메뉴 건너뛰기




Volumn 95, Issue , 2015, Pages 113-132

Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models

Author keywords

Adaptive localization; Adaptive soft sensor; Bayesian inference; Local partial least squares; Selective ensemble learning

Indexed keywords

BAYESIAN NETWORKS; FORECASTING; INFERENCE ENGINES; TESTING;

EID: 84961290207     PISSN: 02638762     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cherd.2015.01.006     Document Type: Article
Times cited : (138)

References (55)
  • 1
    • 80052809967 scopus 로고    scopus 로고
    • Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes
    • Chen K., Ji J., Wang H.Q., Liu Y., Song Z.H. Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes. Chem. Eng. Res. Design 2011, 89(10):2117-2124.
    • (2011) Chem. Eng. Res. Design , vol.89 , Issue.10 , pp. 2117-2124
    • Chen, K.1    Ji, J.2    Wang, H.Q.3    Liu, Y.4    Song, Z.H.5
  • 2
    • 0031168001 scopus 로고    scopus 로고
    • Recursive exponentially weighted PLS and its applications to adaptive control and prediction
    • Dayal B.S., MacGregor J.F. Recursive exponentially weighted PLS and its applications to adaptive control and prediction. J. Process Control 1997, 7(3):169-179.
    • (1997) J. Process Control , vol.7 , Issue.3 , pp. 169-179
    • Dayal, B.S.1    MacGregor, J.F.2
  • 3
    • 84874624320 scopus 로고    scopus 로고
    • Development and industrial application of soft sensors with on-line Bayesian model updating strategy
    • Deng J., Xie L., Chen L., Khatibisepehr S., Huang B., Xu F.W., Espejo A. Development and industrial application of soft sensors with on-line Bayesian model updating strategy. J. Process Control 2013, 22(3):317-325.
    • (2013) J. Process Control , vol.22 , Issue.3 , pp. 317-325
    • Deng, J.1    Xie, L.2    Chen, L.3    Khatibisepehr, S.4    Huang, B.5    Xu, F.W.6    Espejo, A.7
  • 4
    • 56049115367 scopus 로고    scopus 로고
    • Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process
    • Fu Y.F., Su H.Y., Zhang Y., Chu J. Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process. Chin. J. Chem. Eng. 2008, 16(5):746-751.
    • (2008) Chin. J. Chem. Eng. , vol.16 , Issue.5 , pp. 746-751
    • Fu, Y.F.1    Su, H.Y.2    Zhang, Y.3    Chu, J.4
  • 5
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE J. 2009, 55(7):1754-1764.
    • (2009) AIChE J. , vol.55 , Issue.7 , pp. 1754-1764
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 7
    • 79953832419 scopus 로고    scopus 로고
    • A reduced order soft sensor approach and its application to continuous digester
    • Galicia H.J., He Q.P., Wang J. A reduced order soft sensor approach and its application to continuous digester. J. Process Control 2011, 21(4):489-500.
    • (2011) J. Process Control , vol.21 , Issue.4 , pp. 489-500
    • Galicia, H.J.1    He, Q.P.2    Wang, J.3
  • 8
    • 79960245463 scopus 로고    scopus 로고
    • Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples
    • Ge Z.Q., Song Z.H. Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples. AIChE J. 2011, 57(8):2109-2118.
    • (2011) AIChE J. , vol.57 , Issue.8 , pp. 2109-2118
    • Ge, Z.Q.1    Song, Z.H.2
  • 9
    • 84887725182 scopus 로고    scopus 로고
    • Ensemble independent component regression models and soft sensing application
    • Ge Z.Q., Song Z.Q. Ensemble independent component regression models and soft sensing application. Chemom. Intell. Lab. Syst. 2014, 130(15):115-122.
    • (2014) Chemom. Intell. Lab. Syst. , vol.130 , Issue.15 , pp. 115-122
    • Ge, Z.Q.1    Song, Z.Q.2
  • 10
    • 84894317151 scopus 로고    scopus 로고
    • Probabilistic combination of local independent component regression model for multimode quality prediction in chemical processes
    • Ge Z.Q., Song Z.H., Wang P.L. Probabilistic combination of local independent component regression model for multimode quality prediction in chemical processes. Chem. Eng. Res. Design 2014, 92(3):501-512.
    • (2014) Chem. Eng. Res. Design , vol.92 , Issue.3 , pp. 501-512
    • Ge, Z.Q.1    Song, Z.H.2    Wang, P.L.3
  • 11
  • 12
    • 84880339799 scopus 로고    scopus 로고
    • Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models
    • Grbić R., Slišković D., Kadlec P. Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models. Comput. Chem. Eng. 2013, 58(11):84-97.
    • (2013) Comput. Chem. Eng. , vol.58 , Issue.11 , pp. 84-97
    • Grbić, R.1    Slišković, D.2    Kadlec, P.3
  • 13
    • 50849083804 scopus 로고    scopus 로고
    • Accounts of experiences in the application of artificial neural networks in chemical engineering
    • Himmelblau D.M. Accounts of experiences in the application of artificial neural networks in chemical engineering. Ind. Eng. Chem. Res. 2008, 47(16):5782-5796.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , Issue.16 , pp. 5782-5796
    • Himmelblau, D.M.1
  • 14
    • 79551647814 scopus 로고    scopus 로고
    • Kadlec, Bournemouth University, Poole, (Ph.D. dissertation)
    • Kadlec. On Robust and Adaptive Soft Sensors 2009, Bournemouth University, Poole, (Ph.D. dissertation).
    • (2009) On Robust and Adaptive Soft Sensors
  • 15
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33(4):795-814.
    • (2009) Comput. Chem. Eng. , vol.33 , Issue.4 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 16
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec P., Grbić R., Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Comput. Chem. Eng. 2011, 35(1):1-24.
    • (2011) Comput. Chem. Eng. , vol.35 , Issue.1 , pp. 1-24
    • Kadlec, P.1    Grbić, R.2    Gabrys, B.3
  • 17
    • 79954599740 scopus 로고    scopus 로고
    • Local learning based adaptive soft sensor for catalyst activation prediction
    • Kadlec P., Gabrys B. Local learning based adaptive soft sensor for catalyst activation prediction. AIChE J. 2011, 57(5):1288-1301.
    • (2011) AIChE J. , vol.57 , Issue.5 , pp. 1288-1301
    • Kadlec, P.1    Gabrys, B.2
  • 18
    • 58449118276 scopus 로고    scopus 로고
    • Development of a new soft sensor method using independent component analysis and partial least squares
    • Kaneko H., Arakawa M., Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AIChE J. 2009, 55(1):87-98.
    • (2009) AIChE J. , vol.55 , Issue.1 , pp. 87-98
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 19
    • 79959784751 scopus 로고    scopus 로고
    • Maintenance-free soft sensor models with time difference of process variables
    • Kaneko H., Funatsu K. Maintenance-free soft sensor models with time difference of process variables. Chemom. Intell. Lab. Syst. 2011, 107(2):312-317.
    • (2011) Chemom. Intell. Lab. Syst. , vol.107 , Issue.2 , pp. 312-317
    • Kaneko, H.1    Funatsu, K.2
  • 20
    • 80052838846 scopus 로고    scopus 로고
    • Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship
    • Kaneko H., Funatsu K. Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship. Ind. Eng. Chem. Res. 2011, 58(18):10643-10651.
    • (2011) Ind. Eng. Chem. Res. , vol.58 , Issue.18 , pp. 10643-10651
    • Kaneko, H.1    Funatsu, K.2
  • 21
    • 84879309312 scopus 로고    scopus 로고
    • Classification of the degradation of soft sensor models and discussion on adaptive models
    • Kaneko H., Funatsu K. Classification of the degradation of soft sensor models and discussion on adaptive models. AIChE J. 2013, 59(7):2339-2347.
    • (2013) AIChE J. , vol.59 , Issue.7 , pp. 2339-2347
    • Kaneko, H.1    Funatsu, K.2
  • 22
    • 84903588321 scopus 로고    scopus 로고
    • Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants
    • Kaneko H., Funatsu K. Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants. Chemom. Intell. Lab. Syst. 2014, 137(15):57-66.
    • (2014) Chemom. Intell. Lab. Syst. , vol.137 , Issue.15 , pp. 57-66
    • Kaneko, H.1    Funatsu, K.2
  • 23
    • 84889677253 scopus 로고    scopus 로고
    • Database monitoring index for adaptive soft sensors and the application to industrial process
    • Kaneko H., Funatsu K. Database monitoring index for adaptive soft sensors and the application to industrial process. AIChE J. 2014, 60(1):160-169.
    • (2014) AIChE J. , vol.60 , Issue.1 , pp. 160-169
    • Kaneko, H.1    Funatsu, K.2
  • 24
    • 77956444702 scopus 로고    scopus 로고
    • The state of the art in chemical process control in Japan: good practice and questionnaire survey
    • Kano M., Ogawa M. The state of the art in chemical process control in Japan: good practice and questionnaire survey. J. Process Control 2010, 20(9):969-982.
    • (2010) J. Process Control , vol.20 , Issue.9 , pp. 969-982
    • Kano, M.1    Ogawa, M.2
  • 25
    • 84872920533 scopus 로고    scopus 로고
    • Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications
    • Kano M., Fujiwara K. Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications. J. Chem. Eng. Jpn. 2013, 46(1):1-17.
    • (2013) J. Chem. Eng. Jpn. , vol.46 , Issue.1 , pp. 1-17
    • Kano, M.1    Fujiwara, K.2
  • 26
    • 84870438932 scopus 로고    scopus 로고
    • A Bayesian approach to design of adaptive multi-model inferential sensors with application in oil sand industry
    • Khatibisepehr S., Huang B., Xu F.W., Espejo A. A Bayesian approach to design of adaptive multi-model inferential sensors with application in oil sand industry. J. Process Control 2012, 22(10):1913-1929.
    • (2012) J. Process Control , vol.22 , Issue.10 , pp. 1913-1929
    • Khatibisepehr, S.1    Huang, B.2    Xu, F.W.3    Espejo, A.4
  • 27
    • 84883736569 scopus 로고    scopus 로고
    • Long-term industrial applications of inferential control based on just-in-time soft sensors: economical impact and challenges
    • Kim S., Kano M., Hasebe S., Takinami A., Seki T. Long-term industrial applications of inferential control based on just-in-time soft sensors: economical impact and challenges. Ind. Eng. Chem. Res. 2013, 52(35):12346-12356.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , Issue.35 , pp. 12346-12356
    • Kim, S.1    Kano, M.2    Hasebe, S.3    Takinami, A.4    Seki, T.5
  • 28
    • 84876727380 scopus 로고    scopus 로고
    • Development of soft sensor using locally weighted PLS with adaptive similarity measure
    • Kim S., Okajima R., Kano M., Hasebe S. Development of soft sensor using locally weighted PLS with adaptive similarity measure. Chemom. Intell. Lab. Syst. 2013, 124(5):43-49.
    • (2013) Chemom. Intell. Lab. Syst. , vol.124 , Issue.5 , pp. 43-49
    • Kim, S.1    Okajima, R.2    Kano, M.3    Hasebe, S.4
  • 29
    • 34147222905 scopus 로고    scopus 로고
    • On-line soft sensor for polyethylene process with multiple production grades
    • Liu J.L. On-line soft sensor for polyethylene process with multiple production grades. Control Eng. Pract. 2007, 15(7):769-778.
    • (2007) Control Eng. Pract. , vol.15 , Issue.7 , pp. 769-778
    • Liu, J.L.1
  • 30
    • 78449310514 scopus 로고    scopus 로고
    • Development of self-validating soft sensors using fast moving window partial least squares
    • Liu J.L., Chen D.S., Shen J.F. Development of self-validating soft sensors using fast moving window partial least squares. Ind. Eng. Chem. Res. 2010, 49(22):11530-11546.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , Issue.22 , pp. 11530-11546
    • Liu, J.L.1    Chen, D.S.2    Shen, J.F.3
  • 31
    • 84863357539 scopus 로고    scopus 로고
    • Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes
    • Liu Y., Gao Z.L., Li P., Wang H.Q. Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes. Ind. Eng. Chem. Res. 2012, 51(11):4313-4327.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , Issue.11 , pp. 4313-4327
    • Liu, Y.1    Gao, Z.L.2    Li, P.3    Wang, H.Q.4
  • 32
    • 84879060636 scopus 로고    scopus 로고
    • Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes
    • Liu Y., Chen J.H. Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes. J. Process Control 2013, 33(6):793-804.
    • (2013) J. Process Control , vol.33 , Issue.6 , pp. 793-804
    • Liu, Y.1    Chen, J.H.2
  • 33
    • 84896390076 scopus 로고    scopus 로고
    • A novel unified correlation model using ensemble support vector regression for prediction of flooding velocity in randomly packed towers
    • Liu Y., Li C.L., Gao Z.L. A novel unified correlation model using ensemble support vector regression for prediction of flooding velocity in randomly packed towers. J. Ind. Eng. Chem. 2014, 22(3):1109-1118.
    • (2014) J. Ind. Eng. Chem. , vol.22 , Issue.3 , pp. 1109-1118
    • Liu, Y.1    Li, C.L.2    Gao, Z.L.3
  • 34
    • 84878657664 scopus 로고    scopus 로고
    • x emission prediction of a coal-fired boiler
    • x emission prediction of a coal-fired boiler. Energy 2013, 55(15):319-329.
    • (2013) Energy , vol.55 , Issue.15 , pp. 319-329
    • Lv, Y.1    Liu, J.Z.2    Yang, T.T.3    Zeng, D.L.4
  • 35
    • 84861071787 scopus 로고    scopus 로고
    • Moving-window GRP for nonlinear dynamic system modeling with dual updating and dual preprocessing
    • Ni W.D., Tan S.K., Ng W.J., Brown S.D. Moving-window GRP for nonlinear dynamic system modeling with dual updating and dual preprocessing. Ind. Eng. Chem. Res. 2012, 51(8):6416-6428.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , Issue.8 , pp. 6416-6428
    • Ni, W.D.1    Tan, S.K.2    Ng, W.J.3    Brown, S.D.4
  • 36
    • 84862208873 scopus 로고    scopus 로고
    • Localized, adaptive recursive partial least squares regression for dynamic system modeling
    • Ni W.D., Tan S.K., Ng W.J., Brown S.D. Localized, adaptive recursive partial least squares regression for dynamic system modeling. Ind. Eng. Chem. 2012, 55(23):8025-8039.
    • (2012) Ind. Eng. Chem. , vol.55 , Issue.23 , pp. 8025-8039
    • Ni, W.D.1    Tan, S.K.2    Ng, W.J.3    Brown, S.D.4
  • 37
    • 84896913551 scopus 로고    scopus 로고
    • A localized adaptive soft sensor for dynamic system modeling
    • Ni W.D., Brown S.D., Man R.L. A localized adaptive soft sensor for dynamic system modeling. Chem. Eng. Sci. 2014, 111(24):250-363.
    • (2014) Chem. Eng. Sci. , vol.111 , Issue.24 , pp. 250-363
    • Ni, W.D.1    Brown, S.D.2    Man, R.L.3
  • 38
    • 79951559025 scopus 로고    scopus 로고
    • A survey of data treatment techniques for soft sensor design
    • Pani A.K., Mohanta H.K. A survey of data treatment techniques for soft sensor design. Chem. Product Process Model. 2011, 6(1):1-21.
    • (2011) Chem. Product Process Model. , vol.6 , Issue.1 , pp. 1-21
    • Pani, A.K.1    Mohanta, H.K.2
  • 39
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin S.J. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng. 1998, 22(4-5):503-514.
    • (1998) Comput. Chem. Eng. , vol.22 , Issue.4-5 , pp. 503-514
    • Qin, S.J.1
  • 40
    • 84867417447 scopus 로고    scopus 로고
    • Online learning soft sensor method based on recursive kernel algorithm for PLS
    • Shao W.M., Tian X.M., Wang P. Online learning soft sensor method based on recursive kernel algorithm for PLS. J. Chem. Ind. Eng. Soc. China 2012, 63(9):2887-3289.
    • (2012) J. Chem. Ind. Eng. Soc. China , vol.63 , Issue.9 , pp. 2887-3289
    • Shao, W.M.1    Tian, X.M.2    Wang, P.3
  • 41
    • 84896353366 scopus 로고    scopus 로고
    • Adaptive anti-over-fitting soft sensing method based on local learning
    • ((Mumbai, India), Dec. 18-20)
    • Shao W.M., Tian X.M., Chen H.L. Adaptive anti-over-fitting soft sensing method based on local learning. Prepr. 10th IFAC Int. Symp. Dyn. Control Process Syst. 2013, 10(1):415-420. ((Mumbai, India), Dec. 18-20).
    • (2013) Prepr. 10th IFAC Int. Symp. Dyn. Control Process Syst. , vol.10 , Issue.1 , pp. 415-420
    • Shao, W.M.1    Tian, X.M.2    Chen, H.L.3
  • 42
    • 84906316402 scopus 로고    scopus 로고
    • Local partial least squares based online soft sensing method for multi-output processes with adaptive process states division
    • Shao W.M., Tian X.M., Wang P. Local partial least squares based online soft sensing method for multi-output processes with adaptive process states division. Chin. J. Chem. Eng. 2014, 22(7):828-836.
    • (2014) Chin. J. Chem. Eng. , vol.22 , Issue.7 , pp. 828-836
    • Shao, W.M.1    Tian, X.M.2    Wang, P.3
  • 43
    • 84856491836 scopus 로고    scopus 로고
    • On-line principal component analysis with application to process modeling
    • Tang J., Yu W., Chai T.Y., Zhao L.J. On-line principal component analysis with application to process modeling. Neurocomputing 2012, 82(1):167-178.
    • (2012) Neurocomputing , vol.82 , Issue.1 , pp. 167-178
    • Tang, J.1    Yu, W.2    Chai, T.Y.3    Zhao, L.J.4
  • 44
    • 82655162107 scopus 로고    scopus 로고
    • Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm
    • Tang J., Chai T.Y., Zhao L.J., Yu W., Yue H. Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm. Neurocomputing 2012, 78(1):38-47.
    • (2012) Neurocomputing , vol.78 , Issue.1 , pp. 38-47
    • Tang, J.1    Chai, T.Y.2    Zhao, L.J.3    Yu, W.4    Yue, H.5
  • 45
    • 84892622361 scopus 로고    scopus 로고
    • Modeling load parameters of ball mill in grinding process based on selective ensemble multisensory information
    • Tang J., Chai T.Y., Zhao L.J. Modeling load parameters of ball mill in grinding process based on selective ensemble multisensory information. IEEE Trans. Autom. Sci. Eng. 2013, 10(3):726-740.
    • (2013) IEEE Trans. Autom. Sci. Eng. , vol.10 , Issue.3 , pp. 726-740
    • Tang, J.1    Chai, T.Y.2    Zhao, L.J.3
  • 46
    • 77955330683 scopus 로고    scopus 로고
    • Soft sensing method for magnetic tube recovery ratio via fuzzy systems and neural networks
    • Wu F.H., Chai T.Y. Soft sensing method for magnetic tube recovery ratio via fuzzy systems and neural networks. Neurocomputing 2010, 73(13-15):2489-2497.
    • (2010) Neurocomputing , vol.73 , Issue.13-15 , pp. 2489-2497
    • Wu, F.H.1    Chai, T.Y.2
  • 47
    • 84891520527 scopus 로고    scopus 로고
    • Novel just-in-time learning-based soft sensor utilizing non-Gaussian information
    • Xie L., Zeng J.S., Gao C.H. Novel just-in-time learning-based soft sensor utilizing non-Gaussian information. IEEE Trans. Control Syst. Technol. 2014, 22(1):360-369.
    • (2014) IEEE Trans. Control Syst. Technol. , vol.22 , Issue.1 , pp. 360-369
    • Xie, L.1    Zeng, J.S.2    Gao, C.H.3
  • 48
    • 84904247081 scopus 로고    scopus 로고
    • Melt index prediction by fuzzy functions with dynamic fuzzy neural networks
    • Xu S.Q., Liu X.G. Melt index prediction by fuzzy functions with dynamic fuzzy neural networks. Neurocomputing 2014, 142(22):191-198.
    • (2014) Neurocomputing , vol.142 , Issue.22 , pp. 191-198
    • Xu, S.Q.1    Liu, X.G.2
  • 49
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput. Chem. Eng. 2012, 41(11):134-144.
    • (2012) Comput. Chem. Eng. , vol.41 , Issue.11 , pp. 134-144
    • Yu, J.1
  • 50
    • 84864805251 scopus 로고    scopus 로고
    • Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
    • Yu J. Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach. Chem. Eng. Sci. 2012, 82(12):22-30.
    • (2012) Chem. Eng. Sci. , vol.82 , Issue.12 , pp. 22-30
    • Yu, J.1
  • 51
    • 84874515333 scopus 로고    scopus 로고
    • A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty
    • Yu J., Chen K.L., Rashid M.M. A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty. Chem. Eng. Sci. 2013, 93(19):96-109.
    • (2013) Chem. Eng. Sci. , vol.93 , Issue.19 , pp. 96-109
    • Yu, J.1    Chen, K.L.2    Rashid, M.M.3
  • 52
    • 84855962953 scopus 로고    scopus 로고
    • Real-time product quality control for batch processes based on stacked least squared support vector regression models
    • Zhang S.N., Wang F.L., He D.K., Jia R.D. Real-time product quality control for batch processes based on stacked least squared support vector regression models. Comput. Chem. Eng. 2012, 36(10):217-226.
    • (2012) Comput. Chem. Eng. , vol.36 , Issue.10 , pp. 217-226
    • Zhang, S.N.1    Wang, F.L.2    He, D.K.3    Jia, R.D.4
  • 53
    • 84881528181 scopus 로고    scopus 로고
    • Online quality prediction for cobalt oxalate synthesis process using least squares support vector regression approach with dual updating
    • Zhang S.N., Wang F.L., He D.K., Jia R.D. Online quality prediction for cobalt oxalate synthesis process using least squares support vector regression approach with dual updating. Control Eng. Pract. 2013, 21(10):1267-1276.
    • (2013) Control Eng. Pract. , vol.21 , Issue.10 , pp. 1267-1276
    • Zhang, S.N.1    Wang, F.L.2    He, D.K.3    Jia, R.D.4
  • 55
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou Z.H., Wu J.X., Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 2002, 137(1-2):239-263.
    • (2002) Artif. Intell. , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.X.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.