-
1
-
-
80052809967
-
Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes
-
Chen K., Ji J., Wang H.Q., Liu Y., Song Z.H. Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes. Chem. Eng. Res. Design 2011, 89(10):2117-2124.
-
(2011)
Chem. Eng. Res. Design
, vol.89
, Issue.10
, pp. 2117-2124
-
-
Chen, K.1
Ji, J.2
Wang, H.Q.3
Liu, Y.4
Song, Z.H.5
-
2
-
-
0031168001
-
Recursive exponentially weighted PLS and its applications to adaptive control and prediction
-
Dayal B.S., MacGregor J.F. Recursive exponentially weighted PLS and its applications to adaptive control and prediction. J. Process Control 1997, 7(3):169-179.
-
(1997)
J. Process Control
, vol.7
, Issue.3
, pp. 169-179
-
-
Dayal, B.S.1
MacGregor, J.F.2
-
3
-
-
84874624320
-
Development and industrial application of soft sensors with on-line Bayesian model updating strategy
-
Deng J., Xie L., Chen L., Khatibisepehr S., Huang B., Xu F.W., Espejo A. Development and industrial application of soft sensors with on-line Bayesian model updating strategy. J. Process Control 2013, 22(3):317-325.
-
(2013)
J. Process Control
, vol.22
, Issue.3
, pp. 317-325
-
-
Deng, J.1
Xie, L.2
Chen, L.3
Khatibisepehr, S.4
Huang, B.5
Xu, F.W.6
Espejo, A.7
-
4
-
-
56049115367
-
Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process
-
Fu Y.F., Su H.Y., Zhang Y., Chu J. Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process. Chin. J. Chem. Eng. 2008, 16(5):746-751.
-
(2008)
Chin. J. Chem. Eng.
, vol.16
, Issue.5
, pp. 746-751
-
-
Fu, Y.F.1
Su, H.Y.2
Zhang, Y.3
Chu, J.4
-
5
-
-
68049143320
-
Soft-sensor development using correlation-based just-in-time modeling
-
Fujiwara K., Kano M., Hasebe S., Takinami A. Soft-sensor development using correlation-based just-in-time modeling. AIChE J. 2009, 55(7):1754-1764.
-
(2009)
AIChE J.
, vol.55
, Issue.7
, pp. 1754-1764
-
-
Fujiwara, K.1
Kano, M.2
Hasebe, S.3
Takinami, A.4
-
6
-
-
44349146289
-
-
Springer-Verlag, London
-
Fortuna L., Graziani S., Rizzo A., Xibilia G.M. Soft Sensors for Monitoring and Control of Industrial Processes 2007, Springer-Verlag, London.
-
(2007)
Soft Sensors for Monitoring and Control of Industrial Processes
-
-
Fortuna, L.1
Graziani, S.2
Rizzo, A.3
Xibilia, G.M.4
-
7
-
-
79953832419
-
A reduced order soft sensor approach and its application to continuous digester
-
Galicia H.J., He Q.P., Wang J. A reduced order soft sensor approach and its application to continuous digester. J. Process Control 2011, 21(4):489-500.
-
(2011)
J. Process Control
, vol.21
, Issue.4
, pp. 489-500
-
-
Galicia, H.J.1
He, Q.P.2
Wang, J.3
-
8
-
-
79960245463
-
Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples
-
Ge Z.Q., Song Z.H. Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples. AIChE J. 2011, 57(8):2109-2118.
-
(2011)
AIChE J.
, vol.57
, Issue.8
, pp. 2109-2118
-
-
Ge, Z.Q.1
Song, Z.H.2
-
9
-
-
84887725182
-
Ensemble independent component regression models and soft sensing application
-
Ge Z.Q., Song Z.Q. Ensemble independent component regression models and soft sensing application. Chemom. Intell. Lab. Syst. 2014, 130(15):115-122.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.130
, Issue.15
, pp. 115-122
-
-
Ge, Z.Q.1
Song, Z.Q.2
-
10
-
-
84894317151
-
Probabilistic combination of local independent component regression model for multimode quality prediction in chemical processes
-
Ge Z.Q., Song Z.H., Wang P.L. Probabilistic combination of local independent component regression model for multimode quality prediction in chemical processes. Chem. Eng. Res. Design 2014, 92(3):501-512.
-
(2014)
Chem. Eng. Res. Design
, vol.92
, Issue.3
, pp. 501-512
-
-
Ge, Z.Q.1
Song, Z.H.2
Wang, P.L.3
-
12
-
-
84880339799
-
Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models
-
Grbić R., Slišković D., Kadlec P. Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models. Comput. Chem. Eng. 2013, 58(11):84-97.
-
(2013)
Comput. Chem. Eng.
, vol.58
, Issue.11
, pp. 84-97
-
-
Grbić, R.1
Slišković, D.2
Kadlec, P.3
-
13
-
-
50849083804
-
Accounts of experiences in the application of artificial neural networks in chemical engineering
-
Himmelblau D.M. Accounts of experiences in the application of artificial neural networks in chemical engineering. Ind. Eng. Chem. Res. 2008, 47(16):5782-5796.
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, Issue.16
, pp. 5782-5796
-
-
Himmelblau, D.M.1
-
14
-
-
79551647814
-
-
Kadlec, Bournemouth University, Poole, (Ph.D. dissertation)
-
Kadlec. On Robust and Adaptive Soft Sensors 2009, Bournemouth University, Poole, (Ph.D. dissertation).
-
(2009)
On Robust and Adaptive Soft Sensors
-
-
-
15
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec P., Gabrys B., Strandt S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33(4):795-814.
-
(2009)
Comput. Chem. Eng.
, vol.33
, Issue.4
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
16
-
-
78649468188
-
Review of adaptation mechanisms for data-driven soft sensors
-
Kadlec P., Grbić R., Gabrys B. Review of adaptation mechanisms for data-driven soft sensors. Comput. Chem. Eng. 2011, 35(1):1-24.
-
(2011)
Comput. Chem. Eng.
, vol.35
, Issue.1
, pp. 1-24
-
-
Kadlec, P.1
Grbić, R.2
Gabrys, B.3
-
17
-
-
79954599740
-
Local learning based adaptive soft sensor for catalyst activation prediction
-
Kadlec P., Gabrys B. Local learning based adaptive soft sensor for catalyst activation prediction. AIChE J. 2011, 57(5):1288-1301.
-
(2011)
AIChE J.
, vol.57
, Issue.5
, pp. 1288-1301
-
-
Kadlec, P.1
Gabrys, B.2
-
18
-
-
58449118276
-
Development of a new soft sensor method using independent component analysis and partial least squares
-
Kaneko H., Arakawa M., Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AIChE J. 2009, 55(1):87-98.
-
(2009)
AIChE J.
, vol.55
, Issue.1
, pp. 87-98
-
-
Kaneko, H.1
Arakawa, M.2
Funatsu, K.3
-
19
-
-
79959784751
-
Maintenance-free soft sensor models with time difference of process variables
-
Kaneko H., Funatsu K. Maintenance-free soft sensor models with time difference of process variables. Chemom. Intell. Lab. Syst. 2011, 107(2):312-317.
-
(2011)
Chemom. Intell. Lab. Syst.
, vol.107
, Issue.2
, pp. 312-317
-
-
Kaneko, H.1
Funatsu, K.2
-
20
-
-
80052838846
-
Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship
-
Kaneko H., Funatsu K. Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship. Ind. Eng. Chem. Res. 2011, 58(18):10643-10651.
-
(2011)
Ind. Eng. Chem. Res.
, vol.58
, Issue.18
, pp. 10643-10651
-
-
Kaneko, H.1
Funatsu, K.2
-
21
-
-
84879309312
-
Classification of the degradation of soft sensor models and discussion on adaptive models
-
Kaneko H., Funatsu K. Classification of the degradation of soft sensor models and discussion on adaptive models. AIChE J. 2013, 59(7):2339-2347.
-
(2013)
AIChE J.
, vol.59
, Issue.7
, pp. 2339-2347
-
-
Kaneko, H.1
Funatsu, K.2
-
22
-
-
84903588321
-
Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants
-
Kaneko H., Funatsu K. Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants. Chemom. Intell. Lab. Syst. 2014, 137(15):57-66.
-
(2014)
Chemom. Intell. Lab. Syst.
, vol.137
, Issue.15
, pp. 57-66
-
-
Kaneko, H.1
Funatsu, K.2
-
23
-
-
84889677253
-
Database monitoring index for adaptive soft sensors and the application to industrial process
-
Kaneko H., Funatsu K. Database monitoring index for adaptive soft sensors and the application to industrial process. AIChE J. 2014, 60(1):160-169.
-
(2014)
AIChE J.
, vol.60
, Issue.1
, pp. 160-169
-
-
Kaneko, H.1
Funatsu, K.2
-
24
-
-
77956444702
-
The state of the art in chemical process control in Japan: good practice and questionnaire survey
-
Kano M., Ogawa M. The state of the art in chemical process control in Japan: good practice and questionnaire survey. J. Process Control 2010, 20(9):969-982.
-
(2010)
J. Process Control
, vol.20
, Issue.9
, pp. 969-982
-
-
Kano, M.1
Ogawa, M.2
-
25
-
-
84872920533
-
Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications
-
Kano M., Fujiwara K. Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications. J. Chem. Eng. Jpn. 2013, 46(1):1-17.
-
(2013)
J. Chem. Eng. Jpn.
, vol.46
, Issue.1
, pp. 1-17
-
-
Kano, M.1
Fujiwara, K.2
-
26
-
-
84870438932
-
A Bayesian approach to design of adaptive multi-model inferential sensors with application in oil sand industry
-
Khatibisepehr S., Huang B., Xu F.W., Espejo A. A Bayesian approach to design of adaptive multi-model inferential sensors with application in oil sand industry. J. Process Control 2012, 22(10):1913-1929.
-
(2012)
J. Process Control
, vol.22
, Issue.10
, pp. 1913-1929
-
-
Khatibisepehr, S.1
Huang, B.2
Xu, F.W.3
Espejo, A.4
-
27
-
-
84883736569
-
Long-term industrial applications of inferential control based on just-in-time soft sensors: economical impact and challenges
-
Kim S., Kano M., Hasebe S., Takinami A., Seki T. Long-term industrial applications of inferential control based on just-in-time soft sensors: economical impact and challenges. Ind. Eng. Chem. Res. 2013, 52(35):12346-12356.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, Issue.35
, pp. 12346-12356
-
-
Kim, S.1
Kano, M.2
Hasebe, S.3
Takinami, A.4
Seki, T.5
-
28
-
-
84876727380
-
Development of soft sensor using locally weighted PLS with adaptive similarity measure
-
Kim S., Okajima R., Kano M., Hasebe S. Development of soft sensor using locally weighted PLS with adaptive similarity measure. Chemom. Intell. Lab. Syst. 2013, 124(5):43-49.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.124
, Issue.5
, pp. 43-49
-
-
Kim, S.1
Okajima, R.2
Kano, M.3
Hasebe, S.4
-
29
-
-
34147222905
-
On-line soft sensor for polyethylene process with multiple production grades
-
Liu J.L. On-line soft sensor for polyethylene process with multiple production grades. Control Eng. Pract. 2007, 15(7):769-778.
-
(2007)
Control Eng. Pract.
, vol.15
, Issue.7
, pp. 769-778
-
-
Liu, J.L.1
-
30
-
-
78449310514
-
Development of self-validating soft sensors using fast moving window partial least squares
-
Liu J.L., Chen D.S., Shen J.F. Development of self-validating soft sensors using fast moving window partial least squares. Ind. Eng. Chem. Res. 2010, 49(22):11530-11546.
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, Issue.22
, pp. 11530-11546
-
-
Liu, J.L.1
Chen, D.S.2
Shen, J.F.3
-
31
-
-
84863357539
-
Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes
-
Liu Y., Gao Z.L., Li P., Wang H.Q. Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes. Ind. Eng. Chem. Res. 2012, 51(11):4313-4327.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, Issue.11
, pp. 4313-4327
-
-
Liu, Y.1
Gao, Z.L.2
Li, P.3
Wang, H.Q.4
-
32
-
-
84879060636
-
Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes
-
Liu Y., Chen J.H. Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes. J. Process Control 2013, 33(6):793-804.
-
(2013)
J. Process Control
, vol.33
, Issue.6
, pp. 793-804
-
-
Liu, Y.1
Chen, J.H.2
-
33
-
-
84896390076
-
A novel unified correlation model using ensemble support vector regression for prediction of flooding velocity in randomly packed towers
-
Liu Y., Li C.L., Gao Z.L. A novel unified correlation model using ensemble support vector regression for prediction of flooding velocity in randomly packed towers. J. Ind. Eng. Chem. 2014, 22(3):1109-1118.
-
(2014)
J. Ind. Eng. Chem.
, vol.22
, Issue.3
, pp. 1109-1118
-
-
Liu, Y.1
Li, C.L.2
Gao, Z.L.3
-
35
-
-
84861071787
-
Moving-window GRP for nonlinear dynamic system modeling with dual updating and dual preprocessing
-
Ni W.D., Tan S.K., Ng W.J., Brown S.D. Moving-window GRP for nonlinear dynamic system modeling with dual updating and dual preprocessing. Ind. Eng. Chem. Res. 2012, 51(8):6416-6428.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, Issue.8
, pp. 6416-6428
-
-
Ni, W.D.1
Tan, S.K.2
Ng, W.J.3
Brown, S.D.4
-
36
-
-
84862208873
-
Localized, adaptive recursive partial least squares regression for dynamic system modeling
-
Ni W.D., Tan S.K., Ng W.J., Brown S.D. Localized, adaptive recursive partial least squares regression for dynamic system modeling. Ind. Eng. Chem. 2012, 55(23):8025-8039.
-
(2012)
Ind. Eng. Chem.
, vol.55
, Issue.23
, pp. 8025-8039
-
-
Ni, W.D.1
Tan, S.K.2
Ng, W.J.3
Brown, S.D.4
-
37
-
-
84896913551
-
A localized adaptive soft sensor for dynamic system modeling
-
Ni W.D., Brown S.D., Man R.L. A localized adaptive soft sensor for dynamic system modeling. Chem. Eng. Sci. 2014, 111(24):250-363.
-
(2014)
Chem. Eng. Sci.
, vol.111
, Issue.24
, pp. 250-363
-
-
Ni, W.D.1
Brown, S.D.2
Man, R.L.3
-
38
-
-
79951559025
-
A survey of data treatment techniques for soft sensor design
-
Pani A.K., Mohanta H.K. A survey of data treatment techniques for soft sensor design. Chem. Product Process Model. 2011, 6(1):1-21.
-
(2011)
Chem. Product Process Model.
, vol.6
, Issue.1
, pp. 1-21
-
-
Pani, A.K.1
Mohanta, H.K.2
-
39
-
-
0032044750
-
Recursive PLS algorithms for adaptive data modeling
-
Qin S.J. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng. 1998, 22(4-5):503-514.
-
(1998)
Comput. Chem. Eng.
, vol.22
, Issue.4-5
, pp. 503-514
-
-
Qin, S.J.1
-
40
-
-
84867417447
-
Online learning soft sensor method based on recursive kernel algorithm for PLS
-
Shao W.M., Tian X.M., Wang P. Online learning soft sensor method based on recursive kernel algorithm for PLS. J. Chem. Ind. Eng. Soc. China 2012, 63(9):2887-3289.
-
(2012)
J. Chem. Ind. Eng. Soc. China
, vol.63
, Issue.9
, pp. 2887-3289
-
-
Shao, W.M.1
Tian, X.M.2
Wang, P.3
-
41
-
-
84896353366
-
Adaptive anti-over-fitting soft sensing method based on local learning
-
((Mumbai, India), Dec. 18-20)
-
Shao W.M., Tian X.M., Chen H.L. Adaptive anti-over-fitting soft sensing method based on local learning. Prepr. 10th IFAC Int. Symp. Dyn. Control Process Syst. 2013, 10(1):415-420. ((Mumbai, India), Dec. 18-20).
-
(2013)
Prepr. 10th IFAC Int. Symp. Dyn. Control Process Syst.
, vol.10
, Issue.1
, pp. 415-420
-
-
Shao, W.M.1
Tian, X.M.2
Chen, H.L.3
-
42
-
-
84906316402
-
Local partial least squares based online soft sensing method for multi-output processes with adaptive process states division
-
Shao W.M., Tian X.M., Wang P. Local partial least squares based online soft sensing method for multi-output processes with adaptive process states division. Chin. J. Chem. Eng. 2014, 22(7):828-836.
-
(2014)
Chin. J. Chem. Eng.
, vol.22
, Issue.7
, pp. 828-836
-
-
Shao, W.M.1
Tian, X.M.2
Wang, P.3
-
43
-
-
84856491836
-
On-line principal component analysis with application to process modeling
-
Tang J., Yu W., Chai T.Y., Zhao L.J. On-line principal component analysis with application to process modeling. Neurocomputing 2012, 82(1):167-178.
-
(2012)
Neurocomputing
, vol.82
, Issue.1
, pp. 167-178
-
-
Tang, J.1
Yu, W.2
Chai, T.Y.3
Zhao, L.J.4
-
44
-
-
82655162107
-
Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm
-
Tang J., Chai T.Y., Zhao L.J., Yu W., Yue H. Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm. Neurocomputing 2012, 78(1):38-47.
-
(2012)
Neurocomputing
, vol.78
, Issue.1
, pp. 38-47
-
-
Tang, J.1
Chai, T.Y.2
Zhao, L.J.3
Yu, W.4
Yue, H.5
-
45
-
-
84892622361
-
Modeling load parameters of ball mill in grinding process based on selective ensemble multisensory information
-
Tang J., Chai T.Y., Zhao L.J. Modeling load parameters of ball mill in grinding process based on selective ensemble multisensory information. IEEE Trans. Autom. Sci. Eng. 2013, 10(3):726-740.
-
(2013)
IEEE Trans. Autom. Sci. Eng.
, vol.10
, Issue.3
, pp. 726-740
-
-
Tang, J.1
Chai, T.Y.2
Zhao, L.J.3
-
46
-
-
77955330683
-
Soft sensing method for magnetic tube recovery ratio via fuzzy systems and neural networks
-
Wu F.H., Chai T.Y. Soft sensing method for magnetic tube recovery ratio via fuzzy systems and neural networks. Neurocomputing 2010, 73(13-15):2489-2497.
-
(2010)
Neurocomputing
, vol.73
, Issue.13-15
, pp. 2489-2497
-
-
Wu, F.H.1
Chai, T.Y.2
-
47
-
-
84891520527
-
Novel just-in-time learning-based soft sensor utilizing non-Gaussian information
-
Xie L., Zeng J.S., Gao C.H. Novel just-in-time learning-based soft sensor utilizing non-Gaussian information. IEEE Trans. Control Syst. Technol. 2014, 22(1):360-369.
-
(2014)
IEEE Trans. Control Syst. Technol.
, vol.22
, Issue.1
, pp. 360-369
-
-
Xie, L.1
Zeng, J.S.2
Gao, C.H.3
-
48
-
-
84904247081
-
Melt index prediction by fuzzy functions with dynamic fuzzy neural networks
-
Xu S.Q., Liu X.G. Melt index prediction by fuzzy functions with dynamic fuzzy neural networks. Neurocomputing 2014, 142(22):191-198.
-
(2014)
Neurocomputing
, vol.142
, Issue.22
, pp. 191-198
-
-
Xu, S.Q.1
Liu, X.G.2
-
49
-
-
84859392648
-
A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
-
Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput. Chem. Eng. 2012, 41(11):134-144.
-
(2012)
Comput. Chem. Eng.
, vol.41
, Issue.11
, pp. 134-144
-
-
Yu, J.1
-
50
-
-
84864805251
-
Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
-
Yu J. Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach. Chem. Eng. Sci. 2012, 82(12):22-30.
-
(2012)
Chem. Eng. Sci.
, vol.82
, Issue.12
, pp. 22-30
-
-
Yu, J.1
-
51
-
-
84874515333
-
A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty
-
Yu J., Chen K.L., Rashid M.M. A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty. Chem. Eng. Sci. 2013, 93(19):96-109.
-
(2013)
Chem. Eng. Sci.
, vol.93
, Issue.19
, pp. 96-109
-
-
Yu, J.1
Chen, K.L.2
Rashid, M.M.3
-
52
-
-
84855962953
-
Real-time product quality control for batch processes based on stacked least squared support vector regression models
-
Zhang S.N., Wang F.L., He D.K., Jia R.D. Real-time product quality control for batch processes based on stacked least squared support vector regression models. Comput. Chem. Eng. 2012, 36(10):217-226.
-
(2012)
Comput. Chem. Eng.
, vol.36
, Issue.10
, pp. 217-226
-
-
Zhang, S.N.1
Wang, F.L.2
He, D.K.3
Jia, R.D.4
-
53
-
-
84881528181
-
Online quality prediction for cobalt oxalate synthesis process using least squares support vector regression approach with dual updating
-
Zhang S.N., Wang F.L., He D.K., Jia R.D. Online quality prediction for cobalt oxalate synthesis process using least squares support vector regression approach with dual updating. Control Eng. Pract. 2013, 21(10):1267-1276.
-
(2013)
Control Eng. Pract.
, vol.21
, Issue.10
, pp. 1267-1276
-
-
Zhang, S.N.1
Wang, F.L.2
He, D.K.3
Jia, R.D.4
-
54
-
-
84871280437
-
-
Zhao, L.J., Chai, T.Y., Yuan, D.C., 2012. Selective ensemble extreme learning machine modeling of effluent quality in wastewater treatment plants. 9(6), 627-633.
-
(2012)
Selective ensemble extreme learning machine modeling of effluent quality in wastewater treatment plants
, vol.9
, Issue.6
, pp. 627-633
-
-
Zhao, L.J.1
Chai, T.Y.2
Yuan, D.C.3
-
55
-
-
0036567392
-
Ensembling neural networks: many could be better than all
-
Zhou Z.H., Wu J.X., Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 2002, 137(1-2):239-263.
-
(2002)
Artif. Intell.
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.H.1
Wu, J.X.2
Tang, W.3
|