-
1
-
-
34247395017
-
Climate change. Global warming is changing the world
-
1:CAS:528:DC%2BD2sXksVajsr8%3D
-
Kerr RA. Climate change. Global warming is changing the world. Science. 2007;316:188-90.
-
(2007)
Science
, vol.316
, pp. 188-190
-
-
Kerr, R.A.1
-
2
-
-
84865142847
-
Microbial engineering for the production of advanced biofuels
-
1:CAS:528:DC%2BC38Xht1WktL3F
-
Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD. Microbial engineering for the production of advanced biofuels. Nature. 2012;488:320-8.
-
(2012)
Nature
, vol.488
, pp. 320-328
-
-
Peralta-Yahya, P.P.1
Zhang, F.2
Del Cardayre, S.B.3
Keasling, J.D.4
-
3
-
-
84860834629
-
Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol - A review
-
1:CAS:528:DC%2BC38XltlGks70%3D
-
Laluce C, Schenberg AC, Gallardo JC, Coradello LF, Pombeiro-Sponchiado SR. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol - a review. Appl Biochem Biotechnol. 2012;166:1908-26.
-
(2012)
Appl Biochem Biotechnol
, vol.166
, pp. 1908-1926
-
-
Laluce, C.1
Schenberg, A.C.2
Gallardo, J.C.3
Coradello, L.F.4
Pombeiro-Sponchiado, S.R.5
-
4
-
-
50949109838
-
Biobutanol - A replacement for bioethanol?
-
1:CAS:528:DC%2BD1cXpvFGiu7s%3D
-
Cascone R. Biobutanol - a replacement for bioethanol? Chem Eng Prog. 2008;104:S4-9.
-
(2008)
Chem Eng Prog
, vol.104
, pp. S4-S9
-
-
Cascone, R.1
-
5
-
-
69249217800
-
Problems with the microbial production of butanol
-
1:CAS:528:DC%2BD1MXhtVaitrbM
-
Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, et al. Problems with the microbial production of butanol. J Ind Microbiol Biotechnol. 2009;36:1127-38.
-
(2009)
J Ind Microbiol Biotechnol
, vol.36
, pp. 1127-1138
-
-
Zheng, Y.N.1
Li, L.Z.2
Xian, M.3
Ma, Y.J.4
Yang, J.M.5
Xu, X.6
-
7
-
-
84863012205
-
Butanol production from renewable biomass: Rediscovery of metabolic pathways and metabolic engineering
-
1:CAS:528:DC%2BC38XhvVSgtb8%3D
-
Jang YS, Lee J, Malaviya A, Seung do Y, Cho JH, Lee SY. Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol J. 2012;7:186-98.
-
(2012)
Biotechnol J
, vol.7
, pp. 186-198
-
-
Jang, Y.S.1
Lee, J.2
Malaviya, A.3
Seung Do, Y.4
Cho, J.H.5
Lee, S.Y.6
-
8
-
-
84887999379
-
Prospective and development of butanol as an advanced biofuel
-
1:CAS:528:DC%2BC3sXhsVKgtbnJ
-
Xue C, Zhao XQ, Liu CG, Chen LJ, Bai FW. Prospective and development of butanol as an advanced biofuel. Biotechnol Adv. 2013;31:1575-84.
-
(2013)
Biotechnol Adv
, vol.31
, pp. 1575-1584
-
-
Xue, C.1
Zhao, X.Q.2
Liu, C.G.3
Chen, L.J.4
Bai, F.W.5
-
9
-
-
84864186953
-
Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries
-
1:CAS:528:DC%2BC38XhtVCmurjF
-
Hong KK, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci. 2012;69:2671-90.
-
(2012)
Cell Mol Life Sci
, vol.69
, pp. 2671-2690
-
-
Hong, K.K.1
Nielsen, J.2
-
10
-
-
84876468510
-
Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources
-
1:CAS:528:DC%2BC38Xhsleis77J
-
Lan EI, Liao JC. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol. 2013;135:339-49.
-
(2013)
Bioresour Technol
, vol.135
, pp. 339-349
-
-
Lan, E.I.1
Liao, J.C.2
-
11
-
-
79952910616
-
Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
-
1:CAS:528:DC%2BC3MXisFensLc%3D
-
Bond-Watts BB, Bellerose RJ, Chang MC. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol. 2011;7:222-7.
-
(2011)
Nat Chem Biol
, vol.7
, pp. 222-227
-
-
Bond-Watts, B.B.1
Bellerose, R.J.2
Chang, M.C.3
-
12
-
-
79955611425
-
Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli
-
1:CAS:528:DC%2BC3MXhtVeju7fO
-
Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol. 2011;77:2905-15.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 2905-2915
-
-
Shen, C.R.1
Lan, E.I.2
Dekishima, Y.3
Baez, A.4
Cho, K.M.5
Liao, J.C.6
-
13
-
-
84866402290
-
Escherichia coli for biofuel production: Bridging the gap from promise to practice
-
1:CAS:528:DC%2BC38Xht1CgtL3P
-
Huffer S, Roche CM, Blanch HW, Clark DS. Escherichia coli for biofuel production: bridging the gap from promise to practice. Trends Biotechnol. 2012;30:538-45.
-
(2012)
Trends Biotechnol
, vol.30
, pp. 538-545
-
-
Huffer, S.1
Roche, C.M.2
Blanch, H.W.3
Clark, D.S.4
-
14
-
-
84907546229
-
Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers
-
Generoso WC, Schadeweg V, Oreb M, Boles E. Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin Biotechnol. 2014;33C:1-7.
-
(2014)
Curr Opin Biotechnol
, vol.33 C
, pp. 1-7
-
-
Generoso, W.C.1
Schadeweg, V.2
Oreb, M.3
Boles, E.4
-
15
-
-
58249098522
-
Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol
-
Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact. 2008;7:36.
-
(2008)
Microb Cell Fact
, vol.7
, pp. 36
-
-
Steen, E.J.1
Chan, R.2
Prasad, N.3
Myers, S.4
Petzold, C.J.5
Redding, A.6
-
16
-
-
84937200306
-
Enhanced butanol production by eukaryotic Saccharomyces cerevisiae engineered to contain an improved pathway
-
1:CAS:528:DC%2BC2cXhvVart7%2FN
-
Sakuragi H, Morisaka H, Kuroda K, Ueda M. Enhanced butanol production by eukaryotic Saccharomyces cerevisiae engineered to contain an improved pathway. Biosci Biotechnol Biochem. 2015;79:314-20.
-
(2015)
Biosci Biotechnol Biochem
, vol.79
, pp. 314-320
-
-
Sakuragi, H.1
Morisaka, H.2
Kuroda, K.3
Ueda, M.4
-
17
-
-
84884351687
-
Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism
-
1:CAS:528:DC%2BC3sXht1Crur7P
-
Krivoruchko A, Serrano-Amatriain C, Chen Y, Siewers V, Nielsen J. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol. 2013;40:1051-6.
-
(2013)
J Ind Microbiol Biotechnol
, vol.40
, pp. 1051-1056
-
-
Krivoruchko, A.1
Serrano-Amatriain, C.2
Chen, Y.3
Siewers, V.4
Nielsen, J.5
-
18
-
-
84893502214
-
Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BC2cXjslOmurk%3D
-
Si T, Luo Y, Xiao H, Zhao H. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Metab Eng. 2014;22:60-8.
-
(2014)
Metab Eng
, vol.22
, pp. 60-68
-
-
Si, T.1
Luo, Y.2
Xiao, H.3
Zhao, H.4
-
19
-
-
84876976847
-
A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BC3sXpsFeltLk%3D
-
Branduardi P, Longo V, Berterame NM, Rossi G, Porro D. A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol Biofuels. 2013;6:68.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 68
-
-
Branduardi, P.1
Longo, V.2
Berterame, N.M.3
Rossi, G.4
Porro, D.5
-
20
-
-
0035890059
-
A novel eIF2B-dependent mechanism of translational control in yeast as a response to fusel alcohols
-
1:CAS:528:DC%2BD3MXovFOntbo%3D
-
Ashe MP, Slaven JW, De Long SK, Ibrahimo S, Sachs AB. A novel eIF2B-dependent mechanism of translational control in yeast as a response to fusel alcohols. Embo J. 2001;20:6464-74.
-
(2001)
Embo J
, vol.20
, pp. 6464-6474
-
-
Ashe, M.P.1
Slaven, J.W.2
De Long, S.K.3
Ibrahimo, S.4
Sachs, A.B.5
-
21
-
-
77954208849
-
Fusel alcohols regulate translation initiation by inhibiting eIF2B to reduce ternary complex in a mechanism that may involve altering the integrity and dynamics of the eIF2B body
-
1:CAS:528:DC%2BC3cXhtlGlsLvE
-
Taylor EJ, Campbell SG, Griffiths CD, Reid PJ, Slaven JW, Harrison RJ, et al. Fusel alcohols regulate translation initiation by inhibiting eIF2B to reduce ternary complex in a mechanism that may involve altering the integrity and dynamics of the eIF2B body. Mol Biol Cell. 2010;21:2202-16.
-
(2010)
Mol Biol Cell
, vol.21
, pp. 2202-2216
-
-
Taylor, E.J.1
Campbell, S.G.2
Griffiths, C.D.3
Reid, P.J.4
Slaven, J.W.5
Harrison, R.J.6
-
22
-
-
27144465421
-
Global gene expression profiling reveals widespread yet distinctive translational responses to different eukaryotic translation initiation factor 2B-targeting stress pathways
-
1:CAS:528:DC%2BD2MXhtFOnsrbN
-
Smirnova JB, Selley JN, Sanchez-Cabo F, Carroll K, Eddy AA, McCarthy JE, et al. Global gene expression profiling reveals widespread yet distinctive translational responses to different eukaryotic translation initiation factor 2B-targeting stress pathways. Mol Cell Biol. 2005;25:9340-9.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 9340-9349
-
-
Smirnova, J.B.1
Selley, J.N.2
Sanchez-Cabo, F.3
Carroll, K.4
Eddy, A.A.5
McCarthy, J.E.6
-
23
-
-
84927740669
-
Alcohols inhibit translation to regulate morphogenesis in C. albicans
-
1:CAS:528:DC%2BC2MXmtFSitrs%3D
-
Egbe NE, Paget CM, Wang H, Ashe MP. Alcohols inhibit translation to regulate morphogenesis in C. albicans. Fungal Genet Biol. 2015;77:50-60.
-
(2015)
Fungal Genet Biol
, vol.77
, pp. 50-60
-
-
Egbe, N.E.1
Paget, C.M.2
Wang, H.3
Ashe, M.P.4
-
24
-
-
28844478867
-
eIF2B, a mediator of general and gene-specific translational control
-
1:CAS:528:DC%2BD2MXhtFCqsLnP
-
Pavitt GD. eIF2B, a mediator of general and gene-specific translational control. Biochem Soc Trans. 2005;33:1487-92.
-
(2005)
Biochem Soc Trans
, vol.33
, pp. 1487-1492
-
-
Pavitt, G.D.1
-
25
-
-
70449686525
-
Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae
-
Flagfeldt DB, Siewers V, Huang L, Nielsen J. Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast. 2009;26:545-51.
-
(2009)
Yeast
, vol.26
, pp. 545-551
-
-
Flagfeldt, D.B.1
Siewers, V.2
Huang, L.3
Nielsen, J.4
-
26
-
-
0022630384
-
Ty insertions at two loci account for most of the spontaneous antimycin A resistance mutations during growth at 15 degrees C of Saccharomyces cerevisiae strains lacking ADH1
-
1:CAS:528:DyaL28Xmtlaqtg%3D%3D
-
Paquin CE, Williamson VM. Ty insertions at two loci account for most of the spontaneous antimycin A resistance mutations during growth at 15 degrees C of Saccharomyces cerevisiae strains lacking ADH1. Mol Cell Biol. 1986;6:70-9.
-
(1986)
Mol Cell Biol
, vol.6
, pp. 70-79
-
-
Paquin, C.E.1
Williamson, V.M.2
-
27
-
-
79959199873
-
Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast
-
1:CAS:528:DC%2BC3MXotV2jtro%3D
-
Slavov N, Botstein D. Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast. Mol Biol Cell. 2011;22:1997-2009.
-
(2011)
Mol Biol Cell
, vol.22
, pp. 1997-2009
-
-
Slavov, N.1
Botstein, D.2
-
28
-
-
79955806186
-
Engineering microbial biofuel tolerance and export using efflux pumps
-
Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, et al. Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol. 2011;7:487.
-
(2011)
Mol Syst Biol
, vol.7
, pp. 487
-
-
Dunlop, M.J.1
Dossani, Z.Y.2
Szmidt, H.L.3
Chu, H.C.4
Lee, T.S.5
Keasling, J.D.6
-
30
-
-
0034100041
-
Glucose depletion rapidly inhibits translation initiation in yeast
-
1:CAS:528:DC%2BD3cXjslCjurY%3D
-
Ashe MP, De Long SK, Sachs AB. Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell. 2000;11:833-48.
-
(2000)
Mol Biol Cell
, vol.11
, pp. 833-848
-
-
Ashe, M.P.1
De Long, S.K.2
Sachs, A.B.3
|