메뉴 건너뛰기




Volumn 51, Issue 11, 2012, Pages 4313-4327

Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE BIOMASS; ADAPTIVE PARAMETERS; BATCH PROCESS; CROSS VALIDATION; FED-BATCH FERMENTATION; JUST IN TIME; JUST-IN-TIME LEARNING; KERNEL LEARNING; KERNEL PARAMETER; LOW COMPUTATIONAL LOADS; MODELING PROCEDURE; NON-LINEARITY; ONLINE MODELING; RECURSIVE LEAST SQUARES; SIMILARITY FACTORS; SOFT SENSORS; SOFT-SENSOR MODELING; VARIATION CHARACTERISTICS;

EID: 84863357539     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie201650u     Document Type: Article
Times cited : (112)

References (56)
  • 1
    • 0141830951 scopus 로고    scopus 로고
    • State and parameter estimation in chemical and biochemical processes: A tutorial
    • Dochain, D. State and parameter estimation in chemical and biochemical processes: a tutorial J. Process Control 2003, 13, 801-818
    • (2003) J. Process Control , vol.13 , pp. 801-818
    • Dochain, D.1
  • 2
    • 85008013227 scopus 로고    scopus 로고
    • Biochemical reactor modeling and control
    • Henson, M. A. Biochemical reactor modeling and control IEEE Control Syst. Mag. 2006, 26, 54-62
    • (2006) IEEE Control Syst. Mag. , vol.26 , pp. 54-62
    • Henson, M.A.1
  • 3
    • 70449094646 scopus 로고    scopus 로고
    • A survey on multistage/multiphase statistical modeling methods for batch processes
    • Yao, Y.; Gao, F. R. A survey on multistage/multiphase statistical modeling methods for batch processes Annu. Rev. Control 2009, 33, 172-183
    • (2009) Annu. Rev. Control , vol.33 , pp. 172-183
    • Yao, Y.1    Gao, F.R.2
  • 4
    • 0032451290 scopus 로고    scopus 로고
    • Recursive data-based prediction and control of batch product quality
    • Russell, S. A.; Kesavan, P.; Lee, J. H.; Ogunnaike, B. A. Recursive data-based prediction and control of batch product quality AIChE J. 1998, 44, 2442-2458
    • (1998) AIChE J. , vol.44 , pp. 2442-2458
    • Russell, S.A.1    Kesavan, P.2    Lee, J.H.3    Ogunnaike, B.A.4
  • 5
    • 42149134815 scopus 로고    scopus 로고
    • Quality prediction based on phase-specific average trajectory for batch processes
    • Zhao, C. H.; Wang, F. L.; Mao, Z. Z.; Lu, N. Y.; Jia, M. X. Quality prediction based on phase-specific average trajectory for batch processes AIChE J. 2008, 54, 693-705
    • (2008) AIChE J. , vol.54 , pp. 693-705
    • Zhao, C.H.1    Wang, F.L.2    Mao, Z.Z.3    Lu, N.Y.4    Jia, M.X.5
  • 7
    • 77749268171 scopus 로고    scopus 로고
    • Nearest-neighbor method for the automatic maintenance of multivariate statistical soft sensors in batch processing
    • Facco, P.; Bezzo, F.; Barolo, M. Nearest-neighbor method for the automatic maintenance of multivariate statistical soft sensors in batch processing Ind. Eng. Chem. Res. 2010, 49, 2336-2347
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 2336-2347
    • Facco, P.1    Bezzo, F.2    Barolo, M.3
  • 8
    • 0036805179 scopus 로고    scopus 로고
    • Statistical monitoring of multistage, multiphase batch processes
    • Undey, C.; Cinar, A. Statistical monitoring of multistage, multiphase batch processes IEEE Control Syst. Mag. 2002, 22, 40-52
    • (2002) IEEE Control Syst. Mag. , vol.22 , pp. 40-52
    • Undey, C.1    Cinar, A.2
  • 9
    • 77949383623 scopus 로고    scopus 로고
    • On-line monitoring of batch processes using IOHMM based MPLS
    • Chen, J. H.; Song, C. M.; Hsu, T. Y. On-line monitoring of batch processes using IOHMM based MPLS Ind. Eng. Chem. Res. 2010, 49, 2800-2811
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 2800-2811
    • Chen, J.H.1    Song, C.M.2    Hsu, T.Y.3
  • 10
    • 33747873973 scopus 로고    scopus 로고
    • Bioprocess control: Advances and challenges
    • Alford, J. S. Bioprocess control: Advances and challenges Comput. Chem. Eng. 2006, 30, 1464-1475
    • (2006) Comput. Chem. Eng. , vol.30 , pp. 1464-1475
    • Alford, J.S.1
  • 11
    • 34547487982 scopus 로고    scopus 로고
    • Iterative learning control applied to batch processes: An overview
    • Lee, J. S.; Lee, K. S. Iterative learning control applied to batch processes: An overview Control Eng. Pract. 2007, 15, 1306-1318
    • (2007) Control Eng. Pract. , vol.15 , pp. 1306-1318
    • Lee, J.S.1    Lee, K.S.2
  • 12
    • 0038824929 scopus 로고    scopus 로고
    • Robust nonlinear model predictive control of batch processes
    • Nagy, Z. K.; Braatz, R. D. Robust nonlinear model predictive control of batch processes AIChE J. 2003, 49, 1776-1786
    • (2003) AIChE J. , vol.49 , pp. 1776-1786
    • Nagy, Z.K.1    Braatz, R.D.2
  • 13
    • 0037999896 scopus 로고    scopus 로고
    • Within-batch and batch-to-batch inferential-adaptive control of semibatch reactors: A partial least squares approach
    • Flores-Cerrillo, J.; MacGregor, J. F. Within-batch and batch-to-batch inferential-adaptive control of semibatch reactors: a partial least squares approach Ind. Eng. Chem. Res. 2003, 42, 3334-3345
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 3334-3345
    • Flores-Cerrillo, J.1    MacGregor, J.F.2
  • 14
    • 4444350400 scopus 로고    scopus 로고
    • A batch-to-batch iterative optimal control strategy based on recurrent neural network models
    • Xiong, Z.; Zhang, J. A batch-to-batch iterative optimal control strategy based on recurrent neural network models J. Process Control 2005, 15, 11-21
    • (2005) J. Process Control , vol.15 , pp. 11-21
    • Xiong, Z.1    Zhang, J.2
  • 17
    • 50849083804 scopus 로고    scopus 로고
    • Accounts of experiences in the application of artificial neural networks in chemical engineering
    • Himmelblau, D. M. Accounts of experiences in the application of artificial neural networks in chemical engineering Ind. Eng. Chem. Res. 2008, 47, 5782-5796
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 5782-5796
    • Himmelblau, D.M.1
  • 18
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven soft sensors in the process industry Comput. Chem. Eng. 2009, 33, 795-814
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 19
    • 77956444702 scopus 로고    scopus 로고
    • The state of the art in chemical process control in Japan: Good practice and questionnaire survey
    • Kano, M.; Ogawa, M. The state of the art in chemical process control in Japan: Good practice and questionnaire survey J. Process Control 2010, 20, 969-982
    • (2010) J. Process Control , vol.20 , pp. 969-982
    • Kano, M.1    Ogawa, M.2
  • 24
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J. A. K.; Vandewalle, J. Least squares support vector machine classifiers Neural Process. Lett. 1999, 9, 293-300
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 25
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • Suykens, J. A. K.; De Brabanter, J.; Lukas, L.; Vandewalle, J. Weighted least squares support vector machines: robustness and sparse approximation Neurocomputing 2002, 48, 85-105
    • (2002) Neurocomputing , vol.48 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 26
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan, W. W.; Shao, H. H.; Wang, X. F. Soft sensing modeling based on support vector machine and Bayesian model selection Comput. Chem. Eng. 2004, 28, 1489-1498
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1489-1498
    • Yan, W.W.1    Shao, H.H.2    Wang, X.F.3
  • 27
    • 15944390632 scopus 로고    scopus 로고
    • Weighted support vector machine for quality estimation in the polymerization process
    • Lee, D. E.; Song, J. H.; Song, H. O.; Yoon, E. S. Weighted support vector machine for quality estimation in the polymerization process Ind. Eng. Chem. Res. 2005, 44, 2101-2105
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 2101-2105
    • Lee, D.E.1    Song, J.H.2    Song, H.O.3    Yoon, E.S.4
  • 28
    • 37249063664 scopus 로고    scopus 로고
    • Data-driven dynamic modeling and control of a surface aeration system
    • Gandhi, A. B.; Joshi, J. B.; Jayaraman, V. K.; Kulkarni, B. D. Data-driven dynamic modeling and control of a surface aeration system Ind. Eng. Chem. Res. 2007, 46, 8607-8613
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 8607-8613
    • Gandhi, A.B.1    Joshi, J.B.2    Jayaraman, V.K.3    Kulkarni, B.D.4
  • 29
    • 79951983943 scopus 로고    scopus 로고
    • Application of support vector regression for developing soft sensors for nonlinear processes
    • Chitralekha, S. B.; Shah, S. L. Application of support vector regression for developing soft sensors for nonlinear processes Can. J. Chem. Eng. 2010, 88, 696-709
    • (2010) Can. J. Chem. Eng. , vol.88 , pp. 696-709
    • Chitralekha, S.B.1    Shah, S.L.2
  • 30
    • 40449133038 scopus 로고    scopus 로고
    • Nonlinear multivariate quality estimation and prediction based on kernel partial least squares
    • Zhang, X.; Yan, W. W.; Shao, H. H. Nonlinear multivariate quality estimation and prediction based on kernel partial least squares Ind. Eng. Chem. Res. 2008, 47, 1120-1131
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 1120-1131
    • Zhang, X.1    Yan, W.W.2    Shao, H.H.3
  • 31
  • 32
    • 27444433806 scopus 로고    scopus 로고
    • Soft-sensor development for fed-batch bioreactors using support vector regression
    • Desai, K.; Badhe, Y.; Tambe, S. S.; Kulkarni, B. D. Soft-sensor development for fed-batch bioreactors using support vector regression Biochem. Eng. J. 2006, 27, 225-239
    • (2006) Biochem. Eng. J. , vol.27 , pp. 225-239
    • Desai, K.1    Badhe, Y.2    Tambe, S.S.3    Kulkarni, B.D.4
  • 33
    • 33644890191 scopus 로고    scopus 로고
    • Prediction of key state variables using support vector machines in bioprocesses
    • Li, Y. F.; Yuan, J. Q. Prediction of key state variables using support vector machines in bioprocesses Chem. Eng. Technol. 2006, 29, 313-319
    • (2006) Chem. Eng. Technol. , vol.29 , pp. 313-319
    • Li, Y.F.1    Yuan, J.Q.2
  • 34
    • 33748469376 scopus 로고    scopus 로고
    • On-line estimation of biomass in fermentation process using support vector machine
    • Wang, J. L.; Yu, T.; Jin, C. Y. On-line estimation of biomass in fermentation process using support vector machine Chin. J. Chem. Eng. 2006, 14, 383-388
    • (2006) Chin. J. Chem. Eng. , vol.14 , pp. 383-388
    • Wang, J.L.1    Yu, T.2    Jin, C.Y.3
  • 35
    • 33947266512 scopus 로고    scopus 로고
    • Development of a soft sensor for a batch distillation column using support vector regression techniques
    • Jain, P.; Rahman, I.; Kulkarni, B. D. Development of a soft sensor for a batch distillation column using support vector regression techniques Chem. Eng. Res. Des. 2007, 85, 283-287
    • (2007) Chem. Eng. Res. Des. , vol.85 , pp. 283-287
    • Jain, P.1    Rahman, I.2    Kulkarni, B.D.3
  • 36
    • 76549132623 scopus 로고    scopus 로고
    • Complex process quality prediction using modified kernel partial least squares
    • Zhang, Y. W.; Teng, Y. D.; Zhang, Y. Complex process quality prediction using modified kernel partial least squares Chem. Eng. Sci. 2010, 65, 2153-2158
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 2153-2158
    • Zhang, Y.W.1    Teng, Y.D.2    Zhang, Y.3
  • 37
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec, P.; Grbic, R.; Gabrys, B. Review of adaptation mechanisms for data-driven soft sensors Comput. Chem. Eng. 2011, 35, 1-24
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 1-24
    • Kadlec, P.1    Grbic, R.2    Gabrys, B.3
  • 38
    • 22944436794 scopus 로고    scopus 로고
    • Process monitoring approach using fast moving window PCA
    • Wang, X.; Kruger, U.; Irwin, G. W. Process monitoring approach using fast moving window PCA Ind. Eng. Chem. Res. 2005, 44, 5691-5702
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 5691-5702
    • Wang, X.1    Kruger, U.2    Irwin, G.W.3
  • 39
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin, S. J. Recursive PLS algorithms for adaptive data modeling Comput. Chem. Eng. 1998, 22, 503-514
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 40
    • 64249101035 scopus 로고    scopus 로고
    • Moving window kernel PCA for adaptive monitoring of nonlinear processes
    • Liu, X. Q.; Kruger, U.; Littler, T.; Xie, L.; Wang, S. Q. Moving window kernel PCA for adaptive monitoring of nonlinear processes Chemom. Intell. Lab. Syst. 2009, 96, 132-143
    • (2009) Chemom. Intell. Lab. Syst. , vol.96 , pp. 132-143
    • Liu, X.Q.1    Kruger, U.2    Littler, T.3    Xie, L.4    Wang, S.Q.5
  • 41
    • 67650083264 scopus 로고    scopus 로고
    • Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size
    • Liu, Y.; Hu, N. P.; Wang, H. Q.; Li, P. Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size Ind. Eng. Chem. Res. 2009, 48, 5731-5741
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 5731-5741
    • Liu, Y.1    Hu, N.P.2    Wang, H.Q.3    Li, P.4
  • 43
    • 0032625723 scopus 로고    scopus 로고
    • Lazy learning for local modeling and control design
    • Bontempi, G.; Birattari, M.; Bersini, H. Lazy learning for local modeling and control design Int. J. Control 1999, 72, 643-658
    • (1999) Int. J. Control , vol.72 , pp. 643-658
    • Bontempi, G.1    Birattari, M.2    Bersini, H.3
  • 44
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng, C.; Chiu, M. S. A new data-based methodology for nonlinear process modeling Chem. Eng. Sci. 2004, 59, 2801-2810
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.S.2
  • 45
    • 14844303316 scopus 로고    scopus 로고
    • Nonlinear process monitoring using JITL-PCA
    • Cheng, C.; Chiu, M. S. Nonlinear process monitoring using JITL-PCA Chemom. Intell. Lab. Syst. 2005, 76, 1-13
    • (2005) Chemom. Intell. Lab. Syst. , vol.76 , pp. 1-13
    • Cheng, C.1    Chiu, M.S.2
  • 46
    • 33847110311 scopus 로고    scopus 로고
    • Lazy learning-based online identification and adaptive PID control: A case study for CSTR process
    • Pan, T. H.; Li, S. Y.; Cai, W. J. Lazy learning-based online identification and adaptive PID control: a case study for CSTR process Ind. Eng. Chem. Res. 2007, 46, 472-480
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 472-480
    • Pan, T.H.1    Li, S.Y.2    Cai, W.J.3
  • 47
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara, K.; Kano, M.; Hasebe, S.; Takinami, A. Soft-sensor development using correlation-based just-in-time modeling AIChE J. 2009, 55, 1754-1765
    • (2009) AIChE J. , vol.55 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 48
    • 77951091017 scopus 로고    scopus 로고
    • Development of correlation-based clustering method and its application to software sensing
    • Fujiwara, K.; Kano, M.; Hasebe, S. Development of correlation-based clustering method and its application to software sensing Chemom. Intell. Lab. Syst. 2010, 101, 130-138
    • (2010) Chemom. Intell. Lab. Syst. , vol.101 , pp. 130-138
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3
  • 49
    • 36549010042 scopus 로고    scopus 로고
    • Local least squares support vector regression with application to online modeling for batch processes
    • Liu, Y.; Wang, H. Q.; Li, P. Local least squares support vector regression with application to online modeling for batch processes J. Chem. Ind. Eng. (China) 2007, 58, 2846-2851
    • (2007) J. Chem. Ind. Eng. (China) , vol.58 , pp. 2846-2851
    • Liu, Y.1    Wang, H.Q.2    Li, P.3
  • 50
    • 78650524009 scopus 로고    scopus 로고
    • A comparative study of just-in-time-learning based methods for online soft sensor modeling
    • Ge, Z. Q.; Song, Z. H. A comparative study of just-in-time-learning based methods for online soft sensor modeling Chemom. Intell. Lab. Syst. 2010, 104, 306-317
    • (2010) Chemom. Intell. Lab. Syst. , vol.104 , pp. 306-317
    • Ge, Z.Q.1    Song, Z.H.2
  • 51
    • 34247558132 scopus 로고    scopus 로고
    • Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
    • Cawley, G. C.; Talbot, N. L. C. Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters J. Mach. Learn. Res. 2007, 8, 841-861
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 841-861
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 52
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    • Cawley, G. C.; Talbot, N. L. C. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines Neural Networks 2004, 17, 1467-1475
    • (2004) Neural Networks , vol.17 , pp. 1467-1475
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 53
    • 0004236492 scopus 로고    scopus 로고
    • 3 rd ed. The John Hopkins University Press: Baltimore, MD
    • Golub, G. H.; van Loan, C. F. Matrix Computations, 3 rd ed.; The John Hopkins University Press: Baltimore, MD, 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 54
    • 73649091761 scopus 로고    scopus 로고
    • Selective recursive kernel learning for online identification of nonlinear systems with NARX form
    • Liu, Y.; Wang, H. Q.; Yu, J.; Li, P. Selective recursive kernel learning for online identification of nonlinear systems with NARX form J. Process Control 2010, 20, 181-194
    • (2010) J. Process Control , vol.20 , pp. 181-194
    • Liu, Y.1    Wang, H.Q.2    Yu, J.3    Li, P.4
  • 55
    • 0029078742 scopus 로고
    • A heuristic approach to fed-batch optimization streptokinase fermentation
    • Patnaik, P. R. A heuristic approach to fed-batch optimization streptokinase fermentation Bioprocess Eng. 1995, 13, 109-112
    • (1995) Bioprocess Eng. , vol.13 , pp. 109-112
    • Patnaik, P.R.1
  • 56
    • 0037110983 scopus 로고    scopus 로고
    • A modular simulation package for fed-batch fermentation: Penicillin production
    • Birol, G.; Undey, C.; Cinar, A. A modular simulation package for fed-batch fermentation: penicillin production Comput. Chem. Eng. 2002, 26, 1553-1565
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 1553-1565
    • Birol, G.1    Undey, C.2    Cinar, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.