-
1
-
-
0025221771
-
Molecular biology and biochemistry of pyruvate dehydrogenase complexes
-
Patel MS, Roche TE. 1990. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 4:3224-3233.
-
(1990)
FASEB J
, vol.4
, pp. 3224-3233
-
-
Patel, M.S.1
Roche, T.E.2
-
2
-
-
0007644072
-
Self-assembly and catalytic activity of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus
-
Domingo GJ, Chauhan HJ, Lessard IA, Fuller C, Perham RN. 1999. Self-assembly and catalytic activity of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus. Eur. J. Biochem. 266: 1136-1146. http://dx.doi.org/10.1046/j.1432-1327.1999.00966.x.
-
(1999)
Eur. J. Biochem
, vol.266
, pp. 1136-1146
-
-
Domingo, G.J.1
Chauhan, H.J.2
Lessard, I.A.3
Fuller, C.4
Perham, R.N.5
-
3
-
-
0017581245
-
Polypeptide chain stoichiometry in the self-assembly of the pyruvate dehydrogenase multienzyme complex of Escherichia coli
-
Perham RN, Hooper EA. 1977. Polypeptide chain stoichiometry in the self-assembly of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. FEBS Lett. 73:137-140. http://dx.doi.org/10.1016/0014- 5793(77)80965-4.
-
(1977)
FEBS Lett
, vol.73
, pp. 137-140
-
-
Perham, R.N.1
Hooper, E.A.2
-
4
-
-
0032537480
-
The pyruvate dehydrogenase complex from thermophilic organisms: Thermal stability and re-association from the enzyme components
-
Witzmann S, Bisswanger H. 1998. The pyruvate dehydrogenase complex from thermophilic organisms: thermal stability and re-association from the enzyme components. Biochim. Biophys. Acta 1385:341-352. http:// dx.doi.org/10.1016/S0167-4838(98)00078-8.
-
(1998)
Biochim. Biophys. Acta
, vol.1385
, pp. 341-352
-
-
Witzmann, S.1
Bisswanger, H.2
-
5
-
-
84894040387
-
Coupled incremental precursor and co-factor supply impr 3-hydroxypropionic acid production in Saccharomyces cerevisiae
-
Chen Y, Bao J, Kim IK, Siewers V, Nielsen J. 2014. Coupled incremental precursor and co-factor supply impr 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metab. Eng. 22:104-109. http://dx.doi.org/ 10.1016/j.ymben.2014.01.005.
-
(2014)
Metab. Eng
, vol.22
, pp. 104-109
-
-
Chen, Y.1
Bao, J.2
Kim, I.K.3
Siewers, V.4
Nielsen, J.5
-
6
-
-
0036311068
-
Metabolic engineering of Saccharomyces cerevisiae for production of novel lipid compounds
-
Dyer JM, Chapital DC, Kuan JW, Mullen RT, Pepperman AB. 2002. Metabolic engineering of Saccharomyces cerevisiae for production of novel lipid compounds. Appl. Microbiol. Biotechnol. 59:224 -230. http:// dx.doi.org/10.1007/s00253-002-0997-5.
-
(2002)
Appl. Microbiol. Biotechnol
, vol.59
, pp. 224-230
-
-
Dyer, J.M.1
Chapital, D.C.2
Kuan, J.W.3
Mullen, R.T.4
Pepperman, A.B.5
-
7
-
-
84870540105
-
De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae
-
Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D, van Maris AJ, Pronk JT, Daran JM. 2012. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 11:155. http://dx.doi.org/10.1186/1475-2859-11-155.
-
(2012)
Microb. Cell Fact
, vol.11
, pp. 155
-
-
Koopman, F.1
Beekwilder, J.2
Crimi, B.3
van Houwelingen, A.4
Hall, R.D.5
Bosch, D.6
van Maris, A.J.7
Pronk, J.T.8
Daran, J.M.9
-
8
-
-
33847378479
-
Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
-
Shiba Y, Paradise EM, Kirby J, Ro DK, Keasling JD. 2007. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 9:160 -168. http:// dx.doi.org/10.1016/j.ymben.2006.10.005.
-
(2007)
Metab. Eng
, vol.9
, pp. 160-168
-
-
Shiba, Y.1
Paradise, E.M.2
Kirby, J.3
Ro, D.K.4
Keasling, J.D.5
-
9
-
-
58249098522
-
Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol
-
Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD. 2008. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact. 7:36. http:// dx.doi.org/10.1186/1475-2859-7-36.
-
(2008)
Microb. Cell Fact
, vol.7
, pp. 36
-
-
Steen, E.J.1
Chan, R.2
Prasad, N.3
Myers, S.4
Petzold, C.J.5
Redding, A.6
Ouellet, M.7
Keasling, J.D.8
-
10
-
-
1542329068
-
Production of lipid compounds in the yeast Saccharomyces cerevisiae
-
Veen M, Lang C. 2004. Production of lipid compounds in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 63:635- 646. http://dx.doi.org/10.1007/s00253-003-1456-7.
-
(2004)
Appl. Microbiol. Biotechnol
, vol.63
, pp. 635-646
-
-
Veen, M.1
Lang, C.2
-
11
-
-
84864186953
-
Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries
-
Hong KK, Nielsen J. 2012. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 69:2671-2690. http://dx.doi.org/10.1007/s00018-012-0945-1.
-
(2012)
Cell. Mol. Life Sci
, vol.69
, pp. 2671-2690
-
-
Hong, K.K.1
Nielsen, J.2
-
12
-
-
0030448870
-
Pyruvate metabolism in Saccharomyces cerevisiae
-
Pronk JT, Yde Steensma H, van Dijken JP. 1996. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607-1633. http://dx.doi.org/ 10.1002/(SICI)1097-0061(199612)12:16+1607::AID-YEA70+3.0.CO; 2-4.
-
(1996)
Yeast
, vol.12
, pp. 1607-1633
-
-
Pronk, J.T.1
Yde Steensma, H.2
van Dijken, J.P.3
-
13
-
-
84877256074
-
Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
-
Avalos JL, Fink GR, Stephanopoulos G. 2013. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 31:335-341. http://dx.doi.org/ 10.1038/nbt.2509.
-
(2013)
Nat. Biotechnol
, vol.31
, pp. 335-341
-
-
Avalos, J.L.1
Fink, G.R.2
Stephanopoulos, G.3
-
14
-
-
84875279038
-
Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
-
Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J. 2013. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab. Eng. 15:48-54. http://dx.doi.org/10.1016/j.ymben.2012.11.002.
-
(2013)
Metab. Eng
, vol.15
, pp. 48-54
-
-
Chen, Y.1
Daviet, L.2
Schalk, M.3
Siewers, V.4
Nielsen, J.5
-
15
-
-
84879603106
-
Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway
-
Kocharin K, Siewers V, Nielsen J. 2013. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Biotechnol. Bioeng. 110:2216-2224. http://dx.doi.org/ 10.1002/bit.24888.
-
(2013)
Biotechnol. Bioeng
, vol.110
, pp. 2216-2224
-
-
Kocharin, K.1
Siewers, V.2
Nielsen, J.3
-
16
-
-
84884351687
-
Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism
-
Krivoruchko A, Serrano-Amatriain C, Chen Y, Siewers V, Nielsen J. 2013. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J. Ind. Microbiol. Biotechnol. 40:1051-1056. http://dx.doi.org/10.1007/s10295-013- 1296-0.
-
(2013)
J. Ind. Microbiol. Biotechnol
, vol.40
, pp. 1051-1056
-
-
Krivoruchko, A.1
Serrano-Amatriain, C.2
Chen, Y.3
Siewers, V.4
Nielsen, J.5
-
17
-
-
84874556188
-
Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae
-
Tang X, Feng H, Chen WN. 2013. Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae. Metab. Eng. 16:95-102. http://dx.doi.org/10.1016/j.ymben.2013.01.003.
-
(2013)
Metab. Eng
, vol.16
, pp. 95-102
-
-
Tang, X.1
Feng, H.2
Chen, W.N.3
-
18
-
-
84896932547
-
Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis
-
Kozak BU, van Rossum HM, Benjamin KR, Wu L, Daran JM, Pronk JT, van Maris AJ. 2014. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab. Eng. 21:46 -59. http://dx.doi.org/10.1016/ j.ymben.2013.11.005.
-
(2014)
Metab. Eng
, vol.21
, pp. 46-59
-
-
Kozak, B.U.1
van Rossum, H.M.2
Benjamin, K.R.3
Wu, L.4
Daran, J.M.5
Pronk, J.T.6
van Maris, A.J.7
-
19
-
-
0027507947
-
Differences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: Implications for their activity in vivo
-
Snoep JL, de Graef MR, Westphal AH, de Kok A, Teixeira de Mattos MJ, Neijssel OM. 1993. Differences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: implications for their activity in vivo. FEMS Microbiol. Lett. 114:279-283. http://dx.doi.org/ 10.1111/j.1574-6968.1993.tb06586.x.
-
(1993)
FEMS Microbiol. Lett
, vol.114
, pp. 279-283
-
-
Snoep, J.L.1
de Graef, M.R.2
Westphal, A.H.3
de Kok, A.4
Teixeira de Mattos, M.J.5
Neijssel, O.M.6
-
20
-
-
0026573213
-
Isolation and characterisation of the pyruvate dehydrogenase complex of anaerobically grown Enterococcus faecalis NCTC 775
-
Snoep JL, Westphal AH, Benen JA, Teixeira de Mattos MJ, Neijssel OM, de Kok A. 1992. Isolation and characterisation of the pyruvate dehydrogenase complex of anaerobically grown Enterococcus faecalis NCTC 775. Eur. J. Biochem. 203:245-250. http://dx.doi.org/10.1111/j.1432- 1033.1992.tb19853.x.
-
(1992)
Eur. J. Biochem
, vol.203
, pp. 245-250
-
-
Snoep, J.L.1
Westphal, A.H.2
Benen, J.A.3
Teixeira de Mattos, M.J.4
Neijssel, O.M.5
de Kok, A.6
-
21
-
-
46249123194
-
Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steadystate and highly dynamic conditions
-
Canelas AB, van Gulik WM, Heijnen JJ. 2008. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steadystate and highly dynamic conditions. Biotechnol. Bioeng. 100:734-743. http://dx.doi.org/10.1002/bit.21813.
-
(2008)
Biotechnol. Bioeng
, vol.100
, pp. 734-743
-
-
Canelas, A.B.1
van Gulik, W.M.2
Heijnen, J.J.3
-
22
-
-
26444504579
-
Function, attachment and synthesis of lipoic acid in Escherichia coli
-
Cronan JE, Zhao X, Jiang Y. 2005. Function, attachment and synthesis of lipoic acid in Escherichia coli. Adv. Microb. Physiol. 50:103-146. http:// dx.doi.org/10.1016/S0065-2911(05)50003-1.
-
(2005)
Adv. Microb. Physiol
, vol.50
, pp. 103-146
-
-
Cronan, J.E.1
Zhao, X.2
Jiang, Y.3
-
23
-
-
84885848221
-
The role of the Saccharomyces cerevisiae lipoate protein ligase homologue, Lip3, in lipoic acid synthesis
-
Hermes FA, Cronan JE. 2013. The role of the Saccharomyces cerevisiae lipoate protein ligase homologue, Lip3, in lipoic acid synthesis. Yeast 30: 415-427.
-
(2013)
Yeast
, vol.30
, pp. 415-427
-
-
Hermes, F.A.1
Cronan, J.E.2
-
24
-
-
79954414898
-
A novel two-gene requirement for the octanoyltransfer reaction of Bacillus subtilis lipoic acid biosynthesis
-
Martin N, Christensen QH, Mansilla MC, Cronan JE, de Mendoza D. 2011. A novel two-gene requirement for the octanoyltransfer reaction of Bacillus subtilis lipoic acid biosynthesis. Mol. Microbiol. 80:335-349. http://dx.doi.org/10.1111/j.1365-2958.2011.07597.x.
-
(2011)
Mol. Microbiol
, vol.80
, pp. 335-349
-
-
Martin, N.1
Christensen, Q.H.2
Mansilla, M.C.3
Cronan, J.E.4
de Mendoza, D.5
-
25
-
-
0027062806
-
Cloning and disruption of a gene required for growth on acetate but not on ethanol: The acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae
-
De Virgilio C, Burckert N, Barth G, Neuhaus JM, Boller T, Wiemken A. 1992. Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae. Yeast 8:1043-1051. http://dx.doi.org/10.1002/yea.320081207.
-
(1992)
Yeast
, vol.8
, pp. 1043-1051
-
-
De Virgilio, C.1
Burckert, N.2
Barth, G.3
Neuhaus, J.M.4
Boller, T.5
Wiemken, A.6
-
26
-
-
0029134555
-
ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose
-
van den Berg MA, Steensma HY. 1995. ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose. Eur. J. Biochem. 231:704 -713. http://dx.doi.org/10.1111/j.1432- 1033.1995.tb20751.x.
-
(1995)
Eur. J. Biochem
, vol.231
, pp. 704-713
-
-
van den Berg, M.A.1
Steensma, H.Y.2
-
27
-
-
0030746946
-
The Saccharomyces cerevisiae acetyl-coenzyme A synthetase encoded by the ACS1 gene, but not the ACS2-encoded enzyme, is subject to glucose catabolite inactivation
-
de Jong-Gubbels P, van den Berg MA, Steensma HY, van Dijken JP, Pronk JT. 1997. The Saccharomyces cerevisiae acetyl-coenzyme A synthetase encoded by the ACS1 gene, but not the ACS2-encoded enzyme, is subject to glucose catabolite inactivation. FEMS Microbiol. Lett. 153: 75-81. http://dx.doi.org/10.1016/S0378-1097(97)00236-X.
-
(1997)
FEMS Microbiol. Lett
, vol.153
, pp. 75-81
-
-
de Jong-Gubbels, P.1
van den Berg, M.A.2
Steensma, H.Y.3
van Dijken, J.P.4
Pronk, J.T.5
-
28
-
-
0029802611
-
The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation
-
van den Berg MA, de Jong-Gubbels P, Kortland CJ, van Dijken JP, Pronk JT, Steensma HY. 1996. The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J. Biol. Chem. 271:28953-28959. http://dx.doi.org/ 10.1074/jbc.271.46.28953.
-
(1996)
J. Biol. Chem
, vol.271
, pp. 28953-28959
-
-
van den Berg, M.A.1
de Jong-Gubbels, P.2
Kortland, C.J.3
van Dijken, J.P.4
Pronk, J.T.5
Steensma, H.Y.6
-
29
-
-
0032544505
-
The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH
-
Luttik MA, Overkamp KM, Kötter P, de Vries S, van Dijken JP, Pronk JT. 1998. The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J. Biol. Chem. 273:24529-24534. http://dx.doi.org/ 10.1074/jbc.273.38.24529.
-
(1998)
J. Biol. Chem
, vol.273
, pp. 24529-24534
-
-
Luttik, M.A.1
Overkamp, K.M.2
Kötter, P.3
de Vries, S.4
van Dijken, J.P.5
Pronk, J.T.6
-
30
-
-
84869215170
-
Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae
-
Henriksen P, Wagner SA, Weinert BT, Sharma S, Bacinskaja G, Rehman M, Juffer AH, Walther TC, Lisby M, Choudhary C. 2012. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol. Cell. Proteomics 11:1510-1522. http://dx.doi.org/10.1074/mcp.M112.017251.
-
(2012)
Mol. Cell. Proteomics
, vol.11
, pp. 1510-1522
-
-
Henriksen, P.1
Wagner, S.A.2
Weinert, B.T.3
Sharma, S.4
Bacinskaja, G.5
Rehman, M.6
Juffer, A.H.7
Walther, T.C.8
Lisby, M.9
Choudhary, C.10
-
31
-
-
62149143727
-
Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis
-
Lin YY, Lu JY, Zhang J, Walter W, Dang W, Wan J, Tao SC, Qian J, Zhao Y, Boeke JD, Berger SL, Zhu H. 2009. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 136:1073-1084. http://dx.doi.org/10.1016/j.cell.2009.01.033.
-
(2009)
Cell
, vol.136
, pp. 1073-1084
-
-
Lin, Y.Y.1
Lu, J.Y.2
Zhang, J.3
Walter, W.4
Dang, W.5
Wan, J.6
Tao, S.C.7
Qian, J.8
Zhao, Y.9
Boeke, J.D.10
Berger, S.L.11
Zhu, H.12
-
32
-
-
80052939858
-
Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction
-
Lu JY, Lin YY, Sheu JC, Wu JT, Lee FJ, Chen Y, Lin MI, Chiang FT, Tai TY, Berger SL, Zhao Y, Tsai KS, Zhu H, Chuang LM, Boeke JD. 2011. Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 146:969 -979. http://dx.doi.org/10.1016/ j.cell.2011.07.044.
-
(2011)
Cell
, vol.146
, pp. 969-979
-
-
Lu, J.Y.1
Lin, Y.Y.2
Sheu, J.C.3
Wu, J.T.4
Lee, F.J.5
Chen, Y.6
Lin, M.I.7
Chiang, F.T.8
Tai, T.Y.9
Berger, S.L.10
Zhao, Y.11
Tsai, K.S.12
Zhu, H.13
Chuang, L.M.14
Boeke, J.D.15
-
33
-
-
84876891033
-
Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae
-
Shi L, Tu BP. 2013. Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 110:7318 -7323. http://dx.doi.org/ 10.1073/pnas.1302490110.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A
, vol.110
, pp. 7318-7323
-
-
Shi, L.1
Tu, B.P.2
-
34
-
-
84898012537
-
Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae
-
Weinert BT, Iesmantavicius V, Moustafa T, Schölz C, Wagner SA, Magnes C, Zechner R, Choudhary C. 2014. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol. Syst. Biol. 10:716. http:// dx.doi.org/10.1002/msb.134766.
-
(2014)
Mol. Syst. Biol
, vol.10
, pp. 716
-
-
Weinert, B.T.1
Iesmantavicius, V.2
Moustafa, T.3
Schölz, C.4
Wagner, S.A.5
Magnes, C.6
Zechner, R.7
Choudhary, C.8
-
35
-
-
33745557847
-
Nucleocytosolic acetyl-coenzyme A synthetase is required for histone acetylation and global transcription
-
Takahashi H, McCaffery JM, Irizarry RA, Boeke JD. 2006. Nucleocytosolic acetyl-coenzyme A synthetase is required for histone acetylation and global transcription. Mol. Cell 23:207-217. http://dx.doi.org/10.1016/ j.molcel.2006.05.040.
-
(2006)
Mol. Cell
, vol.23
, pp. 207-217
-
-
Takahashi, H.1
McCaffery, J.M.2
Irizarry, R.A.3
Boeke, J.D.4
-
36
-
-
21344471138
-
Real-time RT-PCR normalisation; strategies and considerations
-
Huggett J, Dheda K, Bustin S, Zumla A. 2005. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 6:279-284. http://dx.doi.org/10.1038/sj.gene.6364190.
-
(2005)
Genes Immun
, vol.6
, pp. 279-284
-
-
Huggett, J.1
Dheda, K.2
Bustin, S.3
Zumla, A.4
-
37
-
-
0035872909
-
The isolation and characterisation of a Saccharomyces cerevisiae gene (LIP2) involved in the attachment of lipoic acid groups to mitochondrial enzymes
-
Marvin ME, Williams PH, Cashmore AM. 2001. The isolation and characterisation of a Saccharomyces cerevisiae gene (LIP2) involved in the attachment of lipoic acid groups to mitochondrial enzymes. FEMS Microbiol. Lett. 199:131-136. http://dx.doi.org/10.1111/j.1574- 6968.2001.tb10663.x.
-
(2001)
FEMS Microbiol. Lett
, vol.199
, pp. 131-136
-
-
Marvin, M.E.1
Williams, P.H.2
Cashmore, A.M.3
-
38
-
-
0027292252
-
Isolation and characterization of LIP5. A lipoate biosynthetic locus of Saccharomyces cerevisiae
-
Sulo P, Martin NC. 1993. Isolation and characterization of LIP5. A lipoate biosynthetic locus of Saccharomyces cerevisiae. J. Biol. Chem. 268: 17634-17639.
-
(1993)
J. Biol. Chem
, vol.268
, pp. 17634-17639
-
-
Sulo, P.1
Martin, N.C.2
-
39
-
-
69949124132
-
Lipoic acid synthesis and attachment in yeast mitochondria
-
Schonauer MS, Kastaniotis AJ, Kursu VA, Hiltunen JK, Dieckmann CL. 2009. Lipoic acid synthesis and attachment in yeast mitochondria. J. Biol. Chem. 284:23234-23242. http://dx.doi.org/10.1074/jbc.M109.015594.
-
(2009)
J. Biol. Chem
, vol.284
, pp. 23234-23242
-
-
Schonauer, M.S.1
Kastaniotis, A.J.2
Kursu, V.A.3
Hiltunen, J.K.4
Dieckmann, C.L.5
-
40
-
-
84901808659
-
Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
-
Lian J, Si T, Nair NU, Zhao H. 2014. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab. Eng. 24:139-149. http://dx.doi.org/10.1016/j.ymben.2014.05.010.
-
(2014)
Metab. Eng
, vol.24
, pp. 139-149
-
-
Lian, J.1
Si, T.2
Nair, N.U.3
Zhao, H.4
-
41
-
-
0017403869
-
Selfassembly and catalytic activity of the pyruvate dehydrogenase multienzyme complex of Escherichia coli
-
Bates DL, Danson MJ, Hale G, Hooper EA, Perham RN. 1977. Selfassembly and catalytic activity of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. Nature 268:313-316. http://dx.doi.org/ 10.1038/268313a0.
-
(1977)
Nature
, vol.268
, pp. 313-316
-
-
Bates, D.L.1
Danson, M.J.2
Hale, G.3
Hooper, E.A.4
Perham, R.N.5
-
42
-
-
0030898068
-
Improvement of diffraction quality upon rehydration of dehydrated icosahedral Enterococcus faecalis pyruvate dehydrogenase core crystals
-
Izard T, Sarfaty S, Westphal A, de Kok A, Hol WG. 1997. Improvement of diffraction quality upon rehydration of dehydrated icosahedral Enterococcus faecalis pyruvate dehydrogenase core crystals. Protein Sci. 6:913-915.
-
(1997)
Protein Sci
, vol.6
, pp. 913-915
-
-
Izard, T.1
Sarfaty, S.2
Westphal, A.3
de Kok, A.4
Hol, W.G.5
-
43
-
-
0019500657
-
NADH inhibition and NAD activation of Escherichia coli lipoamide dehydrogenase catalyzing the NADH-lipoamide reaction
-
Wilkinson KD, Williams CH, Jr. 1981. NADH inhibition and NAD activation of Escherichia coli lipoamide dehydrogenase catalyzing the NADH-lipoamide reaction. J. Biol. Chem. 256:2307-2314.
-
(1981)
J. Biol. Chem
, vol.256
, pp. 2307-2314
-
-
Wilkinson, K.D.1
Williams, C.H.2
-
44
-
-
2442684544
-
Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae
-
Sonderegger M, Schümperli M, Sauer U. 2004. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 70:2892-2897. http://dx.doi.org/ 10.1128/AEM.70.5.2892-2897.2004.
-
(2004)
Appl. Environ. Microbiol
, vol.70
, pp. 2892-2897
-
-
Sonderegger, M.1
Schümperli, M.2
Sauer, U.3
-
45
-
-
34247580875
-
25 yeast genetic strain and plasmid collections
-
Entian KD, Kotter P. 2007. 25 yeast genetic strain and plasmid collections. Methods Mol. Biol. 36:629-666.
-
(2007)
Methods Mol. Biol
, vol.36
, pp. 629-666
-
-
Entian, K.D.1
Kotter, P.2
-
46
-
-
84858729135
-
De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology
-
Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik MA, Daran-Lapujade P, Vongsangnak W, Nielsen J, Heijne WH, Klaassen P, Paddon CJ, Platt D, Kotter P, van Ham RC, Reinders MJ, Pronk JT, de Ridder D, Daran JM. 2012. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb. Cell Fact. 11:36. http://dx.doi.org/10.1186/1475-2859-11-36.
-
(2012)
Microb. Cell Fact
, vol.11
, pp. 36
-
-
Nijkamp, J.F.1
van den Broek, M.2
Datema, E.3
de Kok, S.4
Bosman, L.5
Luttik, M.A.6
Daran-Lapujade, P.7
Vongsangnak, W.8
Nielsen, J.9
Heijne, W.H.10
Klaassen, P.11
Paddon, C.J.12
Platt, D.13
Kotter, P.14
van Ham, R.C.15
Reinders, M.J.16
Pronk, J.T.17
de Ridder, D.18
Daran, J.M.19
-
47
-
-
0026710123
-
Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
-
Verduyn C, Postma E, Scheffers WA, van Dijken JP. 1992. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501-517. http://dx.doi.org/10.1002/yea.320080703.
-
(1992)
Yeast
, vol.8
, pp. 501-517
-
-
Verduyn, C.1
Postma, E.2
Scheffers, W.A.3
van Dijken, J.P.4
-
48
-
-
0036249933
-
Auxotrophic yeast strains in fundamental and applied research
-
Pronk JT. 2002. Auxotrophic yeast strains in fundamental and applied research. Appl. Environ. Microbiol. 68:2095-2100. http://dx.doi.org/ 10.1128/AEM.68.5.2095-2100.2002.
-
(2002)
Appl. Environ. Microbiol
, vol.68
, pp. 2095-2100
-
-
Pronk, J.T.1
-
49
-
-
84908429728
-
A method for achieving improved polypeptide expression
-
WO/2008/000632
-
Roubos JA, v. Peij NNME. 2008. A method for achieving improved polypeptide expression. International patent WO/2008/000632.
-
(2008)
International patent
-
-
Roubos, J.A.1
v. Peij, N.N.M.E.2
-
50
-
-
84877272995
-
A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60-bp synthetic recombination sequences
-
Kuijpers NG, Solis-Escalante D, Bosman L, van den Broek M, Pronk JT, Daran JM, Daran-Lapujade P. 2013. A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60-bp synthetic recombination sequences. Microb. Cell Fact. 12:47. http://dx.doi.org/10.1186/1475-2859-12-47.
-
(2013)
Microb. Cell Fact
, vol.12
, pp. 47
-
-
Kuijpers, N.G.1
Solis-Escalante, D.2
Bosman, L.3
van den Broek, M.4
Pronk, J.T.5
Daran, J.M.6
Daran-Lapujade, P.7
-
51
-
-
0036270543
-
Transformation of yeast by lithium acetate/ single-stranded carrier DNA/polyethylene glycol method
-
Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/ single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350:87-96. http://dx.doi.org/10.1016/S0076-6879(02)50957-5.
-
(2002)
Methods Enzymol
, vol.350
, pp. 87-96
-
-
Gietz, R.D.1
Woods, R.A.2
-
52
-
-
0037088811
-
A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
-
Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. 2002. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 30:e23. http://dx.doi.org/ 10.1093/nar/30.6.e23.
-
(2002)
Nucleic Acids Res
, vol.30
-
-
Gueldener, U.1
Heinisch, J.2
Koehler, G.J.3
Voss, D.4
Hegemann, J.H.5
-
53
-
-
84866145291
-
An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae
-
Oud B, Flores CL, Gancedo C, Zhang X, Trueheart J, Daran JM, Pronk JT, van Maris AJ. 2012. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb. Cell Fact. 11:131. http://dx.doi.org/10.1186/ 1475-2859-11-131.
-
(2012)
Microb. Cell Fact
, vol.11
, pp. 131
-
-
Oud, B.1
Flores, C.L.2
Gancedo, C.3
Zhang, X.4
Trueheart, J.5
Daran, J.M.6
Pronk, J.T.7
van Maris, A.J.8
-
54
-
-
80052022800
-
Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase
-
de Kok S, Yilmaz D, Suir E, Pronk JT, Daran JM, van Maris AJ. 2011. Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase. Metab. Eng. 13:518-526. http://dx.doi.org/10.1016/j.ymben.2011.06.001.
-
(2011)
Metab. Eng
, vol.13
, pp. 518-526
-
-
de Kok, S.1
Yilmaz, D.2
Suir, E.3
Pronk, J.T.4
Daran, J.M.5
van Maris, A.J.6
-
55
-
-
75749134466
-
Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor
-
Guadalupe Medina V, Almering MJ, van Maris AJ, Pronk JT. 2010. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl. Environ. Microbiol. 76:190 -195. http://dx.doi.org/10.1128/ AEM.01772-09.
-
(2010)
Appl. Environ. Microbiol
, vol.76
, pp. 190-195
-
-
Guadalupe Medina, V.1
Almering, M.J.2
van Maris, A.J.3
Pronk, J.T.4
-
56
-
-
0038034719
-
Critical evaluation of sampling techniques for residual glucose determination in carbon-limited chemostat culture of Saccharomyces cerevisiae
-
Mashego MR, van Gulik WM, Vinke JL, Heijnen JJ. 2003. Critical evaluation of sampling techniques for residual glucose determination in carbon-limited chemostat culture of Saccharomyces cerevisiae. Biotechnol. Bioeng. 83:395-399. http://dx.doi.org/10.1002/bit.10683.
-
(2003)
Biotechnol. Bioeng
, vol.83
, pp. 395-399
-
-
Mashego, M.R.1
van Gulik, W.M.2
Vinke, J.L.3
Heijnen, J.J.4
-
58
-
-
0030851877
-
Metabolic responses of pyruvate decarboxylase-negative Saccharomyces cerevisiae to glucose excess
-
Flikweert MT, van Dijken JP, Pronk JT. 1997. Metabolic responses of pyruvate decarboxylase-negative Saccharomyces cerevisiae to glucose excess. Appl. Environ. Microbiol. 63:3399-3404.
-
(1997)
Appl. Environ. Microbiol
, vol.63
, pp. 3399-3404
-
-
Flikweert, M.T.1
van Dijken, J.P.2
Pronk, J.T.3
-
59
-
-
0026713389
-
Characterization of Saccharomyces cerevisiae mutants lacking the E1+ subunit of the pyruvate dehydrogenase complex
-
Wenzel TJ, van den Berg MA, Visser W, van den Berg JA, Steensma HY. 1992. Characterization of Saccharomyces cerevisiae mutants lacking the E1+ subunit of the pyruvate dehydrogenase complex. Eur. J. Biochem. 209:697-705. http://dx.doi.org/10.1111/j.1432-1033.1992.tb17338.x.
-
(1992)
Eur. J. Biochem
, vol.209
, pp. 697-705
-
-
Wenzel, T.J.1
van den Berg, M.A.2
Visser, W.3
van den Berg, J.A.4
Steensma, H.Y.5
-
60
-
-
0015243294
-
The subunit structure of the Escherichia coli K-12 pyruvate dehydrogenase complex. The dihydrolipoamide transacetylase component
-
Vogel O, Beikirch H, Muller H, Henning U. 1971. The subunit structure of the Escherichia coli K-12 pyruvate dehydrogenase complex. The dihydrolipoamide transacetylase component. Eur. J. Biochem. 20:169-178. http://dx.doi.org/10.1111/j.1432-1033.1971.tb01375.x.
-
(1971)
Eur. J. Biochem
, vol.20
, pp. 169-178
-
-
Vogel, O.1
Beikirch, H.2
Muller, H.3
Henning, U.4
-
61
-
-
79961188551
-
Scale-down of penicillin production in Penicillium chrysogenum
-
de Jonge LP, Buijs NA, ten Pierick A, Deshmukh A, Zhao Z, Kiel JA, Heijnen JJ, van Gulik WM. 2011. Scale-down of penicillin production in Penicillium chrysogenum. Biotechnol. J. 6:944 -958. http://dx.doi.org/ 10.1002/biot.201000409.
-
(2011)
Biotechnol. J
, vol.6
, pp. 944-958
-
-
de Jonge, L.P.1
Buijs, N.A.2
ten Pierick, A.3
Deshmukh, A.4
Zhao, Z.5
Kiel, J.A.6
Heijnen, J.J.7
van Gulik, W.M.8
-
62
-
-
33846165487
-
Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation
-
Lu P, Vogel C, Wang R, Yao X, Marcotte EM. 2007. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol. 25:117-124. http:// dx.doi.org/10.1038/nbt1270.
-
(2007)
Nat. Biotechnol
, vol.25
, pp. 117-124
-
-
Lu, P.1
Vogel, C.2
Wang, R.3
Yao, X.4
Marcotte, E.M.5
-
63
-
-
76149132991
-
Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to hop iso-_-acids
-
Hazelwood LA, Walsh MC, Pronk JT, Daran JM. 2010. Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to hop iso-_-acids. Appl. Environ. Microbiol. 76:318 -328. http://dx.doi.org/10.1128/AEM.01457-09.
-
(2010)
Appl. Environ. Microbiol
, vol.76
, pp. 318-328
-
-
Hazelwood, L.A.1
Walsh, M.C.2
Pronk, J.T.3
Daran, J.M.4
-
64
-
-
67649884743
-
Fast and accurate short read alignment with Burrows-Wheeler transform
-
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754 -1760. http:// dx.doi.org/10.1093/bioinformatics/btp324.
-
(2009)
Bioinformatics
, vol.25
, pp. 1754-1760
-
-
Li, H.1
Durbin, R.2
-
65
-
-
77952123055
-
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
-
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28:-511-515. http:// dx.doi.org/10.1038/nbt.1621.
-
(2010)
Nat. Biotechnol
, vol.28
, pp. -511-515
-
-
Trapnell, C.1
Williams, B.A.2
Pertea, G.3
Mortazavi, A.4
Kwan, G.5
van Baren, M.J.6
Salzberg, S.L.7
Wold, B.J.8
Pachter, L.9
-
66
-
-
33847184205
-
Exploiting combinatorial cultivation conditions to infer transcriptional regulation
-
Knijnenburg TA, de Winde JH, Daran JM, Daran-Lapujade P, Pronk JT, Reinders MJ, Wessels LF. 2007. Exploiting combinatorial cultivation conditions to infer transcriptional regulation. BMC Genomics 8:25. http://dx.doi.org/10.1186/1471-2164-8-25.
-
(2007)
BMC Genomics
, vol.8
, pp. 25
-
-
Knijnenburg, T.A.1
de Winde, J.H.2
Daran, J.M.3
Daran-Lapujade, P.4
Pronk, J.T.5
Reinders, M.J.6
Wessels, L.F.7
-
67
-
-
0026512939
-
Multifunctional yeast high-copy-number shuttle vectors
-
Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110: 119-122. http://dx.doi.org/10.1016/0378-1119(92)90454-W.
-
(1992)
Gene
, vol.110
, pp. 119-122
-
-
Christianson, T.W.1
Sikorski, R.S.2
Dante, M.3
Shero, J.H.4
Hieter, P.5
-
68
-
-
0024669291
-
A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
-
Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19-27.
-
(1989)
Genetics
, vol.122
, pp. 19-27
-
-
Sikorski, R.S.1
Hieter, P.2
|