mahatdejkul-Meadows, T.T.2    Meadows, A.L.3    Pickens, L.B.4    Tai, A.5    Tsong, A.E.6
  • 47
    • 0000090169 scopus 로고
    • Pentose fermentation by Lactobacillus plantarum. I. The cleavage of xylulose 5-phosphate by phosphoketolase
    • Heath E.C., Hurwitz J., Horecker B.L., Ginsburg A. Pentose fermentation by Lactobacillus plantarum. I. The cleavage of xylulose 5-phosphate by phosphoketolase. J. Biol. Chem. 1958, 231:1009-1029.
    • (1958) J. Biol. Chem. , vol.231 , pp. 1009-1029
    • Heath, E.C.1    Hurwitz, J.2    Horecker, B.L.3    Ginsburg, A.4
  • 48
    • 0027112993 scopus 로고
    • A black box mathematical model to calculate auto- and heterotrophic biomass yields based on Gibbs energy dissipation
    • Heijnen J.J., Van Loosdrecht M.C.M., Tijhuis L. A black box mathematical model to calculate auto- and heterotrophic biomass yields based on Gibbs energy dissipation. Biotechnol. Bioeng. 1992, 40:1139-1154.
    • (1992) Biotechnol. Bioeng. , vol.40 , pp. 1139-1154
    • Heijnen, J.J.1    Van Loosdrecht, M.C.M.2    Tijhuis, L.3
  • 50
    • 84878874888 scopus 로고    scopus 로고
    • Engineering of formate dehydrogenase: Synergistic effect of mutations affecting cofactor specificity and chemical stability
    • Hoelsch K., Sührer I., Heusel M., Weuster-Botz D. Engineering of formate dehydrogenase: Synergistic effect of mutations affecting cofactor specificity and chemical stability. Appl. Microbiol. Biotechnol. 2013, 97:2473-2481.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 2473-2481
    • Hoelsch, K.1    Sührer, I.2    Heusel, M.3    Weuster-Botz, D.4
  • 51
    • 0031885642 scopus 로고    scopus 로고
    • Helicobacter pylori porCDAB and oorDABC genes encode distinct pyruvate:flavodoxin and 2-oxoglutarate:acceptor oxidoreductases which mediate electron transport to NADP
    • Hughes N.J., Clayton C.L., Chalk P.A., Kelly D.J. Helicobacter pylori porCDAB and oorDABC genes encode distinct pyruvate:flavodoxin and 2-oxoglutarate:acceptor oxidoreductases which mediate electron transport to NADP. J. Bacteriol. 1998, 180:1119-1128.
    • (1998) J. Bacteriol. , vol.180 , pp. 1119-1128
    • Hughes, N.J.1    Clayton, C.L.2    Chalk, P.A.3    Kelly, D.J.4
  • 53
    • 0021492240 scopus 로고
    • +-dependent pyruvate dehydrogenase in mitochondria of Euglena gracilis
    • +-dependent pyruvate dehydrogenase in mitochondria of Euglena gracilis. J. Biochem. 1984, 96:931-934.
    • (1984) J. Biochem. , vol.96 , pp. 931-934
    • Inui, H.1    Miyatake, K.2    Nakano, Y.3
  • 54
    • 0021753756 scopus 로고
    • Fatty acid synthesis in mitochondria of Euglena gracilis
    • Inui H., Miyatake K., Nakano Y., Kitaoka S. Fatty acid synthesis in mitochondria of Euglena gracilis. Eur. J. Biochem. 1984, 142:121-126.
    • (1984) Eur. J. Biochem. , vol.142 , pp. 121-126
    • Inui, H.1    Miyatake, K.2    Nakano, Y.3    Kitaoka, S.4
  • 56
    • 0038434902 scopus 로고    scopus 로고
    • Reconstitution and characterization of the polynuclear iron-sulfur cluster in pyruvate formate-lyase-activating enzyme. Molecular properties of the holoenzyme form
    • Külzer R., Pils T., Kappl R., Hüttermann J., Knappe J. Reconstitution and characterization of the polynuclear iron-sulfur cluster in pyruvate formate-lyase-activating enzyme. Molecular properties of the holoenzyme form. J. Biol. Chem. 1998, 273:4897-4903.
    • (1998) J. Biol. Chem. , vol.273 , pp. 4897-4903
    • Külzer, R.1    Pils, T.2    Kappl, R.3    Hüttermann, J.4    Knappe, J.5
  • 57
    • 0020607444 scopus 로고
    • Carbohydrate metabolism in lactic acid bacteria
    • Kandler O. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 1983, 49:209-224.
    • (1983) Antonie van Leeuwenhoek , vol.49 , pp. 209-224
    • Kandler, O.1
  • 59
    • 0015834991 scopus 로고
    • A microsomal fatty acid synthetase coupled to acyl-CoA reductase in Euglena gracilis
    • Khan A., Kolattukudy P.E. A microsomal fatty acid synthetase coupled to acyl-CoA reductase in Euglena gracilis. Arch. Biochem. Biophys. 1973, 158:411-420.
    • (1973) Arch. Biochem. Biophys. , vol.158 , pp. 411-420
    • Khan, A.1    Kolattukudy, P.E.2
  • 60
    • 0025738416 scopus 로고
    • Isolation and characterization of carnitine acetyltransferase from S. cerevisiae
    • Kispal G., Cseko J., Alkonyi I., Sandor A. Isolation and characterization of carnitine acetyltransferase from S. cerevisiae. Biochim. Biophys. Acta 1991, 1085:217-222.
    • (1991) Biochim. Biophys. Acta , vol.1085 , pp. 217-222
    • Kispal, G.1    Cseko, J.2    Alkonyi, I.3    Sandor, A.4
  • 61
    • 0016294957 scopus 로고
    • Pyruvate formate-lyase of Escherichia coli: the acetyl-enzyme intermediate
    • Knappe J., Blaschkowski H.P., Gröbner P., Schmitt T. Pyruvate formate-lyase of Escherichia coli: the acetyl-enzyme intermediate. Eur. J. Biochem. 1974, 50:253-263.
    • (1974) Eur. J. Biochem. , vol.50 , pp. 253-263
    • Knappe, J.1    Blaschkowski, H.P.2    Gröbner, P.3    Schmitt, T.4
  • 62
    • 0014625269 scopus 로고
    • Pyruvate formate-lyase reaction in Escherichia coli. the enzymatic system converting an inactive form of the lyase into the catalytically active enzyme
    • Knappe J., Schacht J., Möckel W., Höpner T., Vetter H., Edenharder R. Pyruvate formate-lyase reaction in Escherichia coli. the enzymatic system converting an inactive form of the lyase into the catalytically active enzyme. Eur. J. Biochem. 1969, 11:316-327.
    • (1969) Eur. J. Biochem. , vol.11 , pp. 316-327
    • Knappe, J.1    Schacht, J.2    Möckel, W.3    Höpner, T.4    Vetter, H.5    Edenharder, R.6
  • 63
    • 84879603106 scopus 로고    scopus 로고
    • Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway
    • Kocharin K., Siewers V., Nielsen J. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Biotechnol. Bioeng. 2013, 110:2216-2224.
    • (2013) Biotechnol. Bioeng. , vol.110 , pp. 2216-2224
    • Kocharin, K.1    Siewers, V.2    Nielsen, J.3
  • 64
    • 84930845786 scopus 로고    scopus 로고
    • CYCLoPs: A comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae
    • Koh, J.L.Y., Chong, Y.T., Friesen, H., Moses, A., Boone, C., Andrews, B.J., Moffat, J., 2015. CYCLoPs: A comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae. G3 5, pp. 1223-1232.
    • (2015) G3 , vol.5 , pp. 1223-1232
    • Koh, J.L.Y.1    Chong, Y.T.2    Friesen, H.3    Moses, A.4    Boone, C.5    Andrews, B.J.6    Moffat, J.7
  • 65
    • 0017365113 scopus 로고
    • Carnitine acetyltransferase: Candidate for the transfer of acetyl groups through the mitochondrial membrane of yeast
    • Kohlhaw G.B., Tan-Wilson A. Carnitine acetyltransferase: Candidate for the transfer of acetyl groups through the mitochondrial membrane of yeast. J. Bacteriol. 1977, 129:1159-1161.
    • (1977) J. Bacteriol. , vol.129 , pp. 1159-1161
    • Kohlhaw, G.B.1    Tan-Wilson, A.2
  • 66
    • 0010426629 scopus 로고
    • α-Keto acid dehydrogenation complexes. IV. Resolution and reconstitution of the Escherichia coli pyruvate dehydrogenation complex
    • Koike M., Reed L.J., Carroll W.R. α-Keto acid dehydrogenation complexes. IV. Resolution and reconstitution of the Escherichia coli pyruvate dehydrogenation complex. J. Biol. Chem. 1963, 238:30-39.
    • (1963) J. Biol. Chem. , vol.238 , pp. 30-39
    • Koike, M.1    Reed, L.J.2    Carroll, W.R.3
  • 68
    • 84896932547 scopus 로고    scopus 로고
    • Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis
    • Kozak B.U., Van Rossum H.M., Benjamin K.R., Wu L., Daran J.-M.G., Pronk J.T., Van Maris A.J.A. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab. Eng. 2014, 21:46-59.
    • (2014) Metab. Eng. , vol.21 , pp. 46-59
    • Kozak, B.U.1    Van Rossum, H.M.2    Benjamin, K.R.3    Wu, L.4    Daran, J.-M.G.5    Pronk, J.T.6    Van Maris, A.J.A.7
  • 71
    • 84884351687 scopus 로고    scopus 로고
    • Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism
    • Krivoruchko A., Serrano-Amatriain C., Chen Y., Siewers V., Nielsen J. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J. Ind. Microbiol. Biotechnol. 2013, 40:1051-1056.
    • (2013) J. Ind. Microbiol. Biotechnol. , vol.40 , pp. 1051-1056
    • Krivoruchko, A.1    Serrano-Amatriain, C.2    Chen, Y.3    Siewers, V.4    Nielsen, J.5
  • 73
    • 0030002701 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate
    • Leaf T.A., Peterson M.S., Stoup S.K., Somers D., Srienc F. Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate. Microbiology 1996, 142:1169-1180.
    • (1996) Microbiology , vol.142 , pp. 1169-1180
    • Leaf, T.A.1    Peterson, M.S.2    Stoup, S.K.3    Somers, D.4    Srienc, F.5
  • 74
    • 84925464682 scopus 로고    scopus 로고
    • Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites
    • Lian J., Zhao H. Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites. J. Ind. Microbiol. Biotechnol. 2015, 42:437-451.
    • (2015) J. Ind. Microbiol. Biotechnol. , vol.42 , pp. 437-451
    • Lian, J.1    Zhao, H.2
  • 75
    • 84925666935 scopus 로고    scopus 로고
    • Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals
    • Lian J., Zhao H. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth. Biol. 2015, 4:332-341.
    • (2015) ACS Synth. Biol. , vol.4 , pp. 332-341
    • Lian, J.1    Zhao, H.2
  • 76
    • 84901808659 scopus 로고    scopus 로고
    • Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
    • Lian J., Si T., Nair N.U., Zhao H. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab. Eng. 2014, 24:139-149.
    • (2014) Metab. Eng. , vol.24 , pp. 139-149
    • Lian, J.1    Si, T.2    Nair, N.U.3    Zhao, H.4
  • 77
    • 77956861590 scopus 로고
    • A phosphorylated oxidation product of pyruvic acid
    • Lipmann F. A phosphorylated oxidation product of pyruvic acid. J. Biol. Chem. 1940, 134:463-464.
    • (1940) J. Biol. Chem. , vol.134 , pp. 463-464
    • Lipmann, F.1
  • 80
    • 84883554005 scopus 로고    scopus 로고
    • A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli
    • Mainguet S.E., Gronenberg L.S., Wong S.S., Liao J.C. A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli. Metab. Eng. 2013, 19:116-127.
    • (2013) Metab. Eng. , vol.19 , pp. 116-127
    • Mainguet, S.E.1    Gronenberg, L.S.2    Wong, S.S.3    Liao, J.C.4
  • 81
    • 84863775815 scopus 로고    scopus 로고
    • Chemicals from biobutanol: technologies and markets
    • Mascal M. Chemicals from biobutanol: technologies and markets. Biofuels, Bioprod. Bioref. 2012, 6:483-493.
    • (2012) Biofuels, Bioprod. Bioref. , vol.6 , pp. 483-493
    • Mascal, M.1
  • 86
    • 0029874904 scopus 로고    scopus 로고
    • The regulatory characteristics of yeast fructose-1,6-bisphosphatase confer only a small selective advantage
    • Navas M.a, Gancedo J.M. The regulatory characteristics of yeast fructose-1,6-bisphosphatase confer only a small selective advantage. J. Bacteriol. 1996, 178:1809-1812.
    • (1996) J. Bacteriol. , vol.178 , pp. 1809-1812
    • Navas, M.A.1    Gancedo, J.M.2
  • 87
    • 84920161779 scopus 로고    scopus 로고
    • Synthetic biology for engineering acetyl coenzyme A metabolism in yeast
    • Nielsen J. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast. MBio 2014, 5:e02153.
    • (2014) MBio , vol.5 , pp. e02153
    • Nielsen, J.1
  • 91
    • 84866145291 scopus 로고    scopus 로고
    • An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae
    • Oud B., Flores C.-L., Gancedo C., Zhang X., Trueheart J., Daran J.-M., Pronk J.T., Van Maris A.J.A. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb. Cell. Fact. 2012, 11:131.
    • (2012) Microb. Cell. Fact. , vol.11 , pp. 131
    • Oud, B.1    Flores, C.-L.2    Gancedo, C.3    Zhang, X.4    Trueheart, J.5    Daran, J.-M.6    Pronk, J.T.7    Van Maris, A.J.A.8
  • 98
    • 0029294111 scopus 로고
    • Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid
    • Porro D., Brambilla L., Ranzi B.M., Martegani E., Alberghina L. Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnol. Prog. 1995, 11:294-298.
    • (1995) Biotechnol. Prog. , vol.11 , pp. 294-298
    • Porro, D.1    Brambilla, L.2    Ranzi, B.M.3    Martegani, E.4    Alberghina, L.5
  • 99
    • 0030448870 scopus 로고    scopus 로고
    • Pyruvate metabolism in Saccharomyces cerevisiae
    • Pronk J.T., Steensma H.Y., Van Dijken J.P. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 1996, 12:1607-1633.
    • (1996) Yeast , vol.12 , pp. 1607-1633
    • Pronk, J.T.1    Steensma, H.Y.2    Van Dijken, J.P.3
  • 102
    • 0037898938 scopus 로고    scopus 로고
    • Pyruvate ferredoxin oxidoreductase and its radical intermediate
    • Ragsdale S.W. Pyruvate ferredoxin oxidoreductase and its radical intermediate. Chem. Rev. 2003, 103:2333-2346.
    • (2003) Chem. Rev. , vol.103 , pp. 2333-2346
    • Ragsdale, S.W.1
  • 103
    • 0021813457 scopus 로고
    • Properties of a pentulose-5-phosphate phosphoketolase from yeasts grown on xylose
    • Ratledge C., Holdsworth J. Properties of a pentulose-5-phosphate phosphoketolase from yeasts grown on xylose. Appl. Microbiol. Biotechnol. 1985, 22:217-221.
    • (1985) Appl. Microbiol. Biotechnol. , vol.22 , pp. 217-221
    • Ratledge, C.1    Holdsworth, J.2
  • 104
    • 84959258558 scopus 로고    scopus 로고
    • ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae
    • Rodriguez S., Denby C.M., Van Vu T., Baidoo E.E.K., Wang G., Keasling J.D. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae. Microb. Cell. Fact. 2016, 15:48.
    • (2016) Microb. Cell. Fact. , vol.15 , pp. 48
    • Rodriguez, S.1    Denby, C.M.2    Van Vu, T.3    Baidoo, E.E.K.4    Wang, G.5    Keasling, J.D.6
  • 105
    • 0035029530 scopus 로고    scopus 로고
    • + oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists
    • + oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol. Biol. Evol. 2001, 18:710-720.
    • (2001) Mol. Biol. Evol. , vol.18 , pp. 710-720
    • Rotte, C.1    Stejskal, F.2    Zhu, G.3    Keithly, J.S.4    Martin, W.5
  • 106
    • 66349139329 scopus 로고    scopus 로고
    • New microbial fuels: a biotech perspective
    • Rude M.A., Schirmer A. New microbial fuels: a biotech perspective. Curr. Opin. Microbiol. 2009, 12:274-281.
    • (2009) Curr. Opin. Microbiol. , vol.12 , pp. 274-281
    • Rude, M.A.1    Schirmer, A.2
  • 107
    • 0033975457 scopus 로고    scopus 로고
    • Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production
    • Ruijter G.J.G., Panneman H., Xu D.B., Visser J. Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production. FEMS Microbiol. Lett. 2000, 184:35-40.
    • (2000) FEMS Microbiol. Lett. , vol.184 , pp. 35-40
    • Ruijter, G.J.G.1    Panneman, H.2    Xu, D.B.3    Visser, J.4
  • 109
    • 84979849215 scopus 로고    scopus 로고
    • Genome scale models of yeast: Towards standardized evaluation and consistent omic integration
    • Sánchez B.J., Nielsen J. Genome scale models of yeast: Towards standardized evaluation and consistent omic integration. Integr. Biol. 2015, 7:846-858.
    • (2015) Integr. Biol. , vol.7 , pp. 846-858
    • Sánchez, B.J.1    Nielsen, J.2
  • 112
    • 0028566978 scopus 로고
    • The hydrogenases and formate dehydrogenases of Escherichia coli
    • Sawers R.G. The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie van Leeuwenhoek 1994, 66:57-88.
    • (1994) Antonie van Leeuwenhoek , vol.66 , pp. 57-88
    • Sawers, R.G.1
  • 113
    • 0027772068 scopus 로고
    • The ethanol-inducible YAT1 gene from yeast encodes a presumptive mitochondrial outer carnitine acetyltransferase
    • Schmalix W., Bandlow W. The ethanol-inducible YAT1 gene from yeast encodes a presumptive mitochondrial outer carnitine acetyltransferase. J. Biol. Chem. 1993, 268:27428-27439.
    • (1993) J. Biol. Chem. , vol.268 , pp. 27428-27439
    • Schmalix, W.1    Bandlow, W.2
  • 114
    • 36949069407 scopus 로고
    • Formation of erythrose-4-phosphate and acetyl phosphate by a phosphorolytic cleavage of fructose-6-phosphate
    • Schramm M., Racker E. Formation of erythrose-4-phosphate and acetyl phosphate by a phosphorolytic cleavage of fructose-6-phosphate. Nature 1957, 179:1349-1350.
    • (1957) Nature , vol.179 , pp. 1349-1350
    • Schramm, M.1    Racker, E.2
  • 115
    • 0000210193 scopus 로고
    • Phosphorolytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum
    • Schramm M., Klybas V., Racker E. Phosphorolytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum. J. Biol. Chem. 1958, 233:1283-1288.
    • (1958) J. Biol. Chem. , vol.233 , pp. 1283-1288
    • Schramm, M.1    Klybas, V.2    Racker, E.3
  • 116
    • 84911440829 scopus 로고    scopus 로고
    • Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria
    • Schuchmann K., Müller V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 2014, 12:809-821.
    • (2014) Nat. Rev. Microbiol. , vol.12 , pp. 809-821
    • Schuchmann, K.1    Müller, V.2
  • 117
    • 0036845955 scopus 로고    scopus 로고
    • Engineering of coenzyme specificity of formate dehydrogenase from Saccharomyces cerevisiae
    • Serov A.E., Popova A.S., Fedorchuk V.V., Tishkov V.I. Engineering of coenzyme specificity of formate dehydrogenase from Saccharomyces cerevisiae. Biochem. J. 2002, 367:841-847.
    • (2002) Biochem. J. , vol.367 , pp. 841-847
    • Serov, A.E.1    Popova, A.S.2    Fedorchuk, V.V.3    Tishkov, V.I.4
  • 118
    • 84936994389 scopus 로고    scopus 로고
    • Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions
    • Sheng J., Feng X. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions. Front. Microbiol. 2015, 6:1-11.
    • (2015) Front. Microbiol. , vol.6 , pp. 1-11
    • Sheng, J.1    Feng, X.2
  • 119
    • 33847378479 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
    • Shiba Y., Paradise E.M., Kirby J., Ro D.-K., Keasling J.D. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 2007, 9:160-168.
    • (2007) Metab. Eng. , vol.9 , pp. 160-168
    • Shiba, Y.1    Paradise, E.M.2    Kirby, J.3    Ro, D.-K.4    Keasling, J.D.5
  • 120
    • 0026573213 scopus 로고
    • Isolation and characterisation of the pyruvate dehydrogenase complex of anaerobically grown Enterococcus faecalis NCTC 775
    • Snoep J.L., Westphal A.H., Benen J.A.E., Teixeira de Mattos M.J., Neijssel O.M., Kok A. Isolation and characterisation of the pyruvate dehydrogenase complex of anaerobically grown Enterococcus faecalis NCTC 775. Eur. J. Biochem. 1992, 203:245-250.
    • (1992) Eur. J. Biochem. , vol.203 , pp. 245-250
    • Snoep, J.L.1    Westphal, A.H.2    Benen, J.A.E.3    Teixeira de Mattos, M.J.4    Neijssel, O.M.5    Kok, A.6
  • 121
    • 0027507947 scopus 로고
    • Differences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: Implications for their activity in vivo
    • Snoep J.L., De Graef M.R., Westphal A.H., De Kok A., Teixeira de Mattos M.J., Neijssel O.M. Differences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: Implications for their activity in vivo. FEMS Microbiol. Lett. 1993, 114:279-283.
    • (1993) FEMS Microbiol. Lett. , vol.114 , pp. 279-283
    • Snoep, J.L.1    De Graef, M.R.2    Westphal, A.H.3    De Kok, A.4    Teixeira de Mattos, M.J.5    Neijssel, O.M.6
  • 122
    • 84857052437 scopus 로고    scopus 로고
    • From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks
    • Soh K.C., Miskovic L., Hatzimanikatis V. From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. FEMS Yeast Res. 2012, 12:129-143.
    • (2012) FEMS Yeast Res. , vol.12 , pp. 129-143
    • Soh, K.C.1    Miskovic, L.2    Hatzimanikatis, V.3
  • 123
    • 2442684544 scopus 로고    scopus 로고
    • Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae
    • Sonderegger M., Schümperli M., Sauer U. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2004, 70:2892-2897.
    • (2004) Appl. Environ. Microbiol. , vol.70 , pp. 2892-2897
    • Sonderegger, M.1    Schümperli, M.2    Sauer, U.3
  • 124
    • 0009085953 scopus 로고
    • The purification and properties of phosphotransacetylase
    • Stadtman E.R. The purification and properties of phosphotransacetylase. J. Biol. Chem. 1952, 196:527-534.
    • (1952) J. Biol. Chem. , vol.196 , pp. 527-534
    • Stadtman, E.R.1
  • 125
    • 79959401340 scopus 로고    scopus 로고
    • Eukaryotic pyruvate formate lyase and its activating enzyme were acquired laterally from a firmicute
    • Stairs C.W., Roger A.J., Hampl V. Eukaryotic pyruvate formate lyase and its activating enzyme were acquired laterally from a firmicute. Mol. Biol. Evol. 2011, 28:2087-2099.
    • (2011) Mol. Biol. Evol. , vol.28 , pp. 2087-2099
    • Stairs, C.W.1    Roger, A.J.2    Hampl, V.3
  • 129
    • 84937209203 scopus 로고    scopus 로고
    • Butanol production in S. cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance
    • Swidah R., Wang H., Reid P.J., Ahmed H.Z., Pisanelli A.M., Persaud K.C., Grant C.M., Ashe M.P. Butanol production in S. cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance. Biotechnol. Biofuels 2015, 8:97.
    • (2015) Biotechnol. Biofuels , vol.8 , pp. 97
    • Swidah, R.1    Wang, H.2    Reid, P.J.3    Ahmed, H.Z.4    Pisanelli, A.M.5    Persaud, K.C.6    Grant, C.M.7    Ashe, M.P.8
  • 130
    • 0034985293 scopus 로고    scopus 로고
    • Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: three carnitine acetyltransferases are essential in a carnitine-dependent strain
    • Swiegers J.H., Dippenaar N., Pretorius I.S., Bauer F.F. Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: three carnitine acetyltransferases are essential in a carnitine-dependent strain. Yeast 2001, 18:585-595.
    • (2001) Yeast , vol.18 , pp. 585-595
    • Swiegers, J.H.1    Dippenaar, N.2    Pretorius, I.S.3    Bauer, F.F.4
  • 131
    • 84874556188 scopus 로고    scopus 로고
    • Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae
    • Tang X., Feng H., Chen W.N. Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae. Metab. Eng. 2013, 16:95-102.
    • (2013) Metab. Eng. , vol.16 , pp. 95-102
    • Tang, X.1    Feng, H.2    Chen, W.N.3
  • 133
    • 34347355487 scopus 로고    scopus 로고
    • Evidence, through C13-labelling analysis, of phosphoketolase activity in fungi
    • Thykaer J., Nielsen J. Evidence, through C13-labelling analysis, of phosphoketolase activity in fungi. Process. Biochem. 2007, 42:1050-1055.
    • (2007) Process. Biochem. , vol.42 , pp. 1050-1055
    • Thykaer, J.1    Nielsen, J.2
  • 134
    • 26444617555 scopus 로고    scopus 로고
    • Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a trans
    • Tittmann K., Wille G., Golbik R., Weidner A., Ghisla S., Hübner G. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a trans. Biochemistry 2005, 44:13291-13303.
    • (2005) Biochemistry , vol.44 , pp. 13291-13303
    • Tittmann, K.1    Wille, G.2    Golbik, R.3    Weidner, A.4    Ghisla, S.5    Hübner, G.6
  • 135
    • 73349117774 scopus 로고    scopus 로고
    • Variability of wax ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet
    • Tucci S., Vacula R., Krajcovic J., Proksch P., Martin W. Variability of wax ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. J. Eukaryot. Microbiol. 2010, 57:63-69.
    • (2010) J. Eukaryot. Microbiol. , vol.57 , pp. 63-69
    • Tucci, S.1    Vacula, R.2    Krajcovic, J.3    Proksch, P.4    Martin, W.5
  • 136
    • 0029134555 scopus 로고
    • ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose
    • Van den Berg M.A., Steensma H.Y. ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose. Eur. J. Biochem. 1995, 231:704-713.
    • (1995) Eur. J. Biochem. , vol.231 , pp. 704-713
    • Van den Berg, M.A.1    Steensma, H.Y.2
  • 137
    • 0037394829 scopus 로고    scopus 로고
    • Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae
    • Van Maris A.J.A., Luttik M.A.H., Winkler A.A., Van Dijken J.P., Pronk J.T. Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2003, 69:2094-2099.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 2094-2099
    • Van Maris, A.J.A.1    Luttik, M.A.H.2    Winkler, A.A.3    Van Dijken, J.P.4    Pronk, J.T.5
  • 138
    • 2442640659 scopus 로고    scopus 로고
    • Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export
    • Van Maris A.J.A., Winkler A.A., Porro D., Van Dijken J.P., Pronk J.T. Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export. Appl. Environ. Microbiol. 2004, 70:2898-2905.
    • (2004) Appl. Environ. Microbiol. , vol.70 , pp. 2898-2905
    • Van Maris, A.J.A.1    Winkler, A.A.2    Porro, D.3    Van Dijken, J.P.4    Pronk, J.T.5
  • 140
    • 0029064219 scopus 로고
    • The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions
    • Van Roermund C.W., Elgersma Y., Singh N., Wanders R.J., Tabak H.F. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J. 1995, 14:3480-3486.
    • (1995) EMBO J. , vol.14 , pp. 3480-3486
    • Van Roermund, C.W.1    Elgersma, Y.2    Singh, N.3    Wanders, R.J.4    Tabak, H.F.5
  • 141
    • 0033231013 scopus 로고    scopus 로고
    • Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p
    • Van Roermund C.W., Hettema E.H., Van den Berg M., Tabak H.F., Wanders R.J. Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. EMBO J. 1999, 18:5843-5852.
    • (1999) EMBO J. , vol.18 , pp. 5843-5852
    • Van Roermund, C.W.1    Hettema, E.H.2    Van den Berg, M.3    Tabak, H.F.4    Wanders, R.J.5
  • 144
    • 0036471216 scopus 로고    scopus 로고
    • Carnitine biosynthesis in mammals
    • Vax F.M., Wanders R.J.A. Carnitine biosynthesis in mammals. Biochem. J. 2002, 361:417.
    • (2002) Biochem. J. , vol.361 , pp. 417
    • Vax, F.M.1    Wanders, R.J.A.2
  • 146
    • 34447543117 scopus 로고    scopus 로고
    • High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous
    • Verwaal R., Wang J., Meijnen J.P., Visser H., Sandmann G., Van Den Berg J.A., Van Ooyen A.J.J. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl. Environ. Microbiol. 2007, 73:4342-4350.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 4342-4350
    • Verwaal, R.1    Wang, J.2    Meijnen, J.P.3    Visser, H.4    Sandmann, G.5    Van Den Berg, J.A.6    Van Ooyen, A.J.J.7
  • 147
    • 33747856186 scopus 로고    scopus 로고
    • Metatool 5.0: fast and flexible elementary modes analysis
    • Von Kamp A., Schuster S. Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 2006, 22:1930-1931.
    • (2006) Bioinformatics , vol.22 , pp. 1930-1931
    • Von Kamp, A.1    Schuster, S.2
  • 148
    • 63849257508 scopus 로고    scopus 로고
    • Engineering a synthetic dual-organism system for hydrogen production
    • Waks Z., Silver P.A. Engineering a synthetic dual-organism system for hydrogen production. Appl. Environ. Microbiol. 2009, 75:1867-1875.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 1867-1875
    • Waks, Z.1    Silver, P.A.2
  • 149
  • 150
    • 84893482649 scopus 로고    scopus 로고
    • Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value
    • Yan D., Wang C., Zhou J., Liu Y., Yang M., Xing J. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour. Technol. 2014, 156:232-239.
    • (2014) Bioresour. Technol. , vol.156 , pp. 232-239
    • Yan, D.1    Wang, C.2    Zhou, J.3    Liu, Y.4    Yang, M.5    Xing, J.6
  • 152
    • 84938907608 scopus 로고    scopus 로고
    • Determination of the cytosolic NADPH/NADP ratio in Saccharomyces cerevisiae using shikimate dehydrogenase as sensor reaction
    • Zhang J., Pierick A., ten, Van Rossum H.M., Maleki Seifar R., Ras C., Daran J.-M., Heijnen J.J., Aljoscha Wahl S. Determination of the cytosolic NADPH/NADP ratio in Saccharomyces cerevisiae using shikimate dehydrogenase as sensor reaction. Sci. Rep. 2015, 5:12846.
    • (2015) Sci. Rep. , vol.5 , pp. 12846
    • Zhang, J.1    Pierick, A.2    ten, V.H.M.3    Maleki Seifar, R.4    Ras, C.5    Daran, J.-M.6    Heijnen, J.J.7    Aljoscha Wahl, S.8
  • 153
    • 84949238365 scopus 로고    scopus 로고
    • Functional pyruvate formate lyase pathway expressed with two different electron donors in Saccharomyces cerevisiae at aerobic growth
    • fov024
    • Zhang Y., Dai Z., Krivoruchko A., Chen Y., Siewers V., Nielsen J. Functional pyruvate formate lyase pathway expressed with two different electron donors in Saccharomyces cerevisiae at aerobic growth. FEMS Yeast Res. 2015, 15. fov024.
    • (2015) FEMS Yeast Res. , vol.15
    • Zhang, Y.1    Dai, Z.2    Krivoruchko, A.3    Chen, Y.4    Siewers, V.5    Nielsen, J.6
  • 154
    • 0035909958 scopus 로고    scopus 로고
    • The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes
    • Zhou Z.H., McCarthy D.B., O'Connor C.M., Reed L.J., Stoops J.K. The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. USA 2001, 98:14802-14807.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 14802-14807
    • Zhou, Z.H.1    McCarthy, D.B.2    O'Connor, C.M.3    Reed, L.J.4    Stoops, J.K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.