메뉴 건너뛰기




Volumn 82, Issue , 2012, Pages 167-178

On-line principal component analysis with application to process modeling

Author keywords

On line modeling; Principal component analysis; Process modeling; Recursive algorithm

Indexed keywords

ADAPTIVE ABILITY; BENCH-MARK PROBLEMS; EXPERIMENTAL DATA; IN-PROCESS MONITORING; INDUSTRIAL PROCESSS; LINEAR DEPENDENCE; MODELING ACCURACY; MODELING METHOD; MOVING WINDOW PCA; ONLINE MODELING; PCA ALGORITHMS; PCA MODEL; PRINCIPAL COMPONENTS; PROCESS MODELING; RECURSIVE ALGORITHMS; RECURSIVE PCA; SYNTHETIC DATA; TIME VARYING; TIME-VARYING PROCESS;

EID: 84856491836     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.10.026     Document Type: Article
Times cited : (65)

References (42)
  • 2
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft-sensors in the process industry
    • Kadlec P., Gabrys B., Strand S. Data-driven soft-sensors in the process industry. Comput. Chem. Eng. 2009, 33(4):795-814.
    • (2009) Comput. Chem. Eng. , vol.33 , Issue.4 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strand, S.3
  • 4
    • 84856493648 scopus 로고
    • Recent advances in multivariate statistical process control: improving robustness and sensitivity, in: Proceedings of the IFAC, ADCHEM Symposium
    • B.M. Wise and N.L. Ricker, Recent advances in multivariate statistical process control: improving robustness and sensitivity, in: Proceedings of the IFAC, ADCHEM Symposium, 1991, pp. 125-130.
    • (1991) , pp. 125-130
    • Wise, B.M.1    Ricker, N.L.2
  • 5
    • 0029267381 scopus 로고
    • Statistical process control of multivariate process
    • MacGregor J.F., Koutodi M. Statistical process control of multivariate process. Control Eng. Pract. 1995, 3(3):403-414.
    • (1995) Control Eng. Pract. , vol.3 , Issue.3 , pp. 403-414
    • MacGregor, J.F.1    Koutodi, M.2
  • 7
    • 84856438174 scopus 로고    scopus 로고
    • Fuzzy sets, World Scientific Series in Advances in Fuzzy Systems
    • L.A. Zadeh. Fuzzy sets, World Scientific Series in Advances in Fuzzy Systems, 1996, pp. 19-34.
    • (1996) , pp. 19-34
    • Zadeh, L.A.1
  • 9
    • 34147222905 scopus 로고    scopus 로고
    • On-line soft sensor for polyethylene process with multiple production grades
    • Liu J.L. On-line soft sensor for polyethylene process with multiple production grades. Control Eng. Pract. 2007, 15(7):769-778.
    • (2007) Control Eng. Pract. , vol.15 , Issue.7 , pp. 769-778
    • Liu, J.L.1
  • 10
    • 51349167149 scopus 로고    scopus 로고
    • On-line fuzzy modeling via clustering and support vector machines
    • Yu W., Li X.O. On-line fuzzy modeling via clustering and support vector machines. Inform. Sci. 2008, 178(22):4264-4279.
    • (2008) Inform. Sci. , vol.178 , Issue.22 , pp. 4264-4279
    • Yu, W.1    Li, X.O.2
  • 11
    • 0036036508 scopus 로고    scopus 로고
    • Principal component analysis of spectra with application to acoustic emissions from mechanical equipment
    • Tan C.C., Thornhill N.F., Belchamber R.M. Principal component analysis of spectra with application to acoustic emissions from mechanical equipment. Trans. Inst. Measure. Control 2002, 24(4):333-353.
    • (2002) Trans. Inst. Measure. Control , vol.24 , Issue.4 , pp. 333-353
    • Tan, C.C.1    Thornhill, N.F.2    Belchamber, R.M.3
  • 13
    • 0020464111 scopus 로고
    • A simpled neuron model as a principal component analyzer
    • Oja E. A simpled neuron model as a principal component analyzer. J. Math. Biol. 1982, 15:267-273.
    • (1982) J. Math. Biol. , vol.15 , pp. 267-273
    • Oja, E.1
  • 14
    • 17044396848 scopus 로고    scopus 로고
    • Non-linear complex-valued extensions of Hebbian learning: an essay
    • Fiori S. Non-linear complex-valued extensions of Hebbian learning: an essay. Neural Comput. 2005, 17(4):779-838.
    • (2005) Neural Comput. , vol.17 , Issue.4 , pp. 779-838
    • Fiori, S.1
  • 15
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin S.J. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng. 1998, 22(4-5):503-514.
    • (1998) Comput. Chem. Eng. , vol.22 , Issue.4-5 , pp. 503-514
    • Qin, S.J.1
  • 17
    • 0037150785 scopus 로고    scopus 로고
    • Variable selection for multivariate calibration using a genetic algorithm: prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data
    • Leardi R., Seasholtz M.B., Pell R.J. Variable selection for multivariate calibration using a genetic algorithm: prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data. Anal. Chim. Acta 2002, 461(2):189-200.
    • (2002) Anal. Chim. Acta , vol.461 , Issue.2 , pp. 189-200
    • Leardi, R.1    Seasholtz, M.B.2    Pell, R.J.3
  • 18
    • 0000093459 scopus 로고
    • Quadratic PLS regression
    • Höskuldsson A. Quadratic PLS regression. J. Chemometr. 1992, 6(6):307-334.
    • (1992) J. Chemometr. , vol.6 , Issue.6 , pp. 307-334
    • Höskuldsson, A.1
  • 19
    • 0026853320 scopus 로고
    • Nonlinear PLS modeling using neural networks
    • Qin S.J., McAvoy T.J. Nonlinear PLS modeling using neural networks. Comput. Chem. Eng. 1992, 16(4):379-391.
    • (1992) Comput. Chem. Eng. , vol.16 , Issue.4 , pp. 379-391
    • Qin, S.J.1    McAvoy, T.J.2
  • 20
    • 0037191667 scopus 로고    scopus 로고
    • Nonlinear PLS modeling with fuzzy inference system
    • Bang Y.H., Yoo C.K., Lee I.B. Nonlinear PLS modeling with fuzzy inference system. Chemometr. Intell. Lab. Syst. 2003, 64(2):137-155.
    • (2003) Chemometr. Intell. Lab. Syst. , vol.64 , Issue.2 , pp. 137-155
    • Bang, Y.H.1    Yoo, C.K.2    Lee, I.B.3
  • 21
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel Hilbert space,
    • Rosipal R., Trejo L.J. Kernel partial least squares regression in reproducing kernel Hilbert space,. J. Mach. Learn. Res. 2002, 2:97-123.
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 22
    • 84856506385 scopus 로고    scopus 로고
    • Development and benchmarking of multivariate statistical process control tools for a semiconductor etch process: improving robustness through model updating, in: Proceedings of the IFAC ADCHEM'97, Citeseer
    • N. Gallagher, B. Wise, S. Butler, D. White, G. Barna, Development and benchmarking of multivariate statistical process control tools for a semiconductor etch process: improving robustness through model updating, in: Proceedings of the IFAC ADCHEM'97, Citeseer, 1997, pp. 78-83.
    • (1997) , pp. 78-83
    • Gallagher, N.1    Wise, B.2    Butler, S.3    White, D.4    Barna, G.5
  • 23
    • 22944436794 scopus 로고    scopus 로고
    • Process monitoring approach using fast moving window PCA
    • Wang X., Kruger U., Irwin G.W. Process monitoring approach using fast moving window PCA. Ind. Eng. Chem. Res. 2005, 44(15):5691-5702.
    • (2005) Ind. Eng. Chem. Res. , vol.44 , Issue.15 , pp. 5691-5702
    • Wang, X.1    Kruger, U.2    Irwin, G.W.3
  • 25
    • 10844288815 scopus 로고    scopus 로고
    • Recursive PCA and the structure of time series, in: Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, Berlin
    • T. Voegtlin, Recursive PCA and the structure of time series, in: Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, Berlin, 2004, pp. 1893-1897.
    • (2004) , pp. 1893-1897
    • Voegtlin, T.1
  • 26
    • 10444273337 scopus 로고    scopus 로고
    • Recursive Principal Components Analysis Using Eigenvector Matrix Perturbation
    • Peddaneni H., et al. Recursive Principal Components Analysis Using Eigenvector Matrix Perturbation. EURASIP J. Adv. Signal Process. 2004, 13(2004):2034-2041.
    • (2004) EURASIP J. Adv. Signal Process. , vol.13 , Issue.2004 , pp. 2034-2041
    • Peddaneni, H.1
  • 27
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin S.J. Statistical process monitoring: basics and beyond. J. Chemometr. 2003, 17(8-9):480-502.
    • (2003) J. Chemometr. , vol.17 , Issue.8-9 , pp. 480-502
    • Qin, S.J.1
  • 29
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction based fault detection using a combined index
    • Yue H., Qin S. Reconstruction based fault detection using a combined index. Ind. Eng. Chem. Res. 2001, 40(20):4403-4414.
    • (2001) Ind. Eng. Chem. Res. , vol.40 , Issue.20 , pp. 4403-4414
    • Yue, H.1    Qin, S.2
  • 30
    • 70449525203 scopus 로고    scopus 로고
    • Power load forecasting using support vector machine and ant colony optimization
    • Niu D.X., Wang Y.L., Wu D.D. Power load forecasting using support vector machine and ant colony optimization. Expert Syst. Appl. 2010, 37(3):2531-2539.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.3 , pp. 2531-2539
    • Niu, D.X.1    Wang, Y.L.2    Wu, D.D.3
  • 31
    • 33748252478 scopus 로고    scopus 로고
    • Automatic clinical image segmentation using pathological modeling, PCA and SVM
    • Li S., Fevens T., Krzyzak A., Li S. Automatic clinical image segmentation using pathological modeling, PCA and SVM. Eng. Appl. Artif. Intell. 2006, 19(4):403-410.
    • (2006) Eng. Appl. Artif. Intell. , vol.19 , Issue.4 , pp. 403-410
    • Li, S.1    Fevens, T.2    Krzyzak, A.3    Li, S.4
  • 32
    • 78650205211 scopus 로고    scopus 로고
    • Evaluation of face recognition techniques using PCA, wavelets and SVM
    • Gumus E., Kilic N., Sertbas A., Ucan O.N. Evaluation of face recognition techniques using PCA, wavelets and SVM. Expert Syst. Appl. 2010, 37(9):2531-2539.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.9 , pp. 2531-2539
    • Gumus, E.1    Kilic, N.2    Sertbas, A.3    Ucan, O.N.4
  • 33
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 34
    • 77957803624 scopus 로고    scopus 로고
    • Fuzzy modelling via on-line support vector machines
    • Yu W. Fuzzy modelling via on-line support vector machines. Int. J. Syst. Sci. 2010, 41(11):1325-1335.
    • (2010) Int. J. Syst. Sci. , vol.41 , Issue.11 , pp. 1325-1335
    • Yu, W.1
  • 35
    • 77954563782 scopus 로고    scopus 로고
    • Multiple incremental decremental learning of support vector machines
    • Karasuyama M., Takeuchi I. Multiple incremental decremental learning of support vector machines. IEEE Trans. Neural Networks 2010, 21(7):1048-1059.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.7 , pp. 1048-1059
    • Karasuyama, M.1    Takeuchi, I.2
  • 36
    • 0032295215 scopus 로고    scopus 로고
    • Modeling of strength of high performance concrete using artificial neural networks
    • Yeh I-Cheng Modeling of strength of high performance concrete using artificial neural networks. Cem. Concr. Res. 1998, 28(12):1797-1808.
    • (1998) Cem. Concr. Res. , vol.28 , Issue.12 , pp. 1797-1808
    • Yeh, I.-C.1
  • 37
    • 33751435937 scopus 로고    scopus 로고
    • Experimental analysis of charge dynamics in tumbling mills by vibration signature technique
    • Behera B., Mishra B.K., Murty C.V.R. Experimental analysis of charge dynamics in tumbling mills by vibration signature technique. Miner. Eng. 2007, 20(1):84-91.
    • (2007) Miner. Eng. , vol.20 , Issue.1 , pp. 84-91
    • Behera, B.1    Mishra, B.K.2    Murty, C.V.R.3
  • 38
    • 0037712068 scopus 로고    scopus 로고
    • Improving ball mill control with modern tools based on digital signal processing (DSP) technology, in: IEEE Cement Industry Technical Conference, Dallas
    • K. Gugel, G. Palcios, J. Ramirez, M. Parra, Improving ball mill control with modern tools based on digital signal processing (DSP) technology, in: IEEE Cement Industry Technical Conference, Dallas, 2003, pp. 311-318.
    • (2003) , pp. 311-318
    • Gugel, K.1    Palcios, G.2    Ramirez, J.3    Parra, M.4
  • 39
    • 69749084620 scopus 로고    scopus 로고
    • Investigation on measuring the fill level of an industrial ball mill based on the vibration characteristics of the mill shell
    • Huang P., Jia M.P., Zhong B.L. Investigation on measuring the fill level of an industrial ball mill based on the vibration characteristics of the mill shell. Miner. Eng. 2009, 22(14):1200-1208.
    • (2009) Miner. Eng. , vol.22 , Issue.14 , pp. 1200-1208
    • Huang, P.1    Jia, M.P.2    Zhong, B.L.3
  • 40
    • 59649113214 scopus 로고    scopus 로고
    • Intelligent monitoring and control of mill load for grinding processes
    • Zhou P., Chai T.Y. Intelligent monitoring and control of mill load for grinding processes. Chin. Control Theory Appl. 2008, 25(66):1095-1099.
    • (2008) Chin. Control Theory Appl. , vol.25 , Issue.66 , pp. 1095-1099
    • Zhou, P.1    Chai, T.Y.2
  • 41
    • 77955303296 scopus 로고    scopus 로고
    • Experimental analysis of wet mill load based on vibration signals of laboratory-scale ball mill shell
    • Tang J., Zhao L.J., Zhou J.W., Yue H., Chai T.Y. Experimental analysis of wet mill load based on vibration signals of laboratory-scale ball mill shell. Miner. Eng. 2010, 23(9):720-730.
    • (2010) Miner. Eng. , vol.23 , Issue.9 , pp. 720-730
    • Tang, J.1    Zhao, L.J.2    Zhou, J.W.3    Yue, H.4    Chai, T.Y.5
  • 42
    • 78650627407 scopus 로고    scopus 로고
    • Soft sensor modeling of ball mill load via principal component analysis and support vector machines
    • Tang J., Zhao L.J., Yu W., Yue H., Chai T.Y. Soft sensor modeling of ball mill load via principal component analysis and support vector machines. Lect. Notes Electr. Eng. 2010, 67:803-810.
    • (2010) Lect. Notes Electr. Eng. , vol.67 , pp. 803-810
    • Tang, J.1    Zhao, L.J.2    Yu, W.3    Yue, H.4    Chai, T.Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.