-
1
-
-
0344357096
-
Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line
-
COI: 1:CAS:528:DyaL2sXktlelsLk%3D, PID: 3033647
-
Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF (1987) Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A 84:3434–3438
-
(1987)
Proc Natl Acad Sci U S A
, vol.84
, pp. 3434-3438
-
-
Drucker, D.J.1
Philippe, J.2
Mojsov, S.3
Chick, W.L.4
Habener, J.F.5
-
2
-
-
0025266913
-
Glucagon-like peptide-I analogs: effects on insulin secretion and adenosine 3',5'-monophosphate formation
-
COI: 1:CAS:528:DyaK3cXktFOqtLw%3D, PID: 2156683
-
Gefel D, Hendrick GK, Mojsov S, Habener J, Weir GC (1990) Glucagon-like peptide-I analogs: effects on insulin secretion and adenosine 3',5'-monophosphate formation. Endocrinology 126:2164–2168
-
(1990)
Endocrinology
, vol.126
, pp. 2164-2168
-
-
Gefel, D.1
Hendrick, G.K.2
Mojsov, S.3
Habener, J.4
Weir, G.C.5
-
3
-
-
0033304603
-
The glucagon-like peptides
-
COI: 1:CAS:528:DC%2BD3cXntV2iuw%3D%3D, PID: 10605628
-
Kieffer TJ, Habener JF (1999) The glucagon-like peptides. Endocr Rev 20:876–913
-
(1999)
Endocr Rev
, vol.20
, pp. 876-913
-
-
Kieffer, T.J.1
Habener, J.F.2
-
4
-
-
0023107555
-
Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas
-
COI: 1:CAS:528:DyaL2sXhsV2qsbg%3D, PID: 3543057
-
Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619
-
(1987)
J Clin Invest
, vol.79
, pp. 616-619
-
-
Mojsov, S.1
Weir, G.C.2
Habener, J.F.3
-
5
-
-
0016120659
-
Candidate hormones of the gut. 3. Gastric inhibitory polypeptide (GIP)
-
COI: 1:CAS:528:DyaE2MXis1Wmtw%3D%3D, PID: 4606304
-
Brown JC (1974) Candidate hormones of the gut. 3. Gastric inhibitory polypeptide (GIP). Gastroenterology 67:733–734
-
(1974)
Gastroenterology
, vol.67
, pp. 733-734
-
-
Brown, J.C.1
-
6
-
-
0016135547
-
The physiology and pathophysiology of gastric inhibitory polypeptide (GIP) and motilin
-
COI: 1:CAS:528:DyaE2MXhsFalsL4%3D, PID: 4454564
-
Brown JC, Cleator IG, Dryburgh JR, Pederson RA, Schubert H (1974) The physiology and pathophysiology of gastric inhibitory polypeptide (GIP) and motilin. Verh Dtsch Ges Inn Med 80:377–380
-
(1974)
Verh Dtsch Ges Inn Med
, vol.80
, pp. 377-380
-
-
Brown, J.C.1
Cleator, I.G.2
Dryburgh, J.R.3
Pederson, R.A.4
Schubert, H.5
-
7
-
-
0016190840
-
Gastric inhibitory polypeptide (GIP) stimulation by oral glucose in man
-
COI: 1:STN:280:DyaE2M%2Fjt1Wisg%3D%3D, PID: 4423791
-
Cataland S, Crockett SE, Brown JC, Mazzaferri EL (1974) Gastric inhibitory polypeptide (GIP) stimulation by oral glucose in man. J Clin Endocrinol Metab 39:223–228
-
(1974)
J Clin Endocrinol Metab
, vol.39
, pp. 223-228
-
-
Cataland, S.1
Crockett, S.E.2
Brown, J.C.3
Mazzaferri, E.L.4
-
8
-
-
0016176604
-
The effect of the intestinal polypeptides, IRP and GIP, on insulin release and glucose tolerance in the baboon
-
COI: 1:CAS:528:DyaE2MXlsVahsLo%3D
-
Turner DS, Etheridge L, Jones J et al (1974) The effect of the intestinal polypeptides, IRP and GIP, on insulin release and glucose tolerance in the baboon. Clin Endocrinol (Oxf) 3:489–493
-
(1974)
Clin Endocrinol (Oxf)
, vol.3
, pp. 489-493
-
-
Turner, D.S.1
Etheridge, L.2
Jones, J.3
-
9
-
-
33846006173
-
The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes
-
COI: 1:CAS:528:DC%2BD28XhtF2gurjM, PID: 17098089
-
Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705
-
(2006)
Lancet
, vol.368
, pp. 1696-1705
-
-
Drucker, D.J.1
Nauck, M.A.2
-
10
-
-
84881218353
-
Inactivation of specific beta cell transcription factors in type 2 diabetes
-
COI: 1:CAS:528:DC%2BC3sXht1OgtbvF, PID: 23863625
-
Guo S, Dai C, Guo M et al (2013) Inactivation of specific beta cell transcription factors in type 2 diabetes. J Clin Invest 123:3305–3316
-
(2013)
J Clin Invest
, vol.123
, pp. 3305-3316
-
-
Guo, S.1
Dai, C.2
Guo, M.3
-
11
-
-
84902278779
-
The role of beta cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs
-
COI: 1:CAS:528:DC%2BC2cXotFyhtr4%3D, PID: 24836562
-
Smith EP, An Z, Wagner C et al (2014) The role of beta cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs. Cell Metab 19:1050–1057
-
(2014)
Cell Metab
, vol.19
, pp. 1050-1057
-
-
Smith, E.P.1
An, Z.2
Wagner, C.3
-
12
-
-
84923917065
-
An analysis of cosecretion and coexpression of gut hormones from male rat proximal and distal small intestine
-
COI: 1:CAS:528:DC%2BC2MXktF2lsLo%3D, PID: 25535831
-
Svendsen B, Pedersen J, Albrechtsen NJ et al (2015) An analysis of cosecretion and coexpression of gut hormones from male rat proximal and distal small intestine. Endocrinology 156:847–857
-
(2015)
Endocrinology
, vol.156
, pp. 847-857
-
-
Svendsen, B.1
Pedersen, J.2
Albrechtsen, N.J.3
-
13
-
-
77953733812
-
Xenin-25 potentiates glucose-dependent insulinotropic polypeptide action via a novel cholinergic relay mechanism
-
COI: 1:CAS:528:DC%2BC3cXnsFygs7Y%3D, PID: 20421298
-
Wice BM, Wang S, Crimmins DL et al (2010) Xenin-25 potentiates glucose-dependent insulinotropic polypeptide action via a novel cholinergic relay mechanism. J Biol Chem 285:19842–19853
-
(2010)
J Biol Chem
, vol.285
, pp. 19842-19853
-
-
Wice, B.M.1
Wang, S.2
Crimmins, D.L.3
-
14
-
-
84871276470
-
Xenin-25 increases cytosolic free calcium levels and acetylcholine release from a subset of myenteric neurons
-
COI: 1:CAS:528:DC%2BC3sXnvVyjtw%3D%3D, PID: 23086920
-
Zhang S, Hyrc K, Wang S, Wice BM (2012) Xenin-25 increases cytosolic free calcium levels and acetylcholine release from a subset of myenteric neurons. Am J Physiol Gastrointest Liver Physiol 303:G1347–G1355
-
(2012)
Am J Physiol Gastrointest Liver Physiol
, vol.303
, pp. G1347-G1355
-
-
Zhang, S.1
Hyrc, K.2
Wang, S.3
Wice, B.M.4
-
15
-
-
84894065790
-
Xenin-25 delays gastric emptying and reduces postprandial glucose levels in humans with and without type 2 diabetes
-
COI: 1:CAS:528:DC%2BC2cXjs1ynurc%3D, PID: 24356886
-
Chowdhury S, Reeds DN, Crimmins DL et al (2014) Xenin-25 delays gastric emptying and reduces postprandial glucose levels in humans with and without type 2 diabetes. Am J Physiol Gastrointest Liver Physiol 306:G301–G309
-
(2014)
Am J Physiol Gastrointest Liver Physiol
, vol.306
, pp. G301-G309
-
-
Chowdhury, S.1
Reeds, D.N.2
Crimmins, D.L.3
-
16
-
-
84903207650
-
Chronic reduction of GIP secretion alleviates obesity and insulin resistance under high-fat diet conditions
-
PID: 24584548
-
Nasteska D, Harada N, Suzuki K et al (2014) Chronic reduction of GIP secretion alleviates obesity and insulin resistance under high-fat diet conditions. Diabetes 63:2332–2343
-
(2014)
Diabetes
, vol.63
, pp. 2332-2343
-
-
Nasteska, D.1
Harada, N.2
Suzuki, K.3
-
17
-
-
84954396103
-
TCF1 links GIPR signaling to the control of beta cell function and survival
-
COI: 1:CAS:528:DC%2BC2MXhvFOmtbzP, PID: 26642437
-
Campbell JE, Ussher JR, Mulvihill EE et al (2016) TCF1 links GIPR signaling to the control of beta cell function and survival. Nat Med 22:84–90
-
(2016)
Nat Med
, vol.22
, pp. 84-90
-
-
Campbell, J.E.1
Ussher, J.R.2
Mulvihill, E.E.3
-
18
-
-
0018187021
-
Control of insulin secretion during fasting in man
-
COI: 1:CAS:528:DyaE1cXksFyrsrg%3D, PID: 661565
-
Lilavivathana U, Campbell RG, Brodows RG (1978) Control of insulin secretion during fasting in man. Metabolism 27:815–821
-
(1978)
Metabolism
, vol.27
, pp. 815-821
-
-
Lilavivathana, U.1
Campbell, R.G.2
Brodows, R.G.3
-
19
-
-
84922692543
-
Suppression of insulin production and secretion by a decretin hormone
-
COI: 1:CAS:528:DC%2BC2MXhsFahtbY%3D, PID: 25651184
-
Alfa RW, Park S, Skelly KR et al (2015) Suppression of insulin production and secretion by a decretin hormone. Cell Metab 21:323–333
-
(2015)
Cell Metab
, vol.21
, pp. 323-333
-
-
Alfa, R.W.1
Park, S.2
Skelly, K.R.3
-
20
-
-
1542267814
-
Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas development
-
COI: 1:CAS:528:DC%2BD2cXitlWhsLY%3D, PID: 14970313
-
Prado CL, Pugh-Bernard AE, Elghazi L, Sosa-Pineda B, Sussel L (2004) Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas development. Proc Natl Acad Sci U S A 101:2924–2929
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 2924-2929
-
-
Prado, C.L.1
Pugh-Bernard, A.E.2
Elghazi, L.3
Sosa-Pineda, B.4
Sussel, L.5
-
21
-
-
0037098974
-
The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas
-
COI: 1:CAS:528:DC%2BD38Xls1WlsLw%3D, PID: 12137967
-
Wierup N, Svensson H, Mulder H, Sundler F (2002) The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul Pept 107:63–69
-
(2002)
Regul Pept
, vol.107
, pp. 63-69
-
-
Wierup, N.1
Svensson, H.2
Mulder, H.3
Sundler, F.4
-
22
-
-
1242318803
-
Ghrelin is expressed in a novel endocrine cell type in developing rat islets and inhibits insulin secretion from INS-1 (832/13) cells
-
COI: 1:CAS:528:DC%2BD2cXhslOgtLk%3D, PID: 14966197
-
Wierup N, Yang S, McEvilly RJ, Mulder H, Sundler F (2004) Ghrelin is expressed in a novel endocrine cell type in developing rat islets and inhibits insulin secretion from INS-1 (832/13) cells. J Histochem Cytochem 52(3):301–310
-
(2004)
J Histochem Cytochem
, vol.52
, Issue.3
, pp. 301-310
-
-
Wierup, N.1
Yang, S.2
McEvilly, R.J.3
Mulder, H.4
Sundler, F.5
-
23
-
-
39649090702
-
Ghrelin gets its GOAT
-
COI: 1:CAS:528:DC%2BD1cXjt1Chu7k%3D, PID: 18316023
-
Gardiner J, Bloom S (2008) Ghrelin gets its GOAT. Cell Metab 7:193–194
-
(2008)
Cell Metab
, vol.7
, pp. 193-194
-
-
Gardiner, J.1
Bloom, S.2
-
24
-
-
84861558069
-
Profound hypoglycemia in starved, ghrelin-deficient mice is caused by decreased gluconeogenesis and reversed by lactate or fatty acids
-
COI: 1:CAS:528:DC%2BC38XnsF2nsbs%3D, PID: 22474325
-
Li RL, Sherbet DP, Elsbernd BL, Goldstein JL, Brown MS, Zhao TJ (2012) Profound hypoglycemia in starved, ghrelin-deficient mice is caused by decreased gluconeogenesis and reversed by lactate or fatty acids. J Biol Chem 287:17942–17950
-
(2012)
J Biol Chem
, vol.287
, pp. 17942-17950
-
-
Li, R.L.1
Sherbet, D.P.2
Elsbernd, B.L.3
Goldstein, J.L.4
Brown, M.S.5
Zhao, T.J.6
-
25
-
-
84903994698
-
Induced ablation of ghrelin cells in adult mice does not decrease food intake, body weight, or response to high-fat diet
-
COI: 1:CAS:528:DC%2BC2cXotFyhsbc%3D, PID: 24836560
-
McFarlane MR, Brown MS, Goldstein JL, Zhao TJ (2014) Induced ablation of ghrelin cells in adult mice does not decrease food intake, body weight, or response to high-fat diet. Cell Metab 20:54–60
-
(2014)
Cell Metab
, vol.20
, pp. 54-60
-
-
McFarlane, M.R.1
Brown, M.S.2
Goldstein, J.L.3
Zhao, T.J.4
-
26
-
-
78650304822
-
Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor
-
COI: 1:CAS:528:DC%2BC3cXhsFGms7vJ, PID: 21097901
-
Barnett BP, Hwang Y, Taylor MS et al (2010) Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science 330:1689–1692
-
(2010)
Science
, vol.330
, pp. 1689-1692
-
-
Barnett, B.P.1
Hwang, Y.2
Taylor, M.S.3
-
27
-
-
84857132656
-
Go2 G protein mediates galanin inhibitory effects on insulin release from pancreatic beta cells
-
COI: 1:CAS:528:DC%2BC38XivVKkurc%3D, PID: 22308501
-
Tang G, Wang Y, Park S et al (2012) Go2 G protein mediates galanin inhibitory effects on insulin release from pancreatic beta cells. Proc Natl Acad Sci U S A 109:2636–2641
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 2636-2641
-
-
Tang, G.1
Wang, Y.2
Park, S.3
-
28
-
-
79952126080
-
i proteins
-
COI: 1:CAS:528:DC%2BC3MXhsF2htrc%3D, PID: 21220323
-
i proteins. Proc Natl Acad Sci U S A 108:1693–1698
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 1693-1698
-
-
Wang, Y.1
Park, S.2
Bajpayee, N.S.3
Nagaoka, Y.4
Boulay, G.5
Birnbaumer, L.6
Jiang, M.7
-
29
-
-
84942125164
-
There is Kisspeptin—and there is Kisspeptin
-
COI: 1:CAS:528:DC%2BC2MXhsFKnsL%2FM, PID: 26412157
-
Hussain MA, Song WJ, Wolfe A (2015) There is Kisspeptin—and there is Kisspeptin. Trends Endocrinol Metab 26:564–572
-
(2015)
Trends Endocrinol Metab
, vol.26
, pp. 564-572
-
-
Hussain, M.A.1
Song, W.J.2
Wolfe, A.3
-
30
-
-
84897504321
-
Glucagon regulates hepatic kisspeptin to impair insulin secretion
-
COI: 1:CAS:528:DC%2BC2cXlvFeks74%3D, PID: 24703698
-
Song WJ, Mondal P, Wolfe A et al (2014) Glucagon regulates hepatic kisspeptin to impair insulin secretion. Cell Metab 19:667–681
-
(2014)
Cell Metab
, vol.19
, pp. 667-681
-
-
Song, W.J.1
Mondal, P.2
Wolfe, A.3
-
31
-
-
0033974348
-
The adipoinsular axis: effects of leptin on pancreatic beta-cells
-
COI: 1:CAS:528:DC%2BD3cXht1Gisrs%3D, PID: 10644531
-
Kieffer TJ, Habener JF (2000) The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab 278:E1–E14
-
(2000)
Am J Physiol Endocrinol Metab
, vol.278
, pp. E1-E14
-
-
Kieffer, T.J.1
Habener, J.F.2
-
32
-
-
0030590085
-
Leptin receptors expressed on pancreatic beta-cells
-
COI: 1:CAS:528:DyaK28Xktl2qurc%3D, PID: 8702421
-
Kieffer TJ, Heller RS, Habener JF (1996) Leptin receptors expressed on pancreatic beta-cells. Biochem Biophys Res Commun 224:522–527
-
(1996)
Biochem Biophys Res Commun
, vol.224
, pp. 522-527
-
-
Kieffer, T.J.1
Heller, R.S.2
Habener, J.F.3
-
34
-
-
34948825485
-
Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice
-
COI: 1:CAS:528:DC%2BD2sXhtFCnt73F, PID: 17909627
-
Morioka T, Asilmaz E, Hu J et al (2007) Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. J Clin Invest 117:2860–2868
-
(2007)
J Clin Invest
, vol.117
, pp. 2860-2868
-
-
Morioka, T.1
Asilmaz, E.2
Hu, J.3
-
35
-
-
0033582239
-
Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice
-
COI: 1:CAS:528:DyaK1MXmtlCrsg%3D%3D, PID: 9892692
-
Seufert J, Kieffer TJ, Habener JF (1999) Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice. Proc Natl Acad Sci U S A 96:674–679
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, pp. 674-679
-
-
Seufert, J.1
Kieffer, T.J.2
Habener, J.F.3
-
36
-
-
0033044994
-
Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus
-
COI: 1:CAS:528:DyaK1MXhtVCiurg%3D, PID: 10022436
-
Seufert J, Kieffer TJ, Leech CA et al (1999) Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab 84:670–676
-
(1999)
J Clin Endocrinol Metab
, vol.84
, pp. 670-676
-
-
Seufert, J.1
Kieffer, T.J.2
Leech, C.A.3
-
37
-
-
84940213066
-
Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells
-
COI: 1:CAS:528:DC%2BC2MXhtV2hsrbL, PID: 26413468
-
Soedling H, Hodson DJ, Andrianssens AE et al (2015) Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells. Mol Metab 4:619–630
-
(2015)
Mol Metab
, vol.4
, pp. 619-630
-
-
Soedling, H.1
Hodson, D.J.2
Andrianssens, A.E.3
-
38
-
-
84924857231
-
Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes beta-cell regeneration
-
Ye R, Holland WL, Gordillo R et al (2014) Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes beta-cell regeneration. Elife 3:e03851
-
(2014)
Elife
, vol.3
-
-
Ye, R.1
Holland, W.L.2
Gordillo, R.3
-
39
-
-
84930456136
-
Adiponectin-mediated antilipotoxic effects in regenerating pancreatic islets
-
COI: 1:CAS:528:DC%2BC2MXhtVCkurbF, PID: 25815422
-
Ye R, Wang M, Wang QA, Scherer PE (2015) Adiponectin-mediated antilipotoxic effects in regenerating pancreatic islets. Endocrinology 156:2019–2028
-
(2015)
Endocrinology
, vol.156
, pp. 2019-2028
-
-
Ye, R.1
Wang, M.2
Wang, Q.A.3
Scherer, P.E.4
-
40
-
-
84929509546
-
The control of insulin secretion by adipokines: current evidence for adipocyte–beta cell endocrine signalling in metabolic homeostasis
-
COI: 1:CAS:528:DC%2BC2cXhsVCrsL3L, PID: 25146550
-
Cantley J (2014) The control of insulin secretion by adipokines: current evidence for adipocyte–beta cell endocrine signalling in metabolic homeostasis. Mamm Genome 25:442–454
-
(2014)
Mamm Genome
, vol.25
, pp. 442-454
-
-
Cantley, J.1
-
41
-
-
84925401286
-
An overview of the metabolic functions of osteocalcin
-
COI: 1:CAS:528:DC%2BC2MXhtVKru7s%3D, PID: 25577163
-
Wei J, Karsenty G (2015) An overview of the metabolic functions of osteocalcin. Rev Endocr Metab Disord 16:93–98
-
(2015)
Rev Endocr Metab Disord
, vol.16
, pp. 93-98
-
-
Wei, J.1
Karsenty, G.2
-
42
-
-
84878574828
-
Osteocalcin regulates murine and human fertility through a pancreas–bone–testis axis
-
COI: 1:CAS:528:DC%2BC3sXpsFWksbk%3D, PID: 23728177
-
Oury F, Ferron M, Huizhen W et al (2013) Osteocalcin regulates murine and human fertility through a pancreas–bone–testis axis. J Clin Invest 123:2421–2433
-
(2013)
J Clin Invest
, vol.123
, pp. 2421-2433
-
-
Oury, F.1
Ferron, M.2
Huizhen, W.3
-
43
-
-
79952289069
-
Endocrine regulation of male fertility by the skeleton
-
COI: 1:CAS:528:DC%2BC3MXjsFeqt7k%3D, PID: 21333348
-
Oury F, Sumara G, Sumara O et al (2011) Endocrine regulation of male fertility by the skeleton. Cell 144:796–809
-
(2011)
Cell
, vol.144
, pp. 796-809
-
-
Oury, F.1
Sumara, G.2
Sumara, O.3
-
44
-
-
79953038259
-
The osteoblast: an insulin target cell controlling glucose homeostasis
-
COI: 1:CAS:528:DC%2BC3MXlvFyms7c%3D, PID: 21433069
-
Clemens TL, Karsenty G (2011) The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res 26:677–680
-
(2011)
J Bone Miner Res
, vol.26
, pp. 677-680
-
-
Clemens, T.L.1
Karsenty, G.2
-
45
-
-
77955035304
-
Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism
-
COI: 1:CAS:528:DC%2BC3cXpsVahsr4%3D, PID: 20655470
-
Ferron M, Wei J, Yoshizawa T et al (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308
-
(2010)
Cell
, vol.142
, pp. 296-308
-
-
Ferron, M.1
Wei, J.2
Yoshizawa, T.3
-
46
-
-
34547690686
-
Endocrine regulation of energy metabolism by the skeleton
-
COI: 1:CAS:528:DC%2BD2sXptlyntbs%3D, PID: 17693256
-
Lee NK, Sowa H, Hinoi E et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469
-
(2007)
Cell
, vol.130
, pp. 456-469
-
-
Lee, N.K.1
Sowa, H.2
Hinoi, E.3
-
47
-
-
84894500766
-
Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a
-
COI: 1:CAS:528:DC%2BC2cXjs1Knsb4%3D, PID: 24009262
-
Wei J, Hanna T, Suda N, Karsenty G, Ducy P (2014) Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a. Diabetes 63:1021–1031
-
(2014)
Diabetes
, vol.63
, pp. 1021-1031
-
-
Wei, J.1
Hanna, T.2
Suda, N.3
Karsenty, G.4
Ducy, P.5
-
48
-
-
77955082747
-
Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition
-
COI: 1:CAS:528:DC%2BC3cXpsVahsr8%3D, PID: 20655471
-
Fulzele K, Riddle RC, DiGirolamo DJ et al (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319
-
(2010)
Cell
, vol.142
, pp. 309-319
-
-
Fulzele, K.1
Riddle, R.C.2
DiGirolamo, D.J.3
-
49
-
-
84897558108
-
Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation
-
PID: 24642469
-
Wei J, Ferron M, Clarke CJ et al (2014) Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 124:1–13
-
(2014)
J Clin Invest
, vol.124
, pp. 1-13
-
-
Wei, J.1
Ferron, M.2
Clarke, C.J.3
-
50
-
-
84941233924
-
DLK1 regulates whole-body glucose metabolism: a negative feedback regulation of the osteocalcin–insulin loop
-
COI: 1:CAS:528:DC%2BC2MXhs1aqt7rK, PID: 25918236
-
Abdallah BM, Ditzel N, Laborda J, Karsenty G, Kassem M (2015) DLK1 regulates whole-body glucose metabolism: a negative feedback regulation of the osteocalcin–insulin loop. Diabetes 64:3069–3080
-
(2015)
Diabetes
, vol.64
, pp. 3069-3080
-
-
Abdallah, B.M.1
Ditzel, N.2
Laborda, J.3
Karsenty, G.4
Kassem, M.5
-
51
-
-
0141737573
-
Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass
-
COI: 1:CAS:528:DC%2BD3cXotFChsw%3D%3D, PID: 10660043
-
Ducy P, Amling M, Takeda S et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207
-
(2000)
Cell
, vol.100
, pp. 197-207
-
-
Ducy, P.1
Amling, M.2
Takeda, S.3
-
52
-
-
0036847619
-
Leptin regulates bone formation via the sympathetic nervous system
-
COI: 1:CAS:528:DC%2BD38XovVakurk%3D, PID: 12419242
-
Takeda S, Elefteriou F, Levasseur R et al (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317
-
(2002)
Cell
, vol.111
, pp. 305-317
-
-
Takeda, S.1
Elefteriou, F.2
Levasseur, R.3
-
53
-
-
79960629585
-
Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice
-
COI: 1:CAS:528:DC%2BC3MXhtVejtL7L, PID: 21520275
-
Bartell SM, Rayalam S, Ambati S et al (2011) Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J Bone Miner Res 26:1710–1720
-
(2011)
J Bone Miner Res
, vol.26
, pp. 1710-1720
-
-
Bartell, S.M.1
Rayalam, S.2
Ambati, S.3
-
54
-
-
84878783089
-
Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1
-
COI: 1:CAS:528:DC%2BC3sXnvVGktrY%3D, PID: 23684624
-
Kajimura D, Lee HW, Riley KJ et al (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 17:901–915
-
(2013)
Cell Metab
, vol.17
, pp. 901-915
-
-
Kajimura, D.1
Lee, H.W.2
Riley, K.J.3
-
55
-
-
84937420517
-
Osteoprotegerin and denosumab stimulate human beta cell proliferation through inhibition of the receptor activator of nf-kappab ligand pathway
-
COI: 1:CAS:528:DC%2BC2MXhtV2lsrjM, PID: 26094891
-
Kondegowda NG, Fenutria R, Pollack IR et al (2015) Osteoprotegerin and denosumab stimulate human beta cell proliferation through inhibition of the receptor activator of nf-kappab ligand pathway. Cell Metab 22:77–85
-
(2015)
Cell Metab
, vol.22
, pp. 77-85
-
-
Kondegowda, N.G.1
Fenutria, R.2
Pollack, I.R.3
-
56
-
-
81255157471
-
Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells
-
COI: 1:CAS:528:DC%2BC3MXhtlyisL%2FN, PID: 22037645
-
Ellingsgaard H, Hauselmann I, Schuler B et al (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489
-
(2011)
Nat Med
, vol.17
, pp. 1481-1489
-
-
Ellingsgaard, H.1
Hauselmann, I.2
Schuler, B.3
-
57
-
-
79953172229
-
Bimodal effect on pancreatic beta-cells of secretory products from normal or insulin-resistant human skeletal muscle
-
COI: 1:CAS:528:DC%2BC3MXms1Wksb8%3D, PID: 21378173
-
Bouzakri K, Plomgaard P, Berney T, Donath MY, Pedersen BK, Halban PA (2011) Bimodal effect on pancreatic beta-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes 60:1111–1121
-
(2011)
Diabetes
, vol.60
, pp. 1111-1121
-
-
Bouzakri, K.1
Plomgaard, P.2
Berney, T.3
Donath, M.Y.4
Pedersen, B.K.5
Halban, P.A.6
-
58
-
-
84886561445
-
Testosterone protects against glucotoxicity-induced apoptosis of pancreatic beta-cells (INS-1) and male mouse pancreatic islets
-
COI: 1:CAS:528:DC%2BC3sXhs12qsLbE, PID: 23970784
-
Hanchang W, Semprasert N, Limjindaporn T, Yenchitsomanus PT, Kooptiwut S (2013) Testosterone protects against glucotoxicity-induced apoptosis of pancreatic beta-cells (INS-1) and male mouse pancreatic islets. Endocrinology 154:4058–4067
-
(2013)
Endocrinology
, vol.154
, pp. 4058-4067
-
-
Hanchang, W.1
Semprasert, N.2
Limjindaporn, T.3
Yenchitsomanus, P.T.4
Kooptiwut, S.5
-
59
-
-
84924777958
-
Testosterone reduces AGTR1 expression to prevent beta-cell and islet apoptosis from glucotoxicity
-
COI: 1:CAS:528:DC%2BC2MXmsl2htr8%3D, PID: 25512346
-
Kooptiwut S, Hanchang W, Semprasert N, Junking M, Limjindaporn T, Yenchitsomanus PT (2015) Testosterone reduces AGTR1 expression to prevent beta-cell and islet apoptosis from glucotoxicity. J Endocrinol 224:215–224
-
(2015)
J Endocrinol
, vol.224
, pp. 215-224
-
-
Kooptiwut, S.1
Hanchang, W.2
Semprasert, N.3
Junking, M.4
Limjindaporn, T.5
Yenchitsomanus, P.T.6
-
60
-
-
33745124662
-
Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice
-
PID: 16754860
-
Le May C, Chu K, Hu M et al (2006) Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci U S A 103:9232–9237
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 9232-9237
-
-
Le May, C.1
Chu, K.2
Hu, M.3
-
61
-
-
44349121098
-
Pancreatic insulin content regulation by the estrogen receptor ER alpha
-
PID: 18446233
-
Alonso-Magdalena P, Ropero AB, Carrera MP et al (2008) Pancreatic insulin content regulation by the estrogen receptor ER alpha. PLoS One 3:e2069
-
(2008)
PLoS One
, vol.3
-
-
Alonso-Magdalena, P.1
Ropero, A.B.2
Carrera, M.P.3
-
62
-
-
84896855066
-
The islet estrogen receptor-alpha is induced by hyperglycemia and protects against oxidative stress-induced insulin-deficient diabetes
-
PID: 24498408
-
Kilic G, Alvarez-Mercado AI, Zarrouki B et al (2014) The islet estrogen receptor-alpha is induced by hyperglycemia and protects against oxidative stress-induced insulin-deficient diabetes. PLoS One 9:e87941
-
(2014)
PLoS One
, vol.9
-
-
Kilic, G.1
Alvarez-Mercado, A.I.2
Zarrouki, B.3
-
63
-
-
70349649964
-
Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival
-
COI: 1:CAS:528:DC%2BD1MXht1yku7bL, PID: 19587358
-
Liu S, Le May C, Wong WP et al (2009) Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival. Diabetes 58:2292–2302
-
(2009)
Diabetes
, vol.58
, pp. 2292-2302
-
-
Liu, S.1
Le May, C.2
Wong, W.P.3
-
64
-
-
77149168602
-
Rapid, nongenomic estrogen actions protect pancreatic islet survival
-
PID: 20634925
-
Liu S, Mauvais-Jarvis F (2009) Rapid, nongenomic estrogen actions protect pancreatic islet survival. Islets 1:273–275
-
(2009)
Islets
, vol.1
, pp. 273-275
-
-
Liu, S.1
Mauvais-Jarvis, F.2
-
65
-
-
79960977229
-
Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents beta cell failure in rodent models of type 2 diabetes
-
COI: 1:CAS:528:DC%2BC3MXhtVejurvK, PID: 21747171
-
Tiano JP, Delghingaro-Augusto V, Le May C et al (2011) Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents beta cell failure in rodent models of type 2 diabetes. J Clin Invest 121:3331–3342
-
(2011)
J Clin Invest
, vol.121
, pp. 3331-3342
-
-
Tiano, J.P.1
Delghingaro-Augusto, V.2
Le May, C.3
-
66
-
-
77955606282
-
Extranuclear estrogen receptor-alpha stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis
-
COI: 1:CAS:528:DC%2BC3cXpsVagu70%3D, PID: 20616010
-
Wong WP, Tiano JP, Liu S et al (2010) Extranuclear estrogen receptor-alpha stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proc Natl Acad Sci U S A 107:13057–13062
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 13057-13062
-
-
Wong, W.P.1
Tiano, J.P.2
Liu, S.3
-
67
-
-
84925881104
-
The role of androgens in metabolism, obesity, and diabetes in males and females
-
COI: 1:CAS:528:DC%2BC2MXlt1WksLk%3D
-
Navarro G, Allard C, Xu W, Mauvais-Jarvis F (2015) The role of androgens in metabolism, obesity, and diabetes in males and females. Obesity (Silver Spring) 23:713–719
-
(2015)
Obesity (Silver Spring)
, vol.23
, pp. 713-719
-
-
Navarro, G.1
Allard, C.2
Xu, W.3
Mauvais-Jarvis, F.4
-
68
-
-
77954480533
-
Serotonin regulates pancreatic beta cell mass during pregnancy
-
COI: 1:CAS:528:DC%2BC3cXnvFyktb4%3D, PID: 20581837
-
Kim H, Toyofuku Y, Lynn FC et al (2010) Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med 16:804–808
-
(2010)
Nat Med
, vol.16
, pp. 804-808
-
-
Kim, H.1
Toyofuku, Y.2
Lynn, F.C.3
-
69
-
-
84921697003
-
Functional role of serotonin in insulin secretion in a diet-induced insulin-resistant state
-
PID: 25426873
-
Kim K, Oh CM, Ohara-Imaizumi M et al (2015) Functional role of serotonin in insulin secretion in a diet-induced insulin-resistant state. Endocrinology 156:444–452
-
(2015)
Endocrinology
, vol.156
, pp. 444-452
-
-
Kim, K.1
Oh, C.M.2
Ohara-Imaizumi, M.3
-
70
-
-
84860148533
-
Evaluation of kisspeptin levels in obese pregnancy as a biomarker for pre-eclampsia
-
COI: 1:CAS:528:DC%2BC38XhtVOmtbbL
-
Logie JJ, Denison FC, Riley SC et al (2012) Evaluation of kisspeptin levels in obese pregnancy as a biomarker for pre-eclampsia. Clin Endocrinol (Oxf) 76:887–893
-
(2012)
Clin Endocrinol (Oxf)
, vol.76
, pp. 887-893
-
-
Logie, J.J.1
Denison, F.C.2
Riley, S.C.3
-
71
-
-
0034001450
-
Autonomic regulation of islet hormone secretion—implications for health and disease
-
COI: 1:CAS:528:DC%2BD3cXit12hsLk%3D, PID: 10819232
-
Ahren B (2000) Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia 43:393–410
-
(2000)
Diabetologia
, vol.43
, pp. 393-410
-
-
Ahren, B.1
-
72
-
-
0031832631
-
Vagotomy in young obese hyperglycemic mice: effects on syndrome development and islet proliferation
-
COI: 1:CAS:528:DyaK1cXktVCku7c%3D, PID: 9611153
-
Edvell A, Lindstrom P (1998) Vagotomy in young obese hyperglycemic mice: effects on syndrome development and islet proliferation. Am J Physiol 274:E1034–E1039
-
(1998)
Am J Physiol
, vol.274
, pp. E1034-E1039
-
-
Edvell, A.1
Lindstrom, P.2
-
73
-
-
78349297587
-
Vagal control of pancreatic ss-cell proliferation
-
COI: 1:CAS:528:DC%2BC3cXhsFSgu7bF, PID: 20716695
-
Lausier J, Diaz WC, Roskens V et al (2010) Vagal control of pancreatic ss-cell proliferation. Am J Physiol Endocrinol Metab 299:E786–E793
-
(2010)
Am J Physiol Endocrinol Metab
, vol.299
, pp. E786-E793
-
-
Lausier, J.1
Diaz, W.C.2
Roskens, V.3
-
74
-
-
16644369515
-
Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: recent developments
-
PID: 15257115
-
Kiba T (2004) Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: recent developments. Pancreas 29:e51–e58
-
(2004)
Pancreas
, vol.29
, pp. e51-e58
-
-
Kiba, T.1
-
75
-
-
0030051196
-
Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation
-
COI: 1:CAS:528:DyaK28XhvFCmur0%3D, PID: 8608899
-
Kiba T, Tanaka K, Numata K, Hoshino M, Misugi K, Inoue S (1996) Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation. Gastroenterology 110:885–893
-
(1996)
Gastroenterology
, vol.110
, pp. 885-893
-
-
Kiba, T.1
Tanaka, K.2
Numata, K.3
Hoshino, M.4
Misugi, K.5
Inoue, S.6
-
76
-
-
79959987811
-
Innervation patterns of autonomic axons in the human endocrine pancreas
-
COI: 1:CAS:528:DC%2BC3MXosFeitb8%3D, PID: 21723503
-
Rodriguez-Diaz R, Abdulreda MH, Formoso AL et al (2011) Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab 14:45–54
-
(2011)
Cell Metab
, vol.14
, pp. 45-54
-
-
Rodriguez-Diaz, R.1
Abdulreda, M.H.2
Formoso, A.L.3
-
77
-
-
79960129197
-
Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans
-
COI: 1:CAS:528:DC%2BC3MXnslSltLg%3D, PID: 21685896
-
Rodriguez-Diaz R, Dando R, Jacques-Silva MC et al (2011) Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat Med 17:888–892
-
(2011)
Nat Med
, vol.17
, pp. 888-892
-
-
Rodriguez-Diaz, R.1
Dando, R.2
Jacques-Silva, M.C.3
-
78
-
-
0034786750
-
Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function
-
COI: 1:CAS:528:DC%2BD3MXotVWmu7o%3D, PID: 11588141
-
Gilon P, Henquin JC (2001) Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 22:565–604
-
(2001)
Endocr Rev
, vol.22
, pp. 565-604
-
-
Gilon, P.1
Henquin, J.C.2
-
79
-
-
0031854439
-
Neurotransmitters and their receptors in the islets of Langerhans of the pancreas: what messages do acetylcholine, glutamate, and GABA transmit?
-
COI: 1:CAS:528:DyaK1cXltFGnur8%3D, PID: 9741825
-
Satin LS, Kinard TA (1998) Neurotransmitters and their receptors in the islets of Langerhans of the pancreas: what messages do acetylcholine, glutamate, and GABA transmit? Endocrine 8:213–223
-
(1998)
Endocrine
, vol.8
, pp. 213-223
-
-
Satin, L.S.1
Kinard, T.A.2
-
80
-
-
3042785985
-
Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in m3 muscarinic acetylcholine receptor-deficient mice
-
COI: 1:CAS:528:DC%2BD2cXlslWgt7s%3D, PID: 15220195
-
Duttaroy A, Zimliki CL, Gautam D, Cui Y, Mears D, Wess J (2004) Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in m3 muscarinic acetylcholine receptor-deficient mice. Diabetes 53:1714–1720
-
(2004)
Diabetes
, vol.53
, pp. 1714-1720
-
-
Duttaroy, A.1
Zimliki, C.L.2
Gautam, D.3
Cui, Y.4
Mears, D.5
Wess, J.6
-
81
-
-
33744510095
-
A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo
-
COI: 1:CAS:528:DC%2BD28Xmt1eku7k%3D, PID: 16753580
-
Gautam D, Han SJ, Hamdan FF et al (2006) A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 3:449–461
-
(2006)
Cell Metab
, vol.3
, pp. 449-461
-
-
Gautam, D.1
Han, S.J.2
Hamdan, F.F.3
-
82
-
-
72649084796
-
A chemical-genetic approach to study G protein regulation of beta cell function in vivo
-
COI: 1:CAS:528:DC%2BD1MXhsFGltr7M, PID: 19858481
-
Guettier JM, Gautam D, Scarselli M et al (2009) A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A 106:19197–19202
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 19197-19202
-
-
Guettier, J.M.1
Gautam, D.2
Scarselli, M.3
-
83
-
-
84879861815
-
Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons
-
COI: 1:CAS:528:DC%2BC3sXhtVGktL3F, PID: 23823479
-
Shi X, Zhou F, Li X et al (2013) Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons. Cell Metab 18:86–98
-
(2013)
Cell Metab
, vol.18
, pp. 86-98
-
-
Shi, X.1
Zhou, F.2
Li, X.3
-
84
-
-
84902243854
-
Circuits controlling energy balance and mood: inherently intertwined or just complicated intersections?
-
COI: 1:CAS:528:DC%2BC2cXktlWmsbs%3D, PID: 24630814
-
Liu C, Lee S, Elmquist JK (2014) Circuits controlling energy balance and mood: inherently intertwined or just complicated intersections? Cell Metab 19:902–909
-
(2014)
Cell Metab
, vol.19
, pp. 902-909
-
-
Liu, C.1
Lee, S.2
Elmquist, J.K.3
-
85
-
-
0019435994
-
Adrenergic innervation of pancreatic islets and modulation of insulin secretion by the sympatho-adrenal system
-
COI: 1:CAS:528:DyaL3MXitVKitL4%3D, PID: 6112065
-
Ahren B, Ericson LE, Lundquist I, Loren I, Sundler F (1981) Adrenergic innervation of pancreatic islets and modulation of insulin secretion by the sympatho-adrenal system. Cell Tissue Res 216:15–30
-
(1981)
Cell Tissue Res
, vol.216
, pp. 15-30
-
-
Ahren, B.1
Ericson, L.E.2
Lundquist, I.3
Loren, I.4
Sundler, F.5
-
86
-
-
84880818927
-
Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation
-
COI: 1:CAS:528:DC%2BC3sXhtV2rt7jJ, PID: 23850289
-
Borden P, Houtz J, Leach SD, Kuruvilla R (2013) Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation. Cell Rep 4:287–301
-
(2013)
Cell Rep
, vol.4
, pp. 287-301
-
-
Borden, P.1
Houtz, J.2
Leach, S.D.3
Kuruvilla, R.4
-
87
-
-
15844384390
-
Galanin inhibits gut-related vagal neurons in rats
-
COI: 1:CAS:528:DC%2BD2cXjvFylsL0%3D, PID: 14695348
-
Tan Z, Fogel R, Jiang C, Zhang X (2004) Galanin inhibits gut-related vagal neurons in rats. J Neurophysiol 91:2330–2343
-
(2004)
J Neurophysiol
, vol.91
, pp. 2330-2343
-
-
Tan, Z.1
Fogel, R.2
Jiang, C.3
Zhang, X.4
|