-
1
-
-
0141830951
-
State and parameter estimation in chemical and biochemical processes: A tutorial
-
Dochain, D. State and parameter estimation in chemical and biochemical processes: a tutorial J. Process Control 2003, 13, 801-818
-
(2003)
J. Process Control
, vol.13
, pp. 801-818
-
-
Dochain, D.1
-
2
-
-
85008013227
-
Biochemical reactor modeling and control
-
Henson, M. A. Biochemical reactor modeling and control IEEE Control Syst. Mag. 2006, 26, 54-62
-
(2006)
IEEE Control Syst. Mag.
, vol.26
, pp. 54-62
-
-
Henson, M.A.1
-
3
-
-
70449094646
-
A survey on multistage/multiphase statistical modeling methods for batch processes
-
Yao, Y.; Gao, F. R. A survey on multistage/multiphase statistical modeling methods for batch processes Annu. Rev. Control 2009, 33, 172-183
-
(2009)
Annu. Rev. Control
, vol.33
, pp. 172-183
-
-
Yao, Y.1
Gao, F.R.2
-
4
-
-
0032451290
-
Recursive data-based prediction and control of batch product quality
-
Russell, S. A.; Kesavan, P.; Lee, J. H.; Ogunnaike, B. A. Recursive data-based prediction and control of batch product quality AIChE J. 1998, 44, 2442-2458
-
(1998)
AIChE J.
, vol.44
, pp. 2442-2458
-
-
Russell, S.A.1
Kesavan, P.2
Lee, J.H.3
Ogunnaike, B.A.4
-
5
-
-
42149134815
-
Quality prediction based on phase-specific average trajectory for batch processes
-
Zhao, C. H.; Wang, F. L.; Mao, Z. Z.; Lu, N. Y.; Jia, M. X. Quality prediction based on phase-specific average trajectory for batch processes AIChE J. 2008, 54, 693-705
-
(2008)
AIChE J.
, vol.54
, pp. 693-705
-
-
Zhao, C.H.1
Wang, F.L.2
Mao, Z.Z.3
Lu, N.Y.4
Jia, M.X.5
-
6
-
-
58949084766
-
Two state estimators for barium sulfate precipitation in a semi-batch reactor
-
Mangold, M.; Bück, A.; Schenkendorf, R.; Steyer, C.; Voigt, A.; Sundmacher, K. Two state estimators for barium sulfate precipitation in a semi-batch reactor Chem. Eng. Sci. 2009, 64, 646-660
-
(2009)
Chem. Eng. Sci.
, vol.64
, pp. 646-660
-
-
Mangold, M.1
Bück, A.2
Schenkendorf, R.3
Steyer, C.4
Voigt, A.5
Sundmacher, K.6
-
7
-
-
77749268171
-
Nearest-neighbor method for the automatic maintenance of multivariate statistical soft sensors in batch processing
-
Facco, P.; Bezzo, F.; Barolo, M. Nearest-neighbor method for the automatic maintenance of multivariate statistical soft sensors in batch processing Ind. Eng. Chem. Res. 2010, 49, 2336-2347
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, pp. 2336-2347
-
-
Facco, P.1
Bezzo, F.2
Barolo, M.3
-
8
-
-
0036805179
-
Statistical monitoring of multistage, multiphase batch processes
-
Undey, C.; Cinar, A. Statistical monitoring of multistage, multiphase batch processes IEEE Control Syst. Mag. 2002, 22, 40-52
-
(2002)
IEEE Control Syst. Mag.
, vol.22
, pp. 40-52
-
-
Undey, C.1
Cinar, A.2
-
9
-
-
77949383623
-
On-line monitoring of batch processes using IOHMM based MPLS
-
Chen, J. H.; Song, C. M.; Hsu, T. Y. On-line monitoring of batch processes using IOHMM based MPLS Ind. Eng. Chem. Res. 2010, 49, 2800-2811
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, pp. 2800-2811
-
-
Chen, J.H.1
Song, C.M.2
Hsu, T.Y.3
-
10
-
-
33747873973
-
Bioprocess control: Advances and challenges
-
Alford, J. S. Bioprocess control: Advances and challenges Comput. Chem. Eng. 2006, 30, 1464-1475
-
(2006)
Comput. Chem. Eng.
, vol.30
, pp. 1464-1475
-
-
Alford, J.S.1
-
11
-
-
34547487982
-
Iterative learning control applied to batch processes: An overview
-
Lee, J. S.; Lee, K. S. Iterative learning control applied to batch processes: An overview Control Eng. Pract. 2007, 15, 1306-1318
-
(2007)
Control Eng. Pract.
, vol.15
, pp. 1306-1318
-
-
Lee, J.S.1
Lee, K.S.2
-
12
-
-
0038824929
-
Robust nonlinear model predictive control of batch processes
-
Nagy, Z. K.; Braatz, R. D. Robust nonlinear model predictive control of batch processes AIChE J. 2003, 49, 1776-1786
-
(2003)
AIChE J.
, vol.49
, pp. 1776-1786
-
-
Nagy, Z.K.1
Braatz, R.D.2
-
13
-
-
0037999896
-
Within-batch and batch-to-batch inferential-adaptive control of semibatch reactors: A partial least squares approach
-
Flores-Cerrillo, J.; MacGregor, J. F. Within-batch and batch-to-batch inferential-adaptive control of semibatch reactors: a partial least squares approach Ind. Eng. Chem. Res. 2003, 42, 3334-3345
-
(2003)
Ind. Eng. Chem. Res.
, vol.42
, pp. 3334-3345
-
-
Flores-Cerrillo, J.1
MacGregor, J.F.2
-
14
-
-
4444350400
-
A batch-to-batch iterative optimal control strategy based on recurrent neural network models
-
Xiong, Z.; Zhang, J. A batch-to-batch iterative optimal control strategy based on recurrent neural network models J. Process Control 2005, 15, 11-21
-
(2005)
J. Process Control
, vol.15
, pp. 11-21
-
-
Xiong, Z.1
Zhang, J.2
-
15
-
-
33845516625
-
Control and optimization of batch processes
-
Bonvin, D.; Srinivasan, B.; Hunkeler, D. Control and optimization of batch processes IEEE Control Syst. Mag. 2006, 26, 34-45
-
(2006)
IEEE Control Syst. Mag.
, vol.26
, pp. 34-45
-
-
Bonvin, D.1
Srinivasan, B.2
Hunkeler, D.3
-
17
-
-
50849083804
-
Accounts of experiences in the application of artificial neural networks in chemical engineering
-
Himmelblau, D. M. Accounts of experiences in the application of artificial neural networks in chemical engineering Ind. Eng. Chem. Res. 2008, 47, 5782-5796
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, pp. 5782-5796
-
-
Himmelblau, D.M.1
-
18
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven soft sensors in the process industry Comput. Chem. Eng. 2009, 33, 795-814
-
(2009)
Comput. Chem. Eng.
, vol.33
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
19
-
-
77956444702
-
The state of the art in chemical process control in Japan: Good practice and questionnaire survey
-
Kano, M.; Ogawa, M. The state of the art in chemical process control in Japan: Good practice and questionnaire survey J. Process Control 2010, 20, 969-982
-
(2010)
J. Process Control
, vol.20
, pp. 969-982
-
-
Kano, M.1
Ogawa, M.2
-
21
-
-
46249099027
-
-
MIT Press: Cambridge, MA
-
Schölkopf, B.; Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambridge, MA, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
23
-
-
0037695279
-
-
World Scientific: Singapore
-
Suykens, J. A. K.; Van Gestel, T.; De Brabanter, J.; De Moor, B.; Vandewalle, J. Least Squares Support Vector Machines; World Scientific: Singapore, 2002.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
24
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens, J. A. K.; Vandewalle, J. Least squares support vector machine classifiers Neural Process. Lett. 1999, 9, 293-300
-
(1999)
Neural Process. Lett.
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
25
-
-
0036825528
-
Weighted least squares support vector machines: Robustness and sparse approximation
-
Suykens, J. A. K.; De Brabanter, J.; Lukas, L.; Vandewalle, J. Weighted least squares support vector machines: robustness and sparse approximation Neurocomputing 2002, 48, 85-105
-
(2002)
Neurocomputing
, vol.48
, pp. 85-105
-
-
Suykens, J.A.K.1
De Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
-
26
-
-
2342567014
-
Soft sensing modeling based on support vector machine and Bayesian model selection
-
Yan, W. W.; Shao, H. H.; Wang, X. F. Soft sensing modeling based on support vector machine and Bayesian model selection Comput. Chem. Eng. 2004, 28, 1489-1498
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 1489-1498
-
-
Yan, W.W.1
Shao, H.H.2
Wang, X.F.3
-
27
-
-
15944390632
-
Weighted support vector machine for quality estimation in the polymerization process
-
Lee, D. E.; Song, J. H.; Song, H. O.; Yoon, E. S. Weighted support vector machine for quality estimation in the polymerization process Ind. Eng. Chem. Res. 2005, 44, 2101-2105
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 2101-2105
-
-
Lee, D.E.1
Song, J.H.2
Song, H.O.3
Yoon, E.S.4
-
28
-
-
37249063664
-
Data-driven dynamic modeling and control of a surface aeration system
-
Gandhi, A. B.; Joshi, J. B.; Jayaraman, V. K.; Kulkarni, B. D. Data-driven dynamic modeling and control of a surface aeration system Ind. Eng. Chem. Res. 2007, 46, 8607-8613
-
(2007)
Ind. Eng. Chem. Res.
, vol.46
, pp. 8607-8613
-
-
Gandhi, A.B.1
Joshi, J.B.2
Jayaraman, V.K.3
Kulkarni, B.D.4
-
29
-
-
79951983943
-
Application of support vector regression for developing soft sensors for nonlinear processes
-
Chitralekha, S. B.; Shah, S. L. Application of support vector regression for developing soft sensors for nonlinear processes Can. J. Chem. Eng. 2010, 88, 696-709
-
(2010)
Can. J. Chem. Eng.
, vol.88
, pp. 696-709
-
-
Chitralekha, S.B.1
Shah, S.L.2
-
30
-
-
40449133038
-
Nonlinear multivariate quality estimation and prediction based on kernel partial least squares
-
Zhang, X.; Yan, W. W.; Shao, H. H. Nonlinear multivariate quality estimation and prediction based on kernel partial least squares Ind. Eng. Chem. Res. 2008, 47, 1120-1131
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, pp. 1120-1131
-
-
Zhang, X.1
Yan, W.W.2
Shao, H.H.3
-
31
-
-
33744831196
-
Modeling and inferential control of the batch acetylation of cellulose
-
Dubey, A.; Realff, M. J.; Lee, J. H.; Schork, F. J.; Butte, A.; Olle, B.; Kizer, L. E. Modeling and inferential control of the batch acetylation of cellulose AIChE J. 2006, 52, 2149-2160
-
(2006)
AIChE J.
, vol.52
, pp. 2149-2160
-
-
Dubey, A.1
Realff, M.J.2
Lee, J.H.3
Schork, F.J.4
Butte, A.5
Olle, B.6
Kizer, L.E.7
-
32
-
-
27444433806
-
Soft-sensor development for fed-batch bioreactors using support vector regression
-
Desai, K.; Badhe, Y.; Tambe, S. S.; Kulkarni, B. D. Soft-sensor development for fed-batch bioreactors using support vector regression Biochem. Eng. J. 2006, 27, 225-239
-
(2006)
Biochem. Eng. J.
, vol.27
, pp. 225-239
-
-
Desai, K.1
Badhe, Y.2
Tambe, S.S.3
Kulkarni, B.D.4
-
33
-
-
33644890191
-
Prediction of key state variables using support vector machines in bioprocesses
-
Li, Y. F.; Yuan, J. Q. Prediction of key state variables using support vector machines in bioprocesses Chem. Eng. Technol. 2006, 29, 313-319
-
(2006)
Chem. Eng. Technol.
, vol.29
, pp. 313-319
-
-
Li, Y.F.1
Yuan, J.Q.2
-
34
-
-
33748469376
-
On-line estimation of biomass in fermentation process using support vector machine
-
Wang, J. L.; Yu, T.; Jin, C. Y. On-line estimation of biomass in fermentation process using support vector machine Chin. J. Chem. Eng. 2006, 14, 383-388
-
(2006)
Chin. J. Chem. Eng.
, vol.14
, pp. 383-388
-
-
Wang, J.L.1
Yu, T.2
Jin, C.Y.3
-
35
-
-
33947266512
-
Development of a soft sensor for a batch distillation column using support vector regression techniques
-
Jain, P.; Rahman, I.; Kulkarni, B. D. Development of a soft sensor for a batch distillation column using support vector regression techniques Chem. Eng. Res. Des. 2007, 85, 283-287
-
(2007)
Chem. Eng. Res. Des.
, vol.85
, pp. 283-287
-
-
Jain, P.1
Rahman, I.2
Kulkarni, B.D.3
-
36
-
-
76549132623
-
Complex process quality prediction using modified kernel partial least squares
-
Zhang, Y. W.; Teng, Y. D.; Zhang, Y. Complex process quality prediction using modified kernel partial least squares Chem. Eng. Sci. 2010, 65, 2153-2158
-
(2010)
Chem. Eng. Sci.
, vol.65
, pp. 2153-2158
-
-
Zhang, Y.W.1
Teng, Y.D.2
Zhang, Y.3
-
37
-
-
78649468188
-
Review of adaptation mechanisms for data-driven soft sensors
-
Kadlec, P.; Grbic, R.; Gabrys, B. Review of adaptation mechanisms for data-driven soft sensors Comput. Chem. Eng. 2011, 35, 1-24
-
(2011)
Comput. Chem. Eng.
, vol.35
, pp. 1-24
-
-
Kadlec, P.1
Grbic, R.2
Gabrys, B.3
-
38
-
-
22944436794
-
Process monitoring approach using fast moving window PCA
-
Wang, X.; Kruger, U.; Irwin, G. W. Process monitoring approach using fast moving window PCA Ind. Eng. Chem. Res. 2005, 44, 5691-5702
-
(2005)
Ind. Eng. Chem. Res.
, vol.44
, pp. 5691-5702
-
-
Wang, X.1
Kruger, U.2
Irwin, G.W.3
-
39
-
-
0032044750
-
Recursive PLS algorithms for adaptive data modeling
-
Qin, S. J. Recursive PLS algorithms for adaptive data modeling Comput. Chem. Eng. 1998, 22, 503-514
-
(1998)
Comput. Chem. Eng.
, vol.22
, pp. 503-514
-
-
Qin, S.J.1
-
40
-
-
64249101035
-
Moving window kernel PCA for adaptive monitoring of nonlinear processes
-
Liu, X. Q.; Kruger, U.; Littler, T.; Xie, L.; Wang, S. Q. Moving window kernel PCA for adaptive monitoring of nonlinear processes Chemom. Intell. Lab. Syst. 2009, 96, 132-143
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.96
, pp. 132-143
-
-
Liu, X.Q.1
Kruger, U.2
Littler, T.3
Xie, L.4
Wang, S.Q.5
-
41
-
-
67650083264
-
Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size
-
Liu, Y.; Hu, N. P.; Wang, H. Q.; Li, P. Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size Ind. Eng. Chem. Res. 2009, 48, 5731-5741
-
(2009)
Ind. Eng. Chem. Res.
, vol.48
, pp. 5731-5741
-
-
Liu, Y.1
Hu, N.P.2
Wang, H.Q.3
Li, P.4
-
42
-
-
0031074521
-
Locally weighted learning
-
Atkeson, C. G.; Moore, A. W.; Schaal, S. Locally weighted learning Artif. Intell. Rev. 1997, 11, 11-73
-
(1997)
Artif. Intell. Rev.
, vol.11
, pp. 11-73
-
-
Atkeson, C.G.1
Moore, A.W.2
Schaal, S.3
-
43
-
-
0032625723
-
Lazy learning for local modeling and control design
-
Bontempi, G.; Birattari, M.; Bersini, H. Lazy learning for local modeling and control design Int. J. Control 1999, 72, 643-658
-
(1999)
Int. J. Control
, vol.72
, pp. 643-658
-
-
Bontempi, G.1
Birattari, M.2
Bersini, H.3
-
44
-
-
2942558590
-
A new data-based methodology for nonlinear process modeling
-
Cheng, C.; Chiu, M. S. A new data-based methodology for nonlinear process modeling Chem. Eng. Sci. 2004, 59, 2801-2810
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 2801-2810
-
-
Cheng, C.1
Chiu, M.S.2
-
45
-
-
14844303316
-
Nonlinear process monitoring using JITL-PCA
-
Cheng, C.; Chiu, M. S. Nonlinear process monitoring using JITL-PCA Chemom. Intell. Lab. Syst. 2005, 76, 1-13
-
(2005)
Chemom. Intell. Lab. Syst.
, vol.76
, pp. 1-13
-
-
Cheng, C.1
Chiu, M.S.2
-
46
-
-
33847110311
-
Lazy learning-based online identification and adaptive PID control: A case study for CSTR process
-
Pan, T. H.; Li, S. Y.; Cai, W. J. Lazy learning-based online identification and adaptive PID control: a case study for CSTR process Ind. Eng. Chem. Res. 2007, 46, 472-480
-
(2007)
Ind. Eng. Chem. Res.
, vol.46
, pp. 472-480
-
-
Pan, T.H.1
Li, S.Y.2
Cai, W.J.3
-
47
-
-
68049143320
-
Soft-sensor development using correlation-based just-in-time modeling
-
Fujiwara, K.; Kano, M.; Hasebe, S.; Takinami, A. Soft-sensor development using correlation-based just-in-time modeling AIChE J. 2009, 55, 1754-1765
-
(2009)
AIChE J.
, vol.55
, pp. 1754-1765
-
-
Fujiwara, K.1
Kano, M.2
Hasebe, S.3
Takinami, A.4
-
48
-
-
77951091017
-
Development of correlation-based clustering method and its application to software sensing
-
Fujiwara, K.; Kano, M.; Hasebe, S. Development of correlation-based clustering method and its application to software sensing Chemom. Intell. Lab. Syst. 2010, 101, 130-138
-
(2010)
Chemom. Intell. Lab. Syst.
, vol.101
, pp. 130-138
-
-
Fujiwara, K.1
Kano, M.2
Hasebe, S.3
-
49
-
-
36549010042
-
Local least squares support vector regression with application to online modeling for batch processes
-
Liu, Y.; Wang, H. Q.; Li, P. Local least squares support vector regression with application to online modeling for batch processes J. Chem. Ind. Eng. (China) 2007, 58, 2846-2851
-
(2007)
J. Chem. Ind. Eng. (China)
, vol.58
, pp. 2846-2851
-
-
Liu, Y.1
Wang, H.Q.2
Li, P.3
-
50
-
-
78650524009
-
A comparative study of just-in-time-learning based methods for online soft sensor modeling
-
Ge, Z. Q.; Song, Z. H. A comparative study of just-in-time-learning based methods for online soft sensor modeling Chemom. Intell. Lab. Syst. 2010, 104, 306-317
-
(2010)
Chemom. Intell. Lab. Syst.
, vol.104
, pp. 306-317
-
-
Ge, Z.Q.1
Song, Z.H.2
-
51
-
-
34247558132
-
Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
-
Cawley, G. C.; Talbot, N. L. C. Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters J. Mach. Learn. Res. 2007, 8, 841-861
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 841-861
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
52
-
-
8444241860
-
Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
-
Cawley, G. C.; Talbot, N. L. C. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines Neural Networks 2004, 17, 1467-1475
-
(2004)
Neural Networks
, vol.17
, pp. 1467-1475
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
53
-
-
0004236492
-
-
3 rd ed. The John Hopkins University Press: Baltimore, MD
-
Golub, G. H.; van Loan, C. F. Matrix Computations, 3 rd ed.; The John Hopkins University Press: Baltimore, MD, 1996.
-
(1996)
Matrix Computations
-
-
Golub, G.H.1
Van Loan, C.F.2
-
54
-
-
73649091761
-
Selective recursive kernel learning for online identification of nonlinear systems with NARX form
-
Liu, Y.; Wang, H. Q.; Yu, J.; Li, P. Selective recursive kernel learning for online identification of nonlinear systems with NARX form J. Process Control 2010, 20, 181-194
-
(2010)
J. Process Control
, vol.20
, pp. 181-194
-
-
Liu, Y.1
Wang, H.Q.2
Yu, J.3
Li, P.4
-
55
-
-
0029078742
-
A heuristic approach to fed-batch optimization streptokinase fermentation
-
Patnaik, P. R. A heuristic approach to fed-batch optimization streptokinase fermentation Bioprocess Eng. 1995, 13, 109-112
-
(1995)
Bioprocess Eng.
, vol.13
, pp. 109-112
-
-
Patnaik, P.R.1
-
56
-
-
0037110983
-
A modular simulation package for fed-batch fermentation: Penicillin production
-
Birol, G.; Undey, C.; Cinar, A. A modular simulation package for fed-batch fermentation: penicillin production Comput. Chem. Eng. 2002, 26, 1553-1565
-
(2002)
Comput. Chem. Eng.
, vol.26
, pp. 1553-1565
-
-
Birol, G.1
Undey, C.2
Cinar, A.3
|