메뉴 건너뛰기




Volumn 9, Issue 6, 2012, Pages 627-633

Selective ensemble extreme learning machine modeling of effluent quality in wastewater treatment plants

Author keywords

effluent quality prediction; extreme learning machine; genetic algorithm; selective ensemble model; Wastewater treatment process

Indexed keywords

COMPONENT MODEL; COMPUTATION COMPLEXITY; EFFLUENT QUALITY; EXTREME LEARNING MACHINE; GENERALIZATION PERFORMANCE; INDUSTRIAL WASTEWATER TREATMENT PLANTS; OPERATING EFFICIENCY; PARTIAL LEAST SQUARE (PLS); RELIABLE MEASUREMENT; SELECTIVE ENSEMBLES; WASTEWATER TREATMENT PLANTS; WASTEWATER TREATMENT PROCESS;

EID: 84871280437     PISSN: 14768186     EISSN: 17518520     Source Type: Journal    
DOI: 10.1007/s11633-012-0688-3     Document Type: Article
Times cited : (29)

References (20)
  • 1
    • 0037142398 scopus 로고    scopus 로고
    • Hybrid neural network modeling of a full-scale industrial wastewater treatment process
    • D. S. Lee, C. O. Jeon, J. M. Park, K. S. Chang. Hybrid neural network modeling of a full-scale industrial wastewater treatment process. Biotechnology and Bioengineering, vol. 78, no. 6, pp. 670-682, 2002.
    • (2002) Biotechnology and Bioengineering , vol.78 , Issue.6 , pp. 670-682
    • Lee, D.S.1    Jeon, C.O.2    Park, J.M.3    Chang, K.S.4
  • 3
    • 24944539826 scopus 로고    scopus 로고
    • Wastewater BOD forecasting model for optimal operation using robust time-delay neural network
    • Berlin, Heidelberg: Springer
    • L. J. Zhao, T. Y. Chai. Wastewater BOD forecasting model for optimal operation using robust time-delay neural network. In Proceedings of the Second International Conference on Advances in Neural Networks, Springer, Berlin, Heidelberg, vol. 3498, pp. 1028-1033, 2005.
    • (2005) Proceedings of the Second International Conference on Advances in Neural Networks , pp. 1028-1033
    • Zhao, L.J.1    Chai, T.Y.2
  • 4
    • 0037457689 scopus 로고    scopus 로고
    • Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis
    • D. S. Lee, P. A. Vanrolleghem. Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis. Biotechnology and Bioengineering, vol. 82, no. 4, pp. 489-497, 2003.
    • (2003) Biotechnology and Bioengineering , vol.82 , Issue.4 , pp. 489-497
    • Lee, D.S.1    Vanrolleghem, P.A.2
  • 5
    • 67650551326 scopus 로고    scopus 로고
    • Product quality prediction by a neural soft-sensor based on MSA and PCA
    • J. Shi, X. G. Liu. Product quality prediction by a neural soft-sensor based on MSA and PCA. International Journal of Automation and Computing, vol. 3, no. 1, pp. 17-22, 2006.
    • (2006) International Journal of Automation and Computing , vol.3 , Issue.1 , pp. 17-22
    • Shi, J.1    Liu, X.G.2
  • 6
    • 77955650135 scopus 로고    scopus 로고
    • Fast training of support vector machines using error-center-based optimization
    • L. Meng, Q. H. Wu. Fast training of support vector machines using error-center-based optimization. International Journal of Automation and Computing, vol. 2, no. 1, pp. 6-12, 2005.
    • (2005) International Journal of Automation and Computing , vol.2 , Issue.1 , pp. 6-12
    • Meng, L.1    Wu, Q.H.2
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 9
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire. The strength of weak learnability. Machine Learning, vol. 5, no. 2, pp. 197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 12
    • 78649468188 scopus 로고    scopus 로고
    • Gabrys. Review of adaptation mechanisms for data-driven soft sensors
    • P. Kadlec, R. Grbic, B. Gabrys. Review of adaptation mechanisms for data-driven soft sensors. Computers and Chemical Engineering, vol. 35, no. 1, pp. 1-24, 2011.
    • (2011) Computers and Chemical Engineering , vol.35 , Issue.1 , pp. 1-24
    • Kadlec, P.1    Grbic, R.2
  • 14
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z. H. Zhou, J. X. Wu, W. Tang. Ensembling neural networks: Many could be better than all. Artificial Intelligence, vol. 137, no. 1-2, pp. 239-263, 2002.
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.X.2    Tang, W.3
  • 15
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G. B. Huang, Q. Y. Zhu, C. K. Siew. Extreme learning machine: Theory and applications. Neurocomputing, vol. 70, no. 1-3, pp. 489-501, 2006.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 17
    • 77954299719 scopus 로고    scopus 로고
    • Ensemble of online sequential extreme learning machine
    • Y. Lan, Y. C. Soh, G. B. Huang. Ensemble of online sequential extreme learning machine. Neurocomputing, vol. 72, no. 13-15, pp. 3391-3395, 2009.
    • (2009) Neurocomputing , vol.72 , Issue.13-15 , pp. 3391-3395
    • Lan, Y.1    Soh, Y.C.2    Huang, G.B.3
  • 18
    • 84055218167 scopus 로고    scopus 로고
    • KPCA and ELM ensemble modeling of wastewater effluent quality indices
    • L. J. Zhao, D. C. Yuan, T. Y. Chai, J. Tang. KPCA and ELM ensemble modeling of wastewater effluent quality indices. Procedia Engineering, vol. 15, pp. 5558-5562, 2011.
    • (2011) Procedia Engineering , vol.15 , pp. 5558-5562
    • Zhao, L.J.1    Yuan, D.C.2    Chai, T.Y.3    Tang, J.4
  • 19
    • 84860390385 scopus 로고    scopus 로고
    • Nonlinear robust PLS modeling of wastewater effluent quality indices
    • L. J. Zhao, D. C. Yuan, J. Tang, W. Wang, T. Y. Chai. Nonlinear robust PLS modeling of wastewater effluent quality indices. Journal of Software, vol. 6, no. 6, pp. 1067-1074, 2011.
    • (2011) Journal of Software , vol.6 , Issue.6 , pp. 1067-1074
    • Zhao, L.J.1    Yuan, D.C.2    Tang, J.3    Wang, W.4    Chai, T.Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.