메뉴 건너뛰기




Volumn 26, Issue 12, 2015, Pages 699-710

Transcriptional and Chromatin Regulation during Fasting - The Genomic Era

Author keywords

Chromatin; Fasting; Gluconeogenesis; Ketogenesis; Transcription factors

Indexed keywords

ACETYL COENZYME A; CCAAT ENHANCER BINDING PROTEIN; CELL NUCLEUS RECEPTOR; CYCLIC AMP RESPONSIVE ELEMENT BINDING PROTEIN; FIBROBLAST GROWTH FACTOR 21; FORKHEAD TRANSCRIPTION FACTOR; GLUCOCORTICOID RECEPTOR; GLUCOSE; GLYCEROL; GLYCOGEN; HEPATOCYTE NUCLEAR FACTOR 4ALPHA; KETONE BODY; LIVER X RECEPTOR; MUSCLE PROTEIN; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR ALPHA; PROTEIN P53; STEROL REGULATORY ELEMENT BINDING PROTEIN; THYROID HORMONE RECEPTOR; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR FKHRL1; CHROMATIN;

EID: 84949570407     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2015.09.005     Document Type: Review
Times cited : (85)

References (96)
  • 1
    • 33750110683 scopus 로고    scopus 로고
    • Fuel metabolism in starvation
    • Cahill G.F. Fuel metabolism in starvation. Annu. Rev. Nutr. 2006, 26:1-22.
    • (2006) Annu. Rev. Nutr. , vol.26 , pp. 1-22
    • Cahill, G.F.1
  • 2
    • 40949165722 scopus 로고    scopus 로고
    • Inhibition of mitochondrial fatty acid oxidation in vivo only slightly suppresses gluconeogenesis but enhances clearance of glucose in mice
    • Derks T.G., et al. Inhibition of mitochondrial fatty acid oxidation in vivo only slightly suppresses gluconeogenesis but enhances clearance of glucose in mice. Hepatology 2008, 47:1032-1042.
    • (2008) Hepatology , vol.47 , pp. 1032-1042
    • Derks, T.G.1
  • 4
    • 78049259220 scopus 로고    scopus 로고
    • Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy
    • Rizza R.A. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes 2010, 59:2697-2707.
    • (2010) Diabetes , vol.59 , pp. 2697-2707
    • Rizza, R.A.1
  • 5
    • 0035936763 scopus 로고    scopus 로고
    • New perspectives into the molecular pathogenesis and treatment of type 2 diabetes
    • Saltiel A.R. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 2001, 104:517-529.
    • (2001) Cell , vol.104 , pp. 517-529
    • Saltiel, A.R.1
  • 6
    • 19944429381 scopus 로고    scopus 로고
    • Role of Kruppel-like factor 15 in PEPCK gene expression in the liver
    • Teshigawara K., et al. Role of Kruppel-like factor 15 in PEPCK gene expression in the liver. Biochem. Biophys. Res. Commun. 2005, 327:920-926.
    • (2005) Biochem. Biophys. Res. Commun. , vol.327 , pp. 920-926
    • Teshigawara, K.1
  • 7
    • 84920605320 scopus 로고    scopus 로고
    • A new biology of diabetes revealed by leptin
    • Unger R.H., Roth M.G. A new biology of diabetes revealed by leptin. Cell Metab. 2015, 21:15-20.
    • (2015) Cell Metab. , vol.21 , pp. 15-20
    • Unger, R.H.1    Roth, M.G.2
  • 8
    • 79951962147 scopus 로고    scopus 로고
    • CREB and the CRTC co-activators: sensors for hormonal and metabolic signals
    • Altarejos J.Y., Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 2011, 12:141-151.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 141-151
    • Altarejos, J.Y.1    Montminy, M.2
  • 9
    • 84859977895 scopus 로고    scopus 로고
    • Sirtuins mediate mammalian metabolic responses to nutrient availability
    • Chalkiadaki A., Guarente L. Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 2012, 8:287-296.
    • (2012) Nat. Rev. Endocrinol. , vol.8 , pp. 287-296
    • Chalkiadaki, A.1    Guarente, L.2
  • 10
    • 84871650811 scopus 로고    scopus 로고
    • Metabolic reprogramming by class I and II histone deacetylases
    • Mihaylova M.M., Shaw R.J. Metabolic reprogramming by class I and II histone deacetylases. Trends Endocrinol. Metab. 2013, 24:48-57.
    • (2013) Trends Endocrinol. Metab. , vol.24 , pp. 48-57
    • Mihaylova, M.M.1    Shaw, R.J.2
  • 11
    • 0001693313 scopus 로고
    • Aqueous extracts of pancreas: III. Some precipitation reactions of insulin
    • Kimball C.P., Murlin J.R. Aqueous extracts of pancreas: III. Some precipitation reactions of insulin. J. Biol. Chem. 1923, 58:337-346.
    • (1923) J. Biol. Chem. , vol.58 , pp. 337-346
    • Kimball, C.P.1    Murlin, J.R.2
  • 12
    • 84885080311 scopus 로고    scopus 로고
    • Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects
    • Ravnskjaer K., et al. Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects. J. Clin. Invest. 2013, 123:4318-4328.
    • (2013) J. Clin. Invest. , vol.123 , pp. 4318-4328
    • Ravnskjaer, K.1
  • 13
    • 84878460424 scopus 로고    scopus 로고
    • PRMT5 modulates the metabolic response to fasting signals
    • Tsai W.W., et al. PRMT5 modulates the metabolic response to fasting signals. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:8870-8875.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 8870-8875
    • Tsai, W.W.1
  • 14
    • 33645649005 scopus 로고    scopus 로고
    • Signal-dependent control of gluconeogenic key enzyme genes through coactivator-associated arginine methyltransferase 1
    • Krones-Herzig A., et al. Signal-dependent control of gluconeogenic key enzyme genes through coactivator-associated arginine methyltransferase 1. J. Biol. Chem. 2006, 281:3025-3029.
    • (2006) J. Biol. Chem. , vol.281 , pp. 3025-3029
    • Krones-Herzig, A.1
  • 15
    • 84880415788 scopus 로고    scopus 로고
    • Forkhead box class O transcription factors in liver function and disease
    • Tikhanovich I., et al. Forkhead box class O transcription factors in liver function and disease. J. Gastroenterol. Hepatol. 2013, 28(Suppl. 1):125-131.
    • (2013) J. Gastroenterol. Hepatol. , vol.28 , pp. 125-131
    • Tikhanovich, I.1
  • 16
    • 78149272381 scopus 로고    scopus 로고
    • FoxOs function synergistically to promote glucose production
    • Haeusler R.A., et al. FoxOs function synergistically to promote glucose production. J. Biol. Chem. 2010, 285:35245-35248.
    • (2010) J. Biol. Chem. , vol.285 , pp. 35245-35248
    • Haeusler, R.A.1
  • 17
    • 84862909028 scopus 로고    scopus 로고
    • Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice
    • Zhang K., et al. Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice. Endocrinology 2012, 153:631-646.
    • (2012) Endocrinology , vol.153 , pp. 631-646
    • Zhang, K.1
  • 18
    • 84883205274 scopus 로고    scopus 로고
    • Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis
    • Xiong X., et al. Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis. PLoS ONE 2013, 8:e74340.
    • (2013) PLoS ONE , vol.8 , pp. e74340
    • Xiong, X.1
  • 19
    • 84922754155 scopus 로고    scopus 로고
    • Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors
    • Haeusler R.A., et al. Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat. Commun. 2014, 5:5190.
    • (2014) Nat. Commun. , vol.5 , pp. 5190
    • Haeusler, R.A.1
  • 20
    • 80755148700 scopus 로고    scopus 로고
    • FoxO6 integrates insulin signaling with gluconeogenesis in the liver
    • Kim D.H., et al. FoxO6 integrates insulin signaling with gluconeogenesis in the liver. Diabetes 2011, 60:2763-2774.
    • (2011) Diabetes , vol.60 , pp. 2763-2774
    • Kim, D.H.1
  • 21
    • 84940069349 scopus 로고    scopus 로고
    • FoxO6 depletion attenuates hepatic gluconeogenesis and protects against fat-induced glucose disorder in mice
    • Calabuig-Navarro V., et al. FoxO6 depletion attenuates hepatic gluconeogenesis and protects against fat-induced glucose disorder in mice. J. Biol. Chem. 2015, 290:15581-15594.
    • (2015) J. Biol. Chem. , vol.290 , pp. 15581-15594
    • Calabuig-Navarro, V.1
  • 22
    • 36448968532 scopus 로고    scopus 로고
    • FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
    • Zhao J., et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007, 6:472-483.
    • (2007) Cell Metab. , vol.6 , pp. 472-483
    • Zhao, J.1
  • 23
    • 84872166360 scopus 로고    scopus 로고
    • Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor
    • Shimazu T., et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013, 339:211-214.
    • (2013) Science , vol.339 , pp. 211-214
    • Shimazu, T.1
  • 24
    • 77956649260 scopus 로고    scopus 로고
    • The FoxA factors in organogenesis and differentiation
    • Kaestner K.H. The FoxA factors in organogenesis and differentiation. Curr. Opin. Genet. Dev. 2010, 20:527-532.
    • (2010) Curr. Opin. Genet. Dev. , vol.20 , pp. 527-532
    • Kaestner, K.H.1
  • 25
    • 11144244418 scopus 로고    scopus 로고
    • Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes
    • Wolfrum C., et al. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 2004, 432:1027-1032.
    • (2004) Nature , vol.432 , pp. 1027-1032
    • Wolfrum, C.1
  • 26
    • 25144482864 scopus 로고    scopus 로고
    • Foxa2 integrates the transcriptional response of the hepatocyte to fasting
    • Zhang L., et al. Foxa2 integrates the transcriptional response of the hepatocyte to fasting. Cell Metab. 2005, 2:141-148.
    • (2005) Cell Metab. , vol.2 , pp. 141-148
    • Zhang, L.1
  • 27
    • 0034943544 scopus 로고    scopus 로고
    • The role of C/EBP in nutrient and hormonal regulation of gene expression
    • Roesler W.J. The role of C/EBP in nutrient and hormonal regulation of gene expression. Annu. Rev. Nutr. 2001, 21:141-165.
    • (2001) Annu. Rev. Nutr. , vol.21 , pp. 141-165
    • Roesler, W.J.1
  • 28
    • 84922337132 scopus 로고    scopus 로고
    • The constitutive activation of Egr-1/C/EBPa mediates the development of type 2 diabetes mellitus by enhancing hepatic gluconeogenesis
    • Shen N., et al. The constitutive activation of Egr-1/C/EBPa mediates the development of type 2 diabetes mellitus by enhancing hepatic gluconeogenesis. Am. J. Pathol. 2015, 185:513-523.
    • (2015) Am. J. Pathol. , vol.185 , pp. 513-523
    • Shen, N.1
  • 29
    • 84864027402 scopus 로고    scopus 로고
    • The histone demethylase Jhdm1a regulates hepatic gluconeogenesis
    • Pan D., et al. The histone demethylase Jhdm1a regulates hepatic gluconeogenesis. PLoS Genet. 2012, 8:e1002761.
    • (2012) PLoS Genet. , vol.8 , pp. e1002761
    • Pan, D.1
  • 30
    • 78649516570 scopus 로고    scopus 로고
    • The coactivator SRC-1 is an essential coordinator of hepatic glucose production
    • Louet J.F., et al. The coactivator SRC-1 is an essential coordinator of hepatic glucose production. Cell Metab. 2010, 12:606-618.
    • (2010) Cell Metab. , vol.12 , pp. 606-618
    • Louet, J.F.1
  • 31
    • 84867142011 scopus 로고    scopus 로고
    • Regulation of lipid metabolism by p53 - fighting two villains with one sword
    • Goldstein I., Rotter V. Regulation of lipid metabolism by p53 - fighting two villains with one sword. Trends Endocrinol. Metab. 2012, 23:567-575.
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 567-575
    • Goldstein, I.1    Rotter, V.2
  • 32
    • 84884560637 scopus 로고    scopus 로고
    • P53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production
    • Goldstein I., et al. p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production. Cancer Metab. 2013, 1:9.
    • (2013) Cancer Metab. , vol.1 , pp. 9
    • Goldstein, I.1
  • 33
    • 84874604123 scopus 로고    scopus 로고
    • P53-Dependent regulation of metabolic function through transcriptional activation of pantothenate kinase-1 gene
    • Wang S.J., et al. p53-Dependent regulation of metabolic function through transcriptional activation of pantothenate kinase-1 gene. Cell Cycle 2013, 12:753-761.
    • (2013) Cell Cycle , vol.12 , pp. 753-761
    • Wang, S.J.1
  • 34
    • 84857372561 scopus 로고    scopus 로고
    • P53, a novel regulator of lipid metabolism pathways
    • Goldstein I., et al. p53, a novel regulator of lipid metabolism pathways. J. Hepatol. 2012, 56:656-662.
    • (2012) J. Hepatol. , vol.56 , pp. 656-662
    • Goldstein, I.1
  • 35
    • 84902131086 scopus 로고    scopus 로고
    • Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation
    • Liu Y., et al. Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E2414-E2422.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E2414-E2422
    • Liu, Y.1
  • 36
    • 84904687584 scopus 로고    scopus 로고
    • Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion
    • Zhang P., et al. Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:10684-10689.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 10684-10689
    • Zhang, P.1
  • 37
    • 77953292238 scopus 로고    scopus 로고
    • SIRT1 and p53, effect on cancer, senescence and beyond
    • Yi J., Luo J. SIRT1 and p53, effect on cancer, senescence and beyond. Biochim. Biophys. Acta 2010, 1804:1684-1689.
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 1684-1689
    • Yi, J.1    Luo, J.2
  • 38
    • 56249100986 scopus 로고    scopus 로고
    • A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
    • Liu Y., et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 2008, 456:269-273.
    • (2008) Nature , vol.456 , pp. 269-273
    • Liu, Y.1
  • 39
    • 37049203609 scopus 로고
    • Some observations on the cortico-adrenal hormone
    • Britton S.W., Silvette H. Some observations on the cortico-adrenal hormone. Science 1931, 73:373-374.
    • (1931) Science , vol.73 , pp. 373-374
    • Britton, S.W.1    Silvette, H.2
  • 40
    • 84903575036 scopus 로고    scopus 로고
    • Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues
    • Patel R., et al. Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol. Endocrinol. 2014, 28:999-1011.
    • (2014) Mol. Endocrinol. , vol.28 , pp. 999-1011
    • Patel, R.1
  • 41
    • 2542495763 scopus 로고    scopus 로고
    • Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus
    • Opherk C., et al. Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus. Mol. Endocrinol. 2004, 18:1346-1353.
    • (2004) Mol. Endocrinol. , vol.18 , pp. 1346-1353
    • Opherk, C.1
  • 42
    • 33846887168 scopus 로고    scopus 로고
    • Liver-selective glucocorticoid receptor antagonism decreases glucose production and increases glucose disposal, ameliorating insulin resistance
    • Zinker B., et al. Liver-selective glucocorticoid receptor antagonism decreases glucose production and increases glucose disposal, ameliorating insulin resistance. Metab. Clin. Exp. 2007, 56:380-387.
    • (2007) Metab. Clin. Exp. , vol.56 , pp. 380-387
    • Zinker, B.1
  • 43
    • 84902355023 scopus 로고    scopus 로고
    • Integrated physiology and systems biology of PPARalpha
    • Kersten S. Integrated physiology and systems biology of PPARalpha. Mol. Metab. 2014, 3:354-371.
    • (2014) Mol. Metab. , vol.3 , pp. 354-371
    • Kersten, S.1
  • 44
    • 0042967650 scopus 로고    scopus 로고
    • Dexamethasone induction of hypertension and diabetes is PPAR-alpha dependent in LDL receptor-null mice
    • Bernal-Mizrachi C., et al. Dexamethasone induction of hypertension and diabetes is PPAR-alpha dependent in LDL receptor-null mice. Nat. Med. 2003, 9:1069-1075.
    • (2003) Nat. Med. , vol.9 , pp. 1069-1075
    • Bernal-Mizrachi, C.1
  • 45
    • 0028131951 scopus 로고
    • Dexamethasone and insulin demonstrate marked and opposite regulation of the steady-state mRNA level of the peroxisomal proliferator-activated receptor (PPAR) in hepatic cells. Hormonal modulation of fatty-acid-induced transcription
    • Steineger H.H., et al. Dexamethasone and insulin demonstrate marked and opposite regulation of the steady-state mRNA level of the peroxisomal proliferator-activated receptor (PPAR) in hepatic cells. Hormonal modulation of fatty-acid-induced transcription. Eur. J. Biochem. 1994, 225:967-974.
    • (1994) Eur. J. Biochem. , vol.225 , pp. 967-974
    • Steineger, H.H.1
  • 46
    • 84933074090 scopus 로고    scopus 로고
    • PPAR-alpha and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal
    • Lee H.Y., et al. PPAR-alpha and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal. Nature 2015, 522:474-477.
    • (2015) Nature , vol.522 , pp. 474-477
    • Lee, H.Y.1
  • 47
    • 84924907552 scopus 로고    scopus 로고
    • Maturity-onset diabetes of the young (MODY): an update
    • Anik A., et al. Maturity-onset diabetes of the young (MODY): an update. J. Pediatr. Endocrinol. Metab. 2015, 28:251-263.
    • (2015) J. Pediatr. Endocrinol. Metab. , vol.28 , pp. 251-263
    • Anik, A.1
  • 48
    • 83555166240 scopus 로고    scopus 로고
    • Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis
    • Jitrapakdee S. Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int. J. Biochem. Cell Biol. 2012, 44:33-45.
    • (2012) Int. J. Biochem. Cell Biol. , vol.44 , pp. 33-45
    • Jitrapakdee, S.1
  • 49
    • 0242349197 scopus 로고    scopus 로고
    • Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis
    • Rhee J., et al. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:4012-4017.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 4012-4017
    • Rhee, J.1
  • 50
    • 77954952689 scopus 로고    scopus 로고
    • CAMP-mediated regulation of HNF-4alpha depends on the level of coactivator PGC-1alpha
    • Dankel S.N., et al. cAMP-mediated regulation of HNF-4alpha depends on the level of coactivator PGC-1alpha. Biochim. Biophys. Acta 2010, 1803:1013-1019.
    • (2010) Biochim. Biophys. Acta , vol.1803 , pp. 1013-1019
    • Dankel, S.N.1
  • 51
    • 84900404900 scopus 로고    scopus 로고
    • Thyroid hormone regulation of metabolism
    • Mullur R., et al. Thyroid hormone regulation of metabolism. Physiol. Rev. 2014, 94:355-382.
    • (2014) Physiol. Rev. , vol.94 , pp. 355-382
    • Mullur, R.1
  • 52
    • 11144221621 scopus 로고    scopus 로고
    • Peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) enhances the thyroid hormone induction of carnitine palmitoyltransferase I (CPT-I alpha)
    • Zhang Y., et al. Peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) enhances the thyroid hormone induction of carnitine palmitoyltransferase I (CPT-I alpha). J. Biol. Chem. 2004, 279:53963-53971.
    • (2004) J. Biol. Chem. , vol.279 , pp. 53963-53971
    • Zhang, Y.1
  • 53
    • 0017876746 scopus 로고
    • Effect of thyrotoxicosis on gluconeogenesis from alanine in the perfused rat liver
    • Singh S.P., Snyder A.K. Effect of thyrotoxicosis on gluconeogenesis from alanine in the perfused rat liver. Endocrinology 1978, 102:182-187.
    • (1978) Endocrinology , vol.102 , pp. 182-187
    • Singh, S.P.1    Snyder, A.K.2
  • 54
    • 0037424254 scopus 로고    scopus 로고
    • A thyroid hormone response unit formed between the promoter and first intron of the carnitine palmitoyltransferase-Ialpha gene mediates the liver-specific induction by thyroid hormone
    • Jackson-Hayes L., et al. A thyroid hormone response unit formed between the promoter and first intron of the carnitine palmitoyltransferase-Ialpha gene mediates the liver-specific induction by thyroid hormone. J. Biol. Chem. 2003, 278:7964-7972.
    • (2003) J. Biol. Chem. , vol.278 , pp. 7964-7972
    • Jackson-Hayes, L.1
  • 55
    • 84923031534 scopus 로고    scopus 로고
    • Nutrient-sensing nuclear receptors coordinate autophagy
    • Lee J.M., et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 2014, 516:112-115.
    • (2014) Nature , vol.516 , pp. 112-115
    • Lee, J.M.1
  • 56
    • 84863544286 scopus 로고    scopus 로고
    • Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy
    • Sinha R.A., et al. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J. Clin. Invest. 2012, 122:2428-2438.
    • (2012) J. Clin. Invest. , vol.122 , pp. 2428-2438
    • Sinha, R.A.1
  • 57
    • 84899450857 scopus 로고    scopus 로고
    • Transcriptional enhancers: from properties to genome-wide predictions
    • Shlyueva D., et al. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 2014, 15:272-286.
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 272-286
    • Shlyueva, D.1
  • 58
    • 78650304236 scopus 로고    scopus 로고
    • Charting histone modifications and the functional organization of mammalian genomes
    • Zhou V.W., et al. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 2011, 12:7-18.
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 7-18
    • Zhou, V.W.1
  • 59
    • 47249142028 scopus 로고    scopus 로고
    • Glucocorticoid receptor-dependent gene regulatory networks
    • Phuc Le P., et al. Glucocorticoid receptor-dependent gene regulatory networks. PLoS Genet. 2005, 1:e16.
    • (2005) PLoS Genet. , vol.1 , pp. e16
    • Phuc Le, P.1
  • 60
    • 84878547373 scopus 로고    scopus 로고
    • C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements
    • Grontved L., et al. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements. EMBO J. 2013, 32:1568-1583.
    • (2013) EMBO J. , vol.32 , pp. 1568-1583
    • Grontved, L.1
  • 61
    • 84877811076 scopus 로고    scopus 로고
    • Integrative genomic analysis of CREB defines a critical role for transcription factor networks in mediating the fed/fasted switch in liver
    • Everett L.J., et al. Integrative genomic analysis of CREB defines a critical role for transcription factor networks in mediating the fed/fasted switch in liver. BMC Genomics 2013, 14:337.
    • (2013) BMC Genomics , vol.14 , pp. 337
    • Everett, L.J.1
  • 62
    • 20144379523 scopus 로고    scopus 로고
    • Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues, Proc
    • Zhang X., et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues, Proc. Natl. Acad. Sci. U.S.A. 2005, 102:4459-4464.
    • (2005) Natl. Acad. Sci. U.S.A. , vol.102 , pp. 4459-4464
    • Zhang, X.1
  • 63
    • 84892660787 scopus 로고    scopus 로고
    • Novel mechanism of positive versus negative regulation by thyroid hormone receptor beta1 (TRbeta1) identified by genome-wide profiling of binding sites in mouse liver
    • Ramadoss P., et al. Novel mechanism of positive versus negative regulation by thyroid hormone receptor beta1 (TRbeta1) identified by genome-wide profiling of binding sites in mouse liver. J. Biol. Chem. 2014, 289:1313-1328.
    • (2014) J. Biol. Chem. , vol.289 , pp. 1313-1328
    • Ramadoss, P.1
  • 64
    • 84928788176 scopus 로고    scopus 로고
    • Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling
    • Grontved L., et al. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling. Nat. Commun. 2015, 6:7048.
    • (2015) Nat. Commun. , vol.6 , pp. 7048
    • Grontved, L.1
  • 65
    • 78650933929 scopus 로고    scopus 로고
    • LXRbeta is required for glucocorticoid-induced hyperglycemia and hepatosteatosis in mice
    • Patel R., et al. LXRbeta is required for glucocorticoid-induced hyperglycemia and hepatosteatosis in mice. J. Clin. Invest. 2011, 121:431-441.
    • (2011) J. Clin. Invest. , vol.121 , pp. 431-441
    • Patel, R.1
  • 66
    • 77953246434 scopus 로고    scopus 로고
    • Profiling of promoter occupancy by PPARalpha in human hepatoma cells via ChIP-chip analysis
    • van der Meer D.L., et al. Profiling of promoter occupancy by PPARalpha in human hepatoma cells via ChIP-chip analysis. Nucleic Acids Res. 2010, 38:2839-2850.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 2839-2850
    • van der Meer, D.L.1
  • 67
    • 84856777771 scopus 로고    scopus 로고
    • Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor alpha in mouse liver reveals extensive sharing of binding sites
    • Boergesen M., et al. Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor alpha in mouse liver reveals extensive sharing of binding sites. Mol. Cell. Biol. 2012, 32:852-867.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 852-867
    • Boergesen, M.1
  • 68
    • 84891514922 scopus 로고    scopus 로고
    • A map of the PPARalpha transcription regulatory network for primary human hepatocytes
    • McMullen P.D., et al. A map of the PPARalpha transcription regulatory network for primary human hepatocytes. Chem. Biol. Interact. 2014, 209:14-24.
    • (2014) Chem. Biol. Interact. , vol.209 , pp. 14-24
    • McMullen, P.D.1
  • 69
    • 84858796689 scopus 로고    scopus 로고
    • Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR
    • Calkin A.C., Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 2012, 13:213-224.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 213-224
    • Calkin, A.C.1    Tontonoz, P.2
  • 70
    • 84871184914 scopus 로고    scopus 로고
    • Genome-wide analysis of FoxO1 binding in hepatic chromatin: potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis
    • Shin D.J., et al. Genome-wide analysis of FoxO1 binding in hepatic chromatin: potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis. Nucleic Acids Res. 2012, 40:11499-11509.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 11499-11509
    • Shin, D.J.1
  • 71
    • 84862909192 scopus 로고    scopus 로고
    • Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer
    • Li Z., et al. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell 2012, 148:72-83.
    • (2012) Cell , vol.148 , pp. 72-83
    • Li, Z.1
  • 72
    • 84905860812 scopus 로고    scopus 로고
    • Genome-wide analyses of ChIP-Seq derived FOXA2 DNA occupancy in liver points to genetic networks underpinning multiple complex traits
    • Johnson M.E., et al. Genome-wide analyses of ChIP-Seq derived FOXA2 DNA occupancy in liver points to genetic networks underpinning multiple complex traits. J. Clin. Endocrinol. Metab. 2014, 99:E1580-E1585.
    • (2014) J. Clin. Endocrinol. Metab. , vol.99 , pp. E1580-E1585
    • Johnson, M.E.1
  • 73
    • 77953062527 scopus 로고    scopus 로고
    • Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding
    • Schmidt D., et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 2010, 328:1036-1040.
    • (2010) Science , vol.328 , pp. 1036-1040
    • Schmidt, D.1
  • 74
    • 80052000538 scopus 로고    scopus 로고
    • Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism
    • Voss T.C., et al. Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell 2011, 146:544-554.
    • (2011) Cell , vol.146 , pp. 544-554
    • Voss, T.C.1
  • 75
    • 33748463364 scopus 로고    scopus 로고
    • NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism
    • Pei L., et al. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat. Med. 2006, 12:1048-1055.
    • (2006) Nat. Med. , vol.12 , pp. 1048-1055
    • Pei, L.1
  • 76
    • 84904961213 scopus 로고    scopus 로고
    • Orphan nuclear receptor Nur77 mediates fasting-induced hepatic fibroblast growth factor 21 expression
    • Min A.K., et al. Orphan nuclear receptor Nur77 mediates fasting-induced hepatic fibroblast growth factor 21 expression. Endocrinology 2014, 155:2924-2931.
    • (2014) Endocrinology , vol.155 , pp. 2924-2931
    • Min, A.K.1
  • 77
    • 84922968506 scopus 로고    scopus 로고
    • Transcriptional regulation of autophagy by an FXR-CREB axis
    • Seok S., et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 2014, 516:108-111.
    • (2014) Nature , vol.516 , pp. 108-111
    • Seok, S.1
  • 78
    • 84878606239 scopus 로고    scopus 로고
    • TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
    • Settembre C., et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 2013, 15:647-658.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 647-658
    • Settembre, C.1
  • 79
    • 54849431792 scopus 로고    scopus 로고
    • The glucagon receptor is required for the adaptive metabolic response to fasting
    • Longuet C., et al. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab. 2008, 8:359-371.
    • (2008) Cell Metab. , vol.8 , pp. 359-371
    • Longuet, C.1
  • 80
    • 84875472538 scopus 로고    scopus 로고
    • Yin Yang 1 promotes hepatic gluconeogenesis through upregulation of glucocorticoid receptor
    • Lu Y., et al. Yin Yang 1 promotes hepatic gluconeogenesis through upregulation of glucocorticoid receptor. Diabetes 2013, 62:1064-1073.
    • (2013) Diabetes , vol.62 , pp. 1064-1073
    • Lu, Y.1
  • 81
    • 77954282799 scopus 로고    scopus 로고
    • Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action
    • Takashima M., et al. Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action. Diabetes 2010, 59:1608-1615.
    • (2010) Diabetes , vol.59 , pp. 1608-1615
    • Takashima, M.1
  • 82
    • 33947575572 scopus 로고    scopus 로고
    • Regulation of gluconeogenesis by Kruppel-like factor 15
    • Gray S., et al. Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab. 2007, 5:305-312.
    • (2007) Cell Metab. , vol.5 , pp. 305-312
    • Gray, S.1
  • 83
    • 84914158653 scopus 로고    scopus 로고
    • Control of hepatic gluconeogenesis by the promyelocytic leukemia zinc finger protein
    • Chen S., et al. Control of hepatic gluconeogenesis by the promyelocytic leukemia zinc finger protein. Mol. Endocrinol. 2014, 28:1987-1998.
    • (2014) Mol. Endocrinol. , vol.28 , pp. 1987-1998
    • Chen, S.1
  • 84
    • 73449099559 scopus 로고    scopus 로고
    • The liver-enriched transcription factor CREBH is nutritionally regulated and activated by fatty acids and PPARalpha
    • Danno H., et al. The liver-enriched transcription factor CREBH is nutritionally regulated and activated by fatty acids and PPARalpha. Biochem. Biophys. Res. Commun. 2010, 391:1222-1227.
    • (2010) Biochem. Biophys. Res. Commun. , vol.391 , pp. 1222-1227
    • Danno, H.1
  • 85
    • 77950285163 scopus 로고    scopus 로고
    • Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH
    • Lee M.W., et al. Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH. Cell Metab. 2010, 11:331-339.
    • (2010) Cell Metab. , vol.11 , pp. 331-339
    • Lee, M.W.1
  • 86
    • 84914174003 scopus 로고    scopus 로고
    • Alpha lipoic acid induces hepatic fibroblast growth factor 21 expression via up-regulation of CREBH
    • Bae K.H., et al. Alpha lipoic acid induces hepatic fibroblast growth factor 21 expression via up-regulation of CREBH. Biochem. Biophys. Res. Commun. 2014, 455:212-217.
    • (2014) Biochem. Biophys. Res. Commun. , vol.455 , pp. 212-217
    • Bae, K.H.1
  • 87
    • 84896838463 scopus 로고    scopus 로고
    • Liver-enriched transcription factor CREBH interacts with peroxisome proliferator-activated receptor alpha to regulate metabolic hormone FGF21
    • Kim H., et al. Liver-enriched transcription factor CREBH interacts with peroxisome proliferator-activated receptor alpha to regulate metabolic hormone FGF21. Endocrinology 2014, 155:769-782.
    • (2014) Endocrinology , vol.155 , pp. 769-782
    • Kim, H.1
  • 88
    • 84914141378 scopus 로고    scopus 로고
    • Hepatic CREB3L3 controls whole-body energy homeostasis and improves obesity and diabetes
    • Nakagawa Y., et al. Hepatic CREB3L3 controls whole-body energy homeostasis and improves obesity and diabetes. Endocrinology 2014, 155:4706-4719.
    • (2014) Endocrinology , vol.155 , pp. 4706-4719
    • Nakagawa, Y.1
  • 89
    • 34249711964 scopus 로고    scopus 로고
    • Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
    • Badman M.K., et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007, 5:426-437.
    • (2007) Cell Metab. , vol.5 , pp. 426-437
    • Badman, M.K.1
  • 90
    • 34249686631 scopus 로고    scopus 로고
    • Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
    • Inagaki T., et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007, 5:415-425.
    • (2007) Cell Metab. , vol.5 , pp. 415-425
    • Inagaki, T.1
  • 91
    • 84922331368 scopus 로고    scopus 로고
    • Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop
    • Patel R., et al. Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop. Mol. Endocrinol. 2015, 29:213-223.
    • (2015) Mol. Endocrinol. , vol.29 , pp. 213-223
    • Patel, R.1
  • 92
    • 84899893219 scopus 로고    scopus 로고
    • Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)
    • Cheng X., et al. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR). Toxicol. Appl. Pharmacol. 2014, 278:65-71.
    • (2014) Toxicol. Appl. Pharmacol. , vol.278 , pp. 65-71
    • Cheng, X.1
  • 93
    • 84858311217 scopus 로고    scopus 로고
    • Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation
    • De Sousa-Coelho A.L., et al. Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem. J. 2012, 443:165-171.
    • (2012) Biochem. J. , vol.443 , pp. 165-171
    • De Sousa-Coelho, A.L.1
  • 94
    • 77952334180 scopus 로고    scopus 로고
    • Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha
    • Wang Y., et al. Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha. J. Biol. Chem. 2010, 285:15668-15673.
    • (2010) J. Biol. Chem. , vol.285 , pp. 15668-15673
    • Wang, Y.1
  • 95
    • 84864105994 scopus 로고    scopus 로고
    • Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21
    • Cyphert H.A., et al. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21. J. Biol. Chem. 2012, 287:25123-25138.
    • (2012) J. Biol. Chem. , vol.287 , pp. 25123-25138
    • Cyphert, H.A.1
  • 96
    • 84859529243 scopus 로고    scopus 로고
    • Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3
    • Li H., et al. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes 2012, 61:797-806.
    • (2012) Diabetes , vol.61 , pp. 797-806
    • Li, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.