-
1
-
-
80051704380
-
Engineering microbial factories for synthesis of value-added products
-
Du, J., Shao, Z., and Zhao, H. (2011) Engineering microbial factories for synthesis of value-added products J. Ind. Microbiol. Biotechnol. 38, 873-890
-
(2011)
J. Ind. Microbiol. Biotechnol.
, vol.38
, pp. 873-890
-
-
Du, J.1
Shao, Z.2
Zhao, H.3
-
2
-
-
84864186953
-
Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries
-
Hong, K. K. and Nielsen, J. (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries Cell. Mol. Life Sci. 69, 2671-2690
-
(2012)
Cell. Mol. Life Sci.
, vol.69
, pp. 2671-2690
-
-
Hong, K.K.1
Nielsen, J.2
-
3
-
-
84869465095
-
From fields to fuels: Recent advances in the microbial production of biofuels
-
Kung, Y., Runguphan, W., and Keasling, J. D. (2012) From fields to fuels: recent advances in the microbial production of biofuels ACS Synth. Biol. 1, 498-513
-
(2012)
ACS Synth. Biol.
, vol.1
, pp. 498-513
-
-
Kung, Y.1
Runguphan, W.2
Keasling, J.D.3
-
4
-
-
84896297653
-
Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R, 3R)-butanediol
-
Lian, J., Chao, R., and Zhao, H. (2014) Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R, 3R)-butanediol Metab. Eng. 23, 92-99
-
(2014)
Metab. Eng.
, vol.23
, pp. 92-99
-
-
Lian, J.1
Chao, R.2
Zhao, H.3
-
5
-
-
80052647009
-
Metabolic engineering of microbial pathways for advanced biofuels production
-
Zhang, F., Rodriguez, S., and Keasling, J. D. (2011) Metabolic engineering of microbial pathways for advanced biofuels production Curr. Opin. Biotechnol. 22, 775-783
-
(2011)
Curr. Opin. Biotechnol.
, vol.22
, pp. 775-783
-
-
Zhang, F.1
Rodriguez, S.2
Keasling, J.D.3
-
6
-
-
78650570829
-
Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals
-
Handke, P., Lynch, S. A., and Gill, R. T. (2011) Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals Metab. Eng. 13, 28-37
-
(2011)
Metab. Eng.
, vol.13
, pp. 28-37
-
-
Handke, P.1
Lynch, S.A.2
Gill, R.T.3
-
7
-
-
84874864639
-
Expanding the product profile of a microbial alkane biosynthetic pathway
-
Harger, M., Zheng, L., Moon, A., Ager, C., An, J. H., Choe, C., Lai, Y. L., Mo, B., Zong, D., Smith, M. D., Egbert, R. G., Mills, J. H., Baker, D., Pultz, I. S., and Siegel, J. B. (2013) Expanding the product profile of a microbial alkane biosynthetic pathway ACS Synth. Biol. 2, 59-62
-
(2013)
ACS Synth. Biol.
, vol.2
, pp. 59-62
-
-
Harger, M.1
Zheng, L.2
Moon, A.3
Ager, C.4
An, J.H.5
Choe, C.6
Lai, Y.L.7
Mo, B.8
Zong, D.9
Smith, M.D.10
Egbert, R.G.11
Mills, J.H.12
Baker, D.13
Pultz, I.S.14
Siegel, J.B.15
-
8
-
-
77955481009
-
Current understanding of fatty acid biosynthesis and the acyl carrier protein
-
Chan, D. I. and Vogel, H. J. (2010) Current understanding of fatty acid biosynthesis and the acyl carrier protein Biochem. J. 430, 1-19
-
(2010)
Biochem. J.
, vol.430
, pp. 1-19
-
-
Chan, D.I.1
Vogel, H.J.2
-
9
-
-
84869122829
-
Engineering Escherichia coli to synthesize free fatty acids
-
Lennen, R. M. and Pfleger, B. F. (2012) Engineering Escherichia coli to synthesize free fatty acids Trends Biotechnol. 30, 659-667
-
(2012)
Trends Biotechnol.
, vol.30
, pp. 659-667
-
-
Lennen, R.M.1
Pfleger, B.F.2
-
10
-
-
84924239544
-
Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator
-
Liu, D., Xiao, Y., Evans, B., and Zhang, F. (2013) Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator ACS Synth. Biol. 10.1021/sb400158w
-
(2013)
ACS Synth. Biol.
-
-
Liu, D.1
Xiao, Y.2
Evans, B.3
Zhang, F.4
-
11
-
-
0141861070
-
Fatty acid metabolism in Saccharomyces cerevisiae
-
van Roermund, C. W., Waterham, H. R., Ijlst, L., and Wanders, R. J. (2003) Fatty acid metabolism in Saccharomyces cerevisiae Cell. Mol. Life Sci. 60, 1838-1851
-
(2003)
Cell. Mol. Life Sci.
, vol.60
, pp. 1838-1851
-
-
Van Roermund, C.W.1
Waterham, H.R.2
Ijlst, L.3
Wanders, R.J.4
-
12
-
-
0034933704
-
The genetics of fatty acid metabolism in Saccharomyces cerevisiae
-
Trotter, P. J. (2001) The genetics of fatty acid metabolism in Saccharomyces cerevisiae Annu. Rev. Nutr. 21, 97-119
-
(2001)
Annu. Rev. Nutr.
, vol.21
, pp. 97-119
-
-
Trotter, P.J.1
-
13
-
-
80051941601
-
Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals
-
Dellomonaco, C., Clomburg, J. M., Miller, E. N., and Gonzalez, R. (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals Nature 476, 355-359
-
(2011)
Nature
, vol.476
, pp. 355-359
-
-
Dellomonaco, C.1
Clomburg, J.M.2
Miller, E.N.3
Gonzalez, R.4
-
14
-
-
84869472029
-
A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle
-
Clomburg, J. M., Vick, J. E., Blankschien, M. D., Rodriguez-Moya, M., and Gonzalez, R. (2012) A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle ACS Synth. Biol. 1, 541-554
-
(2012)
ACS Synth. Biol.
, vol.1
, pp. 541-554
-
-
Clomburg, J.M.1
Vick, J.E.2
Blankschien, M.D.3
Rodriguez-Moya, M.4
Gonzalez, R.5
-
15
-
-
84896129574
-
Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n -butanol
-
Fisher, M. A., Boyarskiy, S., Yamada, M. R., Kong, N., Bauer, S., and Tullman-Ercek, D. (2013) Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n -butanol ACS Synth. Biol. 3, 30-40
-
(2013)
ACS Synth. Biol.
, vol.3
, pp. 30-40
-
-
Fisher, M.A.1
Boyarskiy, S.2
Yamada, M.R.3
Kong, N.4
Bauer, S.5
Tullman-Ercek, D.6
-
16
-
-
84875580562
-
Functional display of complex cellulosomes on the yeast surface via adaptive assembly
-
Tsai, S. L., DaSilva, N. A., and Chen, W. (2013) Functional display of complex cellulosomes on the yeast surface via adaptive assembly ACS Synth. Biol. 2, 14-21
-
(2013)
ACS Synth. Biol.
, vol.2
, pp. 14-21
-
-
Tsai, S.L.1
Dasilva, N.A.2
Chen, W.3
-
17
-
-
84868252437
-
A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae
-
Yamanishi, M. and Matsuyama, T. (2012) A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae ACS Synth. Biol. 1, 172-180
-
(2012)
ACS Synth. Biol.
, vol.1
, pp. 172-180
-
-
Yamanishi, M.1
Matsuyama, T.2
-
18
-
-
84900873278
-
Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering
-
Crook, N. C., Schmitz, A. C., and Alper, H. S. (2014) Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering ACS Synth. Biol. 3, 307-313
-
(2014)
ACS Synth. Biol.
, vol.3
, pp. 307-313
-
-
Crook, N.C.1
Schmitz, A.C.2
Alper, H.S.3
-
19
-
-
84879762383
-
A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a "terminatome" toolbox
-
Yamanishi, M., Ito, Y., Kintaka, R., Imamura, C., Katahira, S., Ikeuchi, A., Moriya, H., and Matsuyama, T. (2013) A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a "terminatome" toolbox ACS Synth. Biol. 2, 337-347
-
(2013)
ACS Synth. Biol.
, vol.2
, pp. 337-347
-
-
Yamanishi, M.1
Ito, Y.2
Kintaka, R.3
Imamura, C.4
Katahira, S.5
Ikeuchi, A.6
Moriya, H.7
Matsuyama, T.8
-
20
-
-
0029416813
-
β-Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: A century of continued progress
-
Kunau, W. H., Dommes, V., and Schulz, H. (1995) β-Oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress Prog. Lipid Res. 34, 267-342
-
(1995)
Prog. Lipid Res.
, vol.34
, pp. 267-342
-
-
Kunau, W.H.1
Dommes, V.2
Schulz, H.3
-
21
-
-
0037240787
-
A new Escherichia coli metabolic competency: Growth on fatty acids by a novel anaerobic β-oxidation pathway
-
Campbell, J. W., Morgan-Kiss, R. M., and Cronan, J. E. (2003) A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic β-oxidation pathway Mol. Microbiol. 47, 793-805
-
(2003)
Mol. Microbiol.
, vol.47
, pp. 793-805
-
-
Campbell, J.W.1
Morgan-Kiss, R.M.2
Cronan, J.E.3
-
22
-
-
0037383706
-
The biochemistry of peroxisomal β-oxidation in the yeast Saccharomyces cerevisiae
-
Hiltunen, J. K., Mursula, A. M., Rottensteiner, H., Wierenga, R. K., Kastaniotis, A. J., and Gurvitz, A. (2003) The biochemistry of peroxisomal β-oxidation in the yeast Saccharomyces cerevisiae FEMS Microbiol. Rev. 27, 35-64
-
(2003)
FEMS Microbiol. Rev.
, vol.27
, pp. 35-64
-
-
Hiltunen, J.K.1
Mursula, A.M.2
Rottensteiner, H.3
Wierenga, R.K.4
Kastaniotis, A.J.5
Gurvitz, A.6
-
23
-
-
59649108349
-
DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
-
Shao, Z., Zhao, H., and Zhao, H. (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways Nucleic Acids Res. 37, e16
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 16
-
-
Shao, Z.1
Zhao, H.2
Zhao, H.3
-
24
-
-
33845326985
-
Peroxisomal β-oxidation - A metabolic pathway with multiple functions
-
Poirier, Y., Antonenkov, V. D., Glumoff, T., and Hiltunen, J. K. (2006) Peroxisomal β-oxidation - a metabolic pathway with multiple functions Biochim. Biophys. Acta 1763, 1413-1426
-
(2006)
Biochim. Biophys. Acta
, vol.1763
, pp. 1413-1426
-
-
Poirier, Y.1
Antonenkov, V.D.2
Glumoff, T.3
Hiltunen, J.K.4
-
25
-
-
0029915525
-
Computational method to predict mitochondrially imported proteins and their targeting sequences
-
Claros, M. G. and Vincens, P. (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences Eur. J. Biochem. 241, 779-786
-
(1996)
Eur. J. Biochem.
, vol.241
, pp. 779-786
-
-
Claros, M.G.1
Vincens, P.2
-
26
-
-
75549083436
-
PeroxisomeDB 2.0: An integrative view of the global peroxisomal metabolome
-
Schluter, A., Real-Chicharro, A., Gabaldon, T., Sanchez-Jimenez, F., and Pujol, A. (2010) PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome Nucleic Acids Res. 38, D800-D805
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 800-D805
-
-
Schluter, A.1
Real-Chicharro, A.2
Gabaldon, T.3
Sanchez-Jimenez, F.4
Pujol, A.5
-
27
-
-
80052625837
-
Metabolic engineering of Clostridium acetobutylicum: Recent advances to improve butanol production
-
Lutke-Eversloh, T. and Bahl, H. (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production Curr. Opin. Biotechnol. 22, 634-647
-
(2011)
Curr. Opin. Biotechnol.
, vol.22
, pp. 634-647
-
-
Lutke-Eversloh, T.1
Bahl, H.2
-
28
-
-
0027960968
-
ERG10 from Saccharomyces cerevisiae encodes acetoacetyl-CoA thiolase
-
Hiser, L., Basson, M. E., and Rine, J. (1994) ERG10 from Saccharomyces cerevisiae encodes acetoacetyl-CoA thiolase J. Biol. Chem. 269, 31383-31389
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 31383-31389
-
-
Hiser, L.1
Basson, M.E.2
Rine, J.3
-
29
-
-
58249098522
-
Metabolic engineering of Saccharomyces cerevisiae for the production of n -butanol
-
Steen, E. J., Chan, R., Prasad, N., Myers, S., Petzold, C. J., Redding, A., Ouellet, M., and Keasling, J. D. (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n -butanol Microb. Cell Fact. 7, 36
-
(2008)
Microb. Cell Fact.
, vol.7
, pp. 36
-
-
Steen, E.J.1
Chan, R.2
Prasad, N.3
Myers, S.4
Petzold, C.J.5
Redding, A.6
Ouellet, M.7
Keasling, J.D.8
-
30
-
-
84855249317
-
Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: Involvement in the lipid production of oleaginous yeast and fungi
-
Vorapreeda, T., Thammarongtham, C., Cheevadhanarak, S., and Laoteng, K. (2012) Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: involvement in the lipid production of oleaginous yeast and fungi Microbiology 158, 217-228
-
(2012)
Microbiology
, vol.158
, pp. 217-228
-
-
Vorapreeda, T.1
Thammarongtham, C.2
Cheevadhanarak, S.3
Laoteng, K.4
-
31
-
-
51649108629
-
Fermentative butanol production by Clostridia
-
Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., and Jung, K. S. (2008) Fermentative butanol production by Clostridia Biotechnol. Bioeng. 101, 209-228
-
(2008)
Biotechnol. Bioeng.
, vol.101
, pp. 209-228
-
-
Lee, S.Y.1
Park, J.H.2
Jang, S.H.3
Nielsen, L.K.4
Kim, J.5
Jung, K.S.6
-
32
-
-
34047152805
-
A novel prokaryotic trans-2-enoyl-CoA reductase from the spirochete Treponema denticola
-
Tucci, S. and Martin, W. (2007) A novel prokaryotic trans-2-enoyl-CoA reductase from the spirochete Treponema denticola FEBS Lett. 581, 1561-1566
-
(2007)
FEBS Lett.
, vol.581
, pp. 1561-1566
-
-
Tucci, S.1
Martin, W.2
-
33
-
-
84867525321
-
Biochemical and structural characterization of the trans-enoyl-CoA reductase from Treponema denticola
-
Bond-Watts, B. B., Weeks, A. M., and Chang, M. C. (2012) Biochemical and structural characterization of the trans-enoyl-CoA reductase from Treponema denticola Biochemistry 51, 6827-6837
-
(2012)
Biochemistry
, vol.51
, pp. 6827-6837
-
-
Bond-Watts, B.B.1
Weeks, A.M.2
Chang, M.C.3
-
34
-
-
14244270196
-
Mitochondrial trans -2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis
-
Hoffmeister, M., Piotrowski, M., Nowitzki, U., and Martin, W. (2005) Mitochondrial trans -2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis J. Biol. Chem. 280, 4329-4338
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 4329-4338
-
-
Hoffmeister, M.1
Piotrowski, M.2
Nowitzki, U.3
Martin, W.4
-
35
-
-
79952910616
-
Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
-
Bond-Watts, B. B., Bellerose, R. J., and Chang, M. C. Y. (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways Nat. Chem. Biol. 7, 222-227
-
(2011)
Nat. Chem. Biol.
, vol.7
, pp. 222-227
-
-
Bond-Watts, B.B.1
Bellerose, R.J.2
Chang, M.C.Y.3
-
36
-
-
79955611425
-
Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli
-
Shen, C. R., Lan, E. I., Dekishima, Y., Baez, A., Cho, K. M., and Liao, J. C. (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli Appl. Environ. Microb 77, 2905-2915
-
(2011)
Appl. Environ. Microb
, vol.77
, pp. 2905-2915
-
-
Shen, C.R.1
Lan, E.I.2
Dekishima, Y.3
Baez, A.4
Cho, K.M.5
Liao, J.C.6
-
37
-
-
84887870749
-
Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold
-
Shao, Z., Rao, G., Li, C., Abil, Z., Luo, Y., and Zhao, H. (2013) Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold ACS Synth. Biol. 2, 662-669
-
(2013)
ACS Synth. Biol.
, vol.2
, pp. 662-669
-
-
Shao, Z.1
Rao, G.2
Li, C.3
Abil, Z.4
Luo, Y.5
Zhao, H.6
-
38
-
-
0024075956
-
Ethanolamine utilization in Salmonella typhimurium
-
Roof, D. M. and Roth, J. R. (1988) Ethanolamine utilization in Salmonella typhimurium J. Bacteriol. 170, 3855-3863
-
(1988)
J. Bacteriol.
, vol.170
, pp. 3855-3863
-
-
Roof, D.M.1
Roth, J.R.2
-
39
-
-
0032703238
-
The ald gene, encoding a coenzyme A-acylating aldehyde dehydrogenase, distinguishes Clostridium beijerinckii and two other solvent-producing clostridia from Clostridium acetobutylicum
-
Toth, J., Ismaiel, A. A., and Chen, J. S. (1999) The ald gene, encoding a coenzyme A-acylating aldehyde dehydrogenase, distinguishes Clostridium beijerinckii and two other solvent-producing clostridia from Clostridium acetobutylicum Appl. Environ. Microbiol. 65, 4973-4980
-
(1999)
Appl. Environ. Microbiol.
, vol.65
, pp. 4973-4980
-
-
Toth, J.1
Ismaiel, A.A.2
Chen, J.S.3
-
40
-
-
84884351687
-
Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism
-
Krivoruchko, A., Serrano-Amatriain, C., Chen, Y., Siewers, V., and Nielsen, J. (2013) Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism J. Ind. Microbiol. Biotechnol. 40, 1051-1056
-
(2013)
J. Ind. Microbiol. Biotechnol.
, vol.40
, pp. 1051-1056
-
-
Krivoruchko, A.1
Serrano-Amatriain, C.2
Chen, Y.3
Siewers, V.4
Nielsen, J.5
-
41
-
-
84901808659
-
Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
-
Lian, J., Si, T., Nair, N. U., and Zhao, H. (2014) Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains Metab. Eng. 24, 139-149
-
(2014)
Metab. Eng.
, vol.24
, pp. 139-149
-
-
Lian, J.1
Si, T.2
Nair, N.U.3
Zhao, H.4
-
42
-
-
81155158878
-
Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity
-
Jing, F., Cantu, D. C., Tvaruzkova, J., Chipman, J. P., Nikolau, B. J., Yandeau-Nelson, M. D., and Reilly, P. J. (2011) Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity BMC Biochem. 12, 44
-
(2011)
BMC Biochem.
, vol.12
, pp. 44
-
-
Jing, F.1
Cantu, D.C.2
Tvaruzkova, J.3
Chipman, J.P.4
Nikolau, B.J.5
Yandeau-Nelson, M.D.6
Reilly, P.J.7
-
43
-
-
84890806590
-
Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids
-
Leber, C. and Da Silva, N. A. (2013) Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids Biotechnol. Bioeng. 111, 347-358
-
(2013)
Biotechnol. Bioeng.
, vol.111
, pp. 347-358
-
-
Leber, C.1
Da Silva, N.A.2
-
44
-
-
0028347485
-
Propionate metabolism in Saccharomyces cerevisiae: Implications for the metabolon hypothesis
-
Pronk, J. T., van der Linden-Beuman, A., Verduyn, C., Scheffers, W. A., and van Dijken, J. P. (1994) Propionate metabolism in Saccharomyces cerevisiae: implications for the metabolon hypothesis Microbiology 140, 717-722
-
(1994)
Microbiology
, vol.140
, pp. 717-722
-
-
Pronk, J.T.1
Van Der Linden-Beuman, A.2
Verduyn, C.3
Scheffers, W.A.4
Van Dijken, J.P.5
-
45
-
-
38349194795
-
Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation
-
Saerens, S. M., Delvaux, F., Verstrepen, K. J., Van Dijck, P., Thevelein, J. M., and Delvaux, F. R. (2008) Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation Appl. Environ. Microbiol. 74, 454-461
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, pp. 454-461
-
-
Saerens, S.M.1
Delvaux, F.2
Verstrepen, K.J.3
Van Dijck, P.4
Thevelein, J.M.5
Delvaux, F.R.6
-
46
-
-
33645236555
-
The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity
-
Saerens, S. M., Verstrepen, K. J., Van Laere, S. D., Voet, A. R., Van Dijck, P., Delvaux, F. R., and Thevelein, J. M. (2006) The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity J. Biol. Chem. 281, 4446-4456
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 4446-4456
-
-
Saerens, S.M.1
Verstrepen, K.J.2
Van Laere, S.D.3
Voet, A.R.4
Van Dijck, P.5
Delvaux, F.R.6
Thevelein, J.M.7
-
47
-
-
84894934911
-
Protein design for pathway engineering
-
Eriksen, D. T., Lian, J., and Zhao, H. (2014) Protein design for pathway engineering J. Struct. Biol. 185, 234-242
-
(2014)
J. Struct. Biol.
, vol.185
, pp. 234-242
-
-
Eriksen, D.T.1
Lian, J.2
Zhao, H.3
-
48
-
-
84903271929
-
Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae
-
Lian, J., Li, Y., Hamedirad, M., and Zhao, H. (2014) Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae Biotechnol. Bioeng. 111, 1521-1531
-
(2014)
Biotechnol. Bioeng.
, vol.111
, pp. 1521-1531
-
-
Lian, J.1
Li, Y.2
Hamedirad, M.3
Zhao, H.4
-
49
-
-
0024954386
-
Structure, expression, and protein engineering of the pyruvate dehydrogenase complex of Escherichia coli
-
Guest, J. R., Angier, S. J., and Russell, G. C. (1989) Structure, expression, and protein engineering of the pyruvate dehydrogenase complex of Escherichia coli Ann. N.Y. Acad. Sci. 573, 76-99
-
(1989)
Ann. N.Y. Acad. Sci.
, vol.573
, pp. 76-99
-
-
Guest, J.R.1
Angier, S.J.2
Russell, G.C.3
-
50
-
-
0025063286
-
A radical-chemical route to acetyl-CoA: The anaerobically induced pyruvate formate-lyase system of Escherichia coli
-
Knappe, J. and Sawers, G. (1990) A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli FEMS Microbiol. Rev. 6, 383-398
-
(1990)
FEMS Microbiol. Rev.
, vol.6
, pp. 383-398
-
-
Knappe, J.1
Sawers, G.2
-
51
-
-
78649892486
-
Intracellular acetyl unit transport in fungal carbon metabolism
-
Strijbis, K. and Distel, B. (2010) Intracellular acetyl unit transport in fungal carbon metabolism Eukaryot. Cell 9, 1809-1815
-
(2010)
Eukaryot. Cell
, vol.9
, pp. 1809-1815
-
-
Strijbis, K.1
Distel, B.2
-
53
-
-
33847378479
-
Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids
-
Shiba, Y., Paradise, E. M., Kirby, J., Ro, D. K., and Keasling, J. D. (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids Metab. Eng. 9, 160-168
-
(2007)
Metab. Eng.
, vol.9
, pp. 160-168
-
-
Shiba, Y.1
Paradise, E.M.2
Kirby, J.3
Ro, D.K.4
Keasling, J.D.5
-
54
-
-
84875279038
-
Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
-
Chen, Y., Daviet, L., Schalk, M., Siewers, V., and Nielsen, J. (2013) Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism Metab. Eng. 15, 48-54
-
(2013)
Metab. Eng.
, vol.15
, pp. 48-54
-
-
Chen, Y.1
Daviet, L.2
Schalk, M.3
Siewers, V.4
Nielsen, J.5
-
55
-
-
84871139004
-
Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae
-
Kocharin, K., Chen, Y., Siewers, V., and Nielsen, J. (2012) Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae AMB Express 2, 52
-
(2012)
AMB Express
, vol.2
, pp. 52
-
-
Kocharin, K.1
Chen, Y.2
Siewers, V.3
Nielsen, J.4
-
56
-
-
84879603106
-
Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway
-
Kocharin, K., Siewers, V., and Nielsen, J. (2013) Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway Biotechnol. Bioeng. 110, 2216-2224
-
(2013)
Biotechnol. Bioeng.
, vol.110
, pp. 2216-2224
-
-
Kocharin, K.1
Siewers, V.2
Nielsen, J.3
-
57
-
-
84874556188
-
Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae
-
Tang, X., Feng, H., and Chen, W. N. (2013) Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae Metab. Eng. 16, 95-102
-
(2013)
Metab. Eng.
, vol.16
, pp. 95-102
-
-
Tang, X.1
Feng, H.2
Chen, W.N.3
-
58
-
-
84877256074
-
Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
-
Avalos, J. L., Fink, G. R., and Stephanopoulos, G. (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols Nat. Biotechnol. 31, 335-341
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 335-341
-
-
Avalos, J.L.1
Fink, G.R.2
Stephanopoulos, G.3
-
59
-
-
80052030821
-
Harnessing yeast subcellular compartments for the production of plant terpenoids
-
Farhi, M., Marhevka, E., Masci, T., Marcos, E., Eyal, Y., Ovadis, M., Abeliovich, H., and Vainstein, A. (2011) Harnessing yeast subcellular compartments for the production of plant terpenoids Metab. Eng. 13, 474-481
-
(2011)
Metab. Eng.
, vol.13
, pp. 474-481
-
-
Farhi, M.1
Marhevka, E.2
Masci, T.3
Marcos, E.4
Eyal, Y.5
Ovadis, M.6
Abeliovich, H.7
Vainstein, A.8
-
60
-
-
34347206860
-
High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
-
Gietz, R. D. and Schiestl, R. H. (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method Nat. Protoc. 2, 31-34
-
(2007)
Nat. Protoc.
, vol.2
, pp. 31-34
-
-
Gietz, R.D.1
Schiestl, R.H.2
|