메뉴 건너뛰기




Volumn 8, Issue 1, 2015, Pages

Butanol production in S. cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance

Author keywords

ABE pathway; Biobutanol; Saccharomyces cerevisiae

Indexed keywords

BIOSYNTHESIS; CHAINS; ETHANOL; METABOLISM; YEAST;

EID: 84937209203     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-015-0281-4     Document Type: Article
Times cited : (48)

References (30)
  • 1
    • 34247395017 scopus 로고    scopus 로고
    • Climate change. Global warming is changing the world
    • 1:CAS:528:DC%2BD2sXksVajsr8%3D
    • Kerr RA. Climate change. Global warming is changing the world. Science. 2007;316:188-90.
    • (2007) Science , vol.316 , pp. 188-190
    • Kerr, R.A.1
  • 2
    • 84865142847 scopus 로고    scopus 로고
    • Microbial engineering for the production of advanced biofuels
    • 1:CAS:528:DC%2BC38Xht1WktL3F
    • Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels. Nature. 2012;488:320-8.
    • (2012) Nature , vol.488 , pp. 320-328
    • Peralta-Yahya, P.P.1    Zhang, F.2    Del Cardayre, S.B.3    Keasling, J.D.4
  • 3
    • 84860834629 scopus 로고    scopus 로고
    • Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol - A review
    • 1:CAS:528:DC%2BC38XltlGks70%3D
    • Laluce C, Schenberg AC, Gallardo JC, Coradello LF, Pombeiro-Sponchiado SR. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol - a review. Appl Biochem Biotechnol. 2012;166:1908-26.
    • (2012) Appl Biochem Biotechnol , vol.166 , pp. 1908-1926
    • Laluce, C.1    Schenberg, A.C.2    Gallardo, J.C.3    Coradello, L.F.4    Pombeiro-Sponchiado, S.R.5
  • 4
    • 50949109838 scopus 로고    scopus 로고
    • Biobutanol - A replacement for bioethanol?
    • 1:CAS:528:DC%2BD1cXpvFGiu7s%3D
    • Cascone R. Biobutanol - a replacement for bioethanol? Chem Eng Prog. 2008;104:S4-9.
    • (2008) Chem Eng Prog , vol.104 , pp. S4-S9
    • Cascone, R.1
  • 7
    • 84863012205 scopus 로고    scopus 로고
    • Butanol production from renewable biomass: Rediscovery of metabolic pathways and metabolic engineering
    • 1:CAS:528:DC%2BC38XhvVSgtb8%3D
    • Jang YS, Lee J, Malaviya A, Seung do Y, Cho JH, Lee SY. Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol J. 2012;7:186-98.
    • (2012) Biotechnol J , vol.7 , pp. 186-198
    • Jang, Y.S.1    Lee, J.2    Malaviya, A.3    Seung Do, Y.4    Cho, J.H.5    Lee, S.Y.6
  • 8
    • 84887999379 scopus 로고    scopus 로고
    • Prospective and development of butanol as an advanced biofuel
    • 1:CAS:528:DC%2BC3sXhsVKgtbnJ
    • Xue C, Zhao XQ, Liu CG, Chen LJ, Bai FW. Prospective and development of butanol as an advanced biofuel. Biotechnol Adv. 2013;31:1575-84.
    • (2013) Biotechnol Adv , vol.31 , pp. 1575-1584
    • Xue, C.1    Zhao, X.Q.2    Liu, C.G.3    Chen, L.J.4    Bai, F.W.5
  • 9
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries
    • 1:CAS:528:DC%2BC38XhtVCmurjF
    • Hong KK, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci. 2012;69:2671-90.
    • (2012) Cell Mol Life Sci , vol.69 , pp. 2671-2690
    • Hong, K.K.1    Nielsen, J.2
  • 10
    • 84876468510 scopus 로고    scopus 로고
    • Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources
    • 1:CAS:528:DC%2BC38Xhsleis77J
    • Lan EI, Liao JC. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol. 2013;135:339-49.
    • (2013) Bioresour Technol , vol.135 , pp. 339-349
    • Lan, E.I.1    Liao, J.C.2
  • 11
    • 79952910616 scopus 로고    scopus 로고
    • Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    • 1:CAS:528:DC%2BC3MXisFensLc%3D
    • Bond-Watts BB, Bellerose RJ, Chang MC. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol. 2011;7:222-7.
    • (2011) Nat Chem Biol , vol.7 , pp. 222-227
    • Bond-Watts, B.B.1    Bellerose, R.J.2    Chang, M.C.3
  • 12
    • 79955611425 scopus 로고    scopus 로고
    • Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli
    • 1:CAS:528:DC%2BC3MXhtVeju7fO
    • Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol. 2011;77:2905-15.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 2905-2915
    • Shen, C.R.1    Lan, E.I.2    Dekishima, Y.3    Baez, A.4    Cho, K.M.5    Liao, J.C.6
  • 13
    • 84866402290 scopus 로고    scopus 로고
    • Escherichia coli for biofuel production: Bridging the gap from promise to practice
    • 1:CAS:528:DC%2BC38Xht1CgtL3P
    • Huffer S, Roche CM, Blanch HW, Clark DS. Escherichia coli for biofuel production: bridging the gap from promise to practice. Trends Biotechnol. 2012;30:538-45.
    • (2012) Trends Biotechnol , vol.30 , pp. 538-545
    • Huffer, S.1    Roche, C.M.2    Blanch, H.W.3    Clark, D.S.4
  • 14
    • 84907546229 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers
    • Generoso WC, Schadeweg V, Oreb M, Boles E. Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin Biotechnol. 2014;33C:1-7.
    • (2014) Curr Opin Biotechnol , vol.33 C , pp. 1-7
    • Generoso, W.C.1    Schadeweg, V.2    Oreb, M.3    Boles, E.4
  • 16
    • 84937200306 scopus 로고    scopus 로고
    • Enhanced butanol production by eukaryotic Saccharomyces cerevisiae engineered to contain an improved pathway
    • 1:CAS:528:DC%2BC2cXhvVart7%2FN
    • Sakuragi H, Morisaka H, Kuroda K, Ueda M. Enhanced butanol production by eukaryotic Saccharomyces cerevisiae engineered to contain an improved pathway. Biosci Biotechnol Biochem. 2015;79:314-20.
    • (2015) Biosci Biotechnol Biochem , vol.79 , pp. 314-320
    • Sakuragi, H.1    Morisaka, H.2    Kuroda, K.3    Ueda, M.4
  • 17
    • 84884351687 scopus 로고    scopus 로고
    • Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism
    • 1:CAS:528:DC%2BC3sXht1Crur7P
    • Krivoruchko A, Serrano-Amatriain C, Chen Y, Siewers V, Nielsen J. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol. 2013;40:1051-6.
    • (2013) J Ind Microbiol Biotechnol , vol.40 , pp. 1051-1056
    • Krivoruchko, A.1    Serrano-Amatriain, C.2    Chen, Y.3    Siewers, V.4    Nielsen, J.5
  • 18
    • 84893502214 scopus 로고    scopus 로고
    • Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC2cXjslOmurk%3D
    • Si T, Luo Y, Xiao H, Zhao H. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Metab Eng. 2014;22:60-8.
    • (2014) Metab Eng , vol.22 , pp. 60-68
    • Si, T.1    Luo, Y.2    Xiao, H.3    Zhao, H.4
  • 19
    • 84876976847 scopus 로고    scopus 로고
    • A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC3sXpsFeltLk%3D
    • Branduardi P, Longo V, Berterame NM, Rossi G, Porro D. A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol Biofuels. 2013;6:68.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 68
    • Branduardi, P.1    Longo, V.2    Berterame, N.M.3    Rossi, G.4    Porro, D.5
  • 20
    • 0035890059 scopus 로고    scopus 로고
    • A novel eIF2B-dependent mechanism of translational control in yeast as a response to fusel alcohols
    • 1:CAS:528:DC%2BD3MXovFOntbo%3D
    • Ashe MP, Slaven JW, De Long SK, Ibrahimo S, Sachs AB. A novel eIF2B-dependent mechanism of translational control in yeast as a response to fusel alcohols. Embo J. 2001;20:6464-74.
    • (2001) Embo J , vol.20 , pp. 6464-6474
    • Ashe, M.P.1    Slaven, J.W.2    De Long, S.K.3    Ibrahimo, S.4    Sachs, A.B.5
  • 21
    • 77954208849 scopus 로고    scopus 로고
    • Fusel alcohols regulate translation initiation by inhibiting eIF2B to reduce ternary complex in a mechanism that may involve altering the integrity and dynamics of the eIF2B body
    • 1:CAS:528:DC%2BC3cXhtlGlsLvE
    • Taylor EJ, Campbell SG, Griffiths CD, Reid PJ, Slaven JW, Harrison RJ, et al. Fusel alcohols regulate translation initiation by inhibiting eIF2B to reduce ternary complex in a mechanism that may involve altering the integrity and dynamics of the eIF2B body. Mol Biol Cell. 2010;21:2202-16.
    • (2010) Mol Biol Cell , vol.21 , pp. 2202-2216
    • Taylor, E.J.1    Campbell, S.G.2    Griffiths, C.D.3    Reid, P.J.4    Slaven, J.W.5    Harrison, R.J.6
  • 22
    • 27144465421 scopus 로고    scopus 로고
    • Global gene expression profiling reveals widespread yet distinctive translational responses to different eukaryotic translation initiation factor 2B-targeting stress pathways
    • 1:CAS:528:DC%2BD2MXhtFOnsrbN
    • Smirnova JB, Selley JN, Sanchez-Cabo F, Carroll K, Eddy AA, McCarthy JE, et al. Global gene expression profiling reveals widespread yet distinctive translational responses to different eukaryotic translation initiation factor 2B-targeting stress pathways. Mol Cell Biol. 2005;25:9340-9.
    • (2005) Mol Cell Biol , vol.25 , pp. 9340-9349
    • Smirnova, J.B.1    Selley, J.N.2    Sanchez-Cabo, F.3    Carroll, K.4    Eddy, A.A.5    McCarthy, J.E.6
  • 23
    • 84927740669 scopus 로고    scopus 로고
    • Alcohols inhibit translation to regulate morphogenesis in C. albicans
    • 1:CAS:528:DC%2BC2MXmtFSitrs%3D
    • Egbe NE, Paget CM, Wang H, Ashe MP. Alcohols inhibit translation to regulate morphogenesis in C. albicans. Fungal Genet Biol. 2015;77:50-60.
    • (2015) Fungal Genet Biol , vol.77 , pp. 50-60
    • Egbe, N.E.1    Paget, C.M.2    Wang, H.3    Ashe, M.P.4
  • 24
    • 28844478867 scopus 로고    scopus 로고
    • eIF2B, a mediator of general and gene-specific translational control
    • 1:CAS:528:DC%2BD2MXhtFCqsLnP
    • Pavitt GD. eIF2B, a mediator of general and gene-specific translational control. Biochem Soc Trans. 2005;33:1487-92.
    • (2005) Biochem Soc Trans , vol.33 , pp. 1487-1492
    • Pavitt, G.D.1
  • 25
    • 70449686525 scopus 로고    scopus 로고
    • Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae
    • Flagfeldt DB, Siewers V, Huang L, Nielsen J. Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast. 2009;26:545-51.
    • (2009) Yeast , vol.26 , pp. 545-551
    • Flagfeldt, D.B.1    Siewers, V.2    Huang, L.3    Nielsen, J.4
  • 26
    • 0022630384 scopus 로고
    • Ty insertions at two loci account for most of the spontaneous antimycin A resistance mutations during growth at 15 degrees C of Saccharomyces cerevisiae strains lacking ADH1
    • 1:CAS:528:DyaL28Xmtlaqtg%3D%3D
    • Paquin CE, Williamson VM. Ty insertions at two loci account for most of the spontaneous antimycin A resistance mutations during growth at 15 degrees C of Saccharomyces cerevisiae strains lacking ADH1. Mol Cell Biol. 1986;6:70-9.
    • (1986) Mol Cell Biol , vol.6 , pp. 70-79
    • Paquin, C.E.1    Williamson, V.M.2
  • 27
    • 79959199873 scopus 로고    scopus 로고
    • Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast
    • 1:CAS:528:DC%2BC3MXotV2jtro%3D
    • Slavov N, Botstein D. Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast. Mol Biol Cell. 2011;22:1997-2009.
    • (2011) Mol Biol Cell , vol.22 , pp. 1997-2009
    • Slavov, N.1    Botstein, D.2
  • 30
    • 0034100041 scopus 로고    scopus 로고
    • Glucose depletion rapidly inhibits translation initiation in yeast
    • 1:CAS:528:DC%2BD3cXjslCjurY%3D
    • Ashe MP, De Long SK, Sachs AB. Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell. 2000;11:833-48.
    • (2000) Mol Biol Cell , vol.11 , pp. 833-848
    • Ashe, M.P.1    De Long, S.K.2    Sachs, A.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.