메뉴 건너뛰기




Volumn 22, Issue 7, 2014, Pages 828-836

Local partial least squares based online soft sensing method for multi-output processes with adaptive process states division

Author keywords

F test; Local learning; Multi output process; Online soft sensing; Partial least squares; Process state division

Indexed keywords

INDUSTRIAL PLANTS;

EID: 84906316402     PISSN: 10049541     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cjche.2014.05.003     Document Type: Conference Paper
Times cited : (29)

References (29)
  • 2
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • P. Kadlec, B. Gabrys, and S. Strandt Data-driven soft sensors in the process industry Comput. Chem. Eng. 33 4 2009 795 814
    • (2009) Comput. Chem. Eng. , vol.33 , Issue.4 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 3
    • 79960245463 scopus 로고    scopus 로고
    • Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples
    • Z.Q. Ge, and Z.H. Song Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples AIChE J. 57 8 2011 2109 2118
    • (2011) AIChE J. , vol.57 , Issue.8 , pp. 2109-2118
    • Ge, Z.Q.1    Song, Z.H.2
  • 4
    • 79953832419 scopus 로고    scopus 로고
    • A reduced order soft sensor approach and its application to continuous digester
    • H.J. Galicia, Q.P. He, and W. Jin A reduced order soft sensor approach and its application to continuous digester J. Process Control 21 4 2011 489 500
    • (2011) J. Process Control , vol.21 , Issue.4 , pp. 489-500
    • Galicia, H.J.1    He, Q.P.2    Jin, W.3
  • 5
    • 57049112694 scopus 로고    scopus 로고
    • ANN-based soft-sensor for real-time process motoring and control of an industrial polymerization process
    • J.C.B. Gonzaga, L.A.C. Meleiro, C. Kiang, and R. Maciel Filho ANN-based soft-sensor for real-time process motoring and control of an industrial polymerization process Comput. Chem. Eng. 33 1 2009 43 49
    • (2009) Comput. Chem. Eng. , vol.33 , Issue.1 , pp. 43-49
    • Gonzaga, J.C.B.1    Meleiro, L.A.C.2    Kiang, C.3    MacIel Filho, R.4
  • 6
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • J. Yu A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses Comput. Chem. Eng. 41 1 2012 134 144
    • (2012) Comput. Chem. Eng. , vol.41 , Issue.1 , pp. 134-144
    • Yu, J.1
  • 7
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • P. Kadlec, and R. Grbić Review of adaptation mechanisms for data-driven soft sensors Comput. Chem. Eng. 35 1 2011 1 24
    • (2011) Comput. Chem. Eng. , vol.35 , Issue.1 , pp. 1-24
    • Kadlec, P.1    Grbić, R.2
  • 8
    • 84856491836 scopus 로고    scopus 로고
    • On-line principal component analysis with application to process modeling
    • J. Tang, W. Yu, T.Y. Chai, and L.J. Zhao On-line principal component analysis with application to process modeling Neurocomputing 87 4 2012 167 178
    • (2012) Neurocomputing , vol.87 , Issue.4 , pp. 167-178
    • Tang, J.1    Yu, W.2    Chai, T.Y.3    Zhao, L.J.4
  • 9
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • S.J. Qin Recursive PLS algorithms for adaptive data modeling Comput. Chem. Eng. 22 4-5 1998 503 514
    • (1998) Comput. Chem. Eng. , vol.22 , Issue.45 , pp. 503-514
    • Qin, S.J.1
  • 10
    • 77955789911 scopus 로고    scopus 로고
    • A new approach for online adaptive modeling using incremental support vector regression
    • P. Wang, H.G. Tian, X.M. Tian, and D.X. Huang A new approach for online adaptive modeling using incremental support vector regression CISEC J. 61 8 2010 2040 2045
    • (2010) CISEC J. , vol.61 , Issue.8 , pp. 2040-2045
    • Wang, P.1    Tian, H.G.2    Tian, X.M.3    Huang, D.X.4
  • 11
    • 4344647570 scopus 로고    scopus 로고
    • Efficient disk-based k-means clustering for relational databases
    • O. Carlos, and O. Edward Efficient disk-based k-means clustering for relational databases IEEE Trans. Knowl. Data Eng. 16 8 2004 909 921
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , Issue.8 , pp. 909-921
    • Carlos, O.1    Edward, O.2
  • 12
    • 56049115367 scopus 로고    scopus 로고
    • Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process
    • Y.F. Fu, H.Y. Su, Y. Zhang, and J. Chu Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process Chin. J. Chem. Eng. 16 5 2008 746 751
    • (2008) Chin. J. Chem. Eng. , vol.16 , Issue.5 , pp. 746-751
    • Fu, Y.F.1    Su, H.Y.2    Zhang, Y.3    Chu, J.4
  • 13
    • 84864805251 scopus 로고    scopus 로고
    • Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach
    • J. Yu Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach Chem. Eng. Sci. 82 2012 22 30
    • (2012) Chem. Eng. Sci. , vol.82 , pp. 22-30
    • Yu, J.1
  • 14
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • K. Fujiwara, M. Kano, S. Hasebe, and A. Takinami Soft-sensor development using correlation-based just-in-time modeling AIChE J. 55 7 2009 1754 1764
    • (2009) AIChE J. , vol.55 , Issue.7 , pp. 1754-1764
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 15
    • 84862208873 scopus 로고    scopus 로고
    • Localized, adaptive recursive partial least squares regression for dynamic system modeling
    • W.D. Ni, S.K. Tan, W.J. Ng, and S.D. Brown Localized, adaptive recursive partial least squares regression for dynamic system modeling Ind. Eng. Chem. Res. 51 8 2012 8025 8039
    • (2012) Ind. Eng. Chem. Res. , vol.51 , Issue.8 , pp. 8025-8039
    • Ni, W.D.1    Tan, S.K.2    Ng, W.J.3    Brown, S.D.4
  • 16
    • 79954599740 scopus 로고    scopus 로고
    • Local learning-based adaptive soft sensor for catalyst activation prediction
    • P. Kadlec, and B. Gabrys Local learning-based adaptive soft sensor for catalyst activation prediction AIChE J. 57 5 2009 1288 1301
    • (2009) AIChE J. , vol.57 , Issue.5 , pp. 1288-1301
    • Kadlec, P.1    Gabrys, B.2
  • 17
    • 84870438932 scopus 로고    scopus 로고
    • A Bayesian approach to design of adaptive multi-model inferential soft sensors with application in oil sand industry
    • S. Khatibisepehr, B. Huang, F.W. Xu, and A. Espejo A Bayesian approach to design of adaptive multi-model inferential soft sensors with application in oil sand industry J. Process Control 22 10 2012 1913 1929
    • (2012) J. Process Control , vol.22 , Issue.10 , pp. 1913-1929
    • Khatibisepehr, S.1    Huang, B.2    Xu, F.W.3    Espejo, A.4
  • 18
    • 84855962953 scopus 로고    scopus 로고
    • Real-time product quality control for batch processes based on stacked least-squares support vector regression models
    • S.N. Zhang, F.L. Wang, D.K. He, and R.D. Jia Real-time product quality control for batch processes based on stacked least-squares support vector regression models Comput. Chem. Eng. 36 10 2012 217 226
    • (2012) Comput. Chem. Eng. , vol.36 , Issue.10 , pp. 217-226
    • Zhang, S.N.1    Wang, F.L.2    He, D.K.3    Jia, R.D.4
  • 19
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • C. Cheng, and M.S. Chiu A new data-based methodology for nonlinear process modeling Chem. Eng. Sci. 59 13 2004 2801 2810
    • (2004) Chem. Eng. Sci. , vol.59 , Issue.13 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.S.2
  • 20
    • 80052809967 scopus 로고    scopus 로고
    • Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes
    • K. Chen, J. Ji, H.Q. Wang, and Z.H. Song Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes Chem. Eng. Res. Des. 89 10 2011 2117 2124
    • (2011) Chem. Eng. Res. Des. , vol.89 , Issue.10 , pp. 2117-2124
    • Chen, K.1    Ji, J.2    Wang, H.Q.3    Song, Z.H.4
  • 21
    • 84863357539 scopus 로고    scopus 로고
    • Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes
    • Y. Liu, Z.L. Gao, P. Li, and H.Q. Wang Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes Ind. Eng. Chem. Res. 51 11 2012 4313 4327
    • (2012) Ind. Eng. Chem. Res. , vol.51 , Issue.11 , pp. 4313-4327
    • Liu, Y.1    Gao, Z.L.2    Li, P.3    Wang, H.Q.4
  • 22
    • 84863278909 scopus 로고    scopus 로고
    • Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor
    • Y.Q. Liu, D.P. Huang, and Y. Li Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor Ind. Eng. Chem. Res. 51 8 2012 3356 3367
    • (2012) Ind. Eng. Chem. Res. , vol.51 , Issue.8 , pp. 3356-3367
    • Liu, Y.Q.1    Huang, D.P.2    Li, Y.3
  • 24
    • 11144325691 scopus 로고
    • Partial least-squares regression: A tutorial
    • P. Geladi, and R.K. Bruce Partial least-squares regression: a tutorial Anal. Chim. Acta. 185 1986 1 17
    • (1986) Anal. Chim. Acta. , vol.185 , pp. 1-17
    • Geladi, P.1    Bruce, R.K.2
  • 25
    • 85162673553 scopus 로고
    • The kernel algorithm for PLS
    • F. Lindgren, P. Geladi, and S. Wold The kernel algorithm for PLS J. Chemom. 7 1 1993 45 59
    • (1993) J. Chemom. , vol.7 , Issue.1 , pp. 45-59
    • Lindgren, F.1    Geladi, P.2    Wold, S.3
  • 26
    • 0002815256 scopus 로고    scopus 로고
    • Improved PLS algorithms
    • B.S. Dayal, and J.F. MacGregor Improved PLS algorithms J. Chemom. 11 1 1997 73 85
    • (1997) J. Chemom. , vol.11 , Issue.1 , pp. 73-85
    • Dayal, B.S.1    MacGregor, J.F.2
  • 27
    • 78449310514 scopus 로고    scopus 로고
    • Development of self-validating soft sensors using fast moving window partial least squares
    • J.L. Liu Development of self-validating soft sensors using fast moving window partial least squares Ind. Eng. Chem. Res. 49 22 2010 11530 11546
    • (2010) Ind. Eng. Chem. Res. , vol.49 , Issue.22 , pp. 11530-11546
    • Liu, J.L.1
  • 29
    • 73649091761 scopus 로고    scopus 로고
    • Selective recursive kernel learning for online identification of nonlinear systems with NARX form
    • Y. Liu, H.Q. Wang, J. Yu, and P. Li Selective recursive kernel learning for online identification of nonlinear systems with NARX form J. Process Control 20 2 2010 181 194
    • (2010) J. Process Control , vol.20 , Issue.2 , pp. 181-194
    • Liu, Y.1    Wang, H.Q.2    Yu, J.3    Li, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.