-
1
-
-
33750110683
-
Fuel metabolism in starvation
-
Cahill G.F. Fuel metabolism in starvation. Annu. Rev. Nutr. 2006, 26:1-22.
-
(2006)
Annu. Rev. Nutr.
, vol.26
, pp. 1-22
-
-
Cahill, G.F.1
-
2
-
-
40949165722
-
Inhibition of mitochondrial fatty acid oxidation in vivo only slightly suppresses gluconeogenesis but enhances clearance of glucose in mice
-
Derks T.G., et al. Inhibition of mitochondrial fatty acid oxidation in vivo only slightly suppresses gluconeogenesis but enhances clearance of glucose in mice. Hepatology 2008, 47:1032-1042.
-
(2008)
Hepatology
, vol.47
, pp. 1032-1042
-
-
Derks, T.G.1
-
4
-
-
78049259220
-
Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy
-
Rizza R.A. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes 2010, 59:2697-2707.
-
(2010)
Diabetes
, vol.59
, pp. 2697-2707
-
-
Rizza, R.A.1
-
5
-
-
0035936763
-
New perspectives into the molecular pathogenesis and treatment of type 2 diabetes
-
Saltiel A.R. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 2001, 104:517-529.
-
(2001)
Cell
, vol.104
, pp. 517-529
-
-
Saltiel, A.R.1
-
6
-
-
19944429381
-
Role of Kruppel-like factor 15 in PEPCK gene expression in the liver
-
Teshigawara K., et al. Role of Kruppel-like factor 15 in PEPCK gene expression in the liver. Biochem. Biophys. Res. Commun. 2005, 327:920-926.
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.327
, pp. 920-926
-
-
Teshigawara, K.1
-
7
-
-
84920605320
-
A new biology of diabetes revealed by leptin
-
Unger R.H., Roth M.G. A new biology of diabetes revealed by leptin. Cell Metab. 2015, 21:15-20.
-
(2015)
Cell Metab.
, vol.21
, pp. 15-20
-
-
Unger, R.H.1
Roth, M.G.2
-
8
-
-
79951962147
-
CREB and the CRTC co-activators: sensors for hormonal and metabolic signals
-
Altarejos J.Y., Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 2011, 12:141-151.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 141-151
-
-
Altarejos, J.Y.1
Montminy, M.2
-
9
-
-
84859977895
-
Sirtuins mediate mammalian metabolic responses to nutrient availability
-
Chalkiadaki A., Guarente L. Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 2012, 8:287-296.
-
(2012)
Nat. Rev. Endocrinol.
, vol.8
, pp. 287-296
-
-
Chalkiadaki, A.1
Guarente, L.2
-
10
-
-
84871650811
-
Metabolic reprogramming by class I and II histone deacetylases
-
Mihaylova M.M., Shaw R.J. Metabolic reprogramming by class I and II histone deacetylases. Trends Endocrinol. Metab. 2013, 24:48-57.
-
(2013)
Trends Endocrinol. Metab.
, vol.24
, pp. 48-57
-
-
Mihaylova, M.M.1
Shaw, R.J.2
-
11
-
-
0001693313
-
Aqueous extracts of pancreas: III. Some precipitation reactions of insulin
-
Kimball C.P., Murlin J.R. Aqueous extracts of pancreas: III. Some precipitation reactions of insulin. J. Biol. Chem. 1923, 58:337-346.
-
(1923)
J. Biol. Chem.
, vol.58
, pp. 337-346
-
-
Kimball, C.P.1
Murlin, J.R.2
-
12
-
-
84885080311
-
Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects
-
Ravnskjaer K., et al. Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects. J. Clin. Invest. 2013, 123:4318-4328.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 4318-4328
-
-
Ravnskjaer, K.1
-
13
-
-
84878460424
-
PRMT5 modulates the metabolic response to fasting signals
-
Tsai W.W., et al. PRMT5 modulates the metabolic response to fasting signals. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:8870-8875.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 8870-8875
-
-
Tsai, W.W.1
-
14
-
-
33645649005
-
Signal-dependent control of gluconeogenic key enzyme genes through coactivator-associated arginine methyltransferase 1
-
Krones-Herzig A., et al. Signal-dependent control of gluconeogenic key enzyme genes through coactivator-associated arginine methyltransferase 1. J. Biol. Chem. 2006, 281:3025-3029.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 3025-3029
-
-
Krones-Herzig, A.1
-
15
-
-
84880415788
-
Forkhead box class O transcription factors in liver function and disease
-
Tikhanovich I., et al. Forkhead box class O transcription factors in liver function and disease. J. Gastroenterol. Hepatol. 2013, 28(Suppl. 1):125-131.
-
(2013)
J. Gastroenterol. Hepatol.
, vol.28
, pp. 125-131
-
-
Tikhanovich, I.1
-
16
-
-
78149272381
-
FoxOs function synergistically to promote glucose production
-
Haeusler R.A., et al. FoxOs function synergistically to promote glucose production. J. Biol. Chem. 2010, 285:35245-35248.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 35245-35248
-
-
Haeusler, R.A.1
-
17
-
-
84862909028
-
Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice
-
Zhang K., et al. Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice. Endocrinology 2012, 153:631-646.
-
(2012)
Endocrinology
, vol.153
, pp. 631-646
-
-
Zhang, K.1
-
18
-
-
84883205274
-
Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis
-
Xiong X., et al. Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis. PLoS ONE 2013, 8:e74340.
-
(2013)
PLoS ONE
, vol.8
, pp. e74340
-
-
Xiong, X.1
-
19
-
-
84922754155
-
Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors
-
Haeusler R.A., et al. Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat. Commun. 2014, 5:5190.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5190
-
-
Haeusler, R.A.1
-
20
-
-
80755148700
-
FoxO6 integrates insulin signaling with gluconeogenesis in the liver
-
Kim D.H., et al. FoxO6 integrates insulin signaling with gluconeogenesis in the liver. Diabetes 2011, 60:2763-2774.
-
(2011)
Diabetes
, vol.60
, pp. 2763-2774
-
-
Kim, D.H.1
-
21
-
-
84940069349
-
FoxO6 depletion attenuates hepatic gluconeogenesis and protects against fat-induced glucose disorder in mice
-
Calabuig-Navarro V., et al. FoxO6 depletion attenuates hepatic gluconeogenesis and protects against fat-induced glucose disorder in mice. J. Biol. Chem. 2015, 290:15581-15594.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 15581-15594
-
-
Calabuig-Navarro, V.1
-
22
-
-
36448968532
-
FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
-
Zhao J., et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007, 6:472-483.
-
(2007)
Cell Metab.
, vol.6
, pp. 472-483
-
-
Zhao, J.1
-
23
-
-
84872166360
-
Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor
-
Shimazu T., et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013, 339:211-214.
-
(2013)
Science
, vol.339
, pp. 211-214
-
-
Shimazu, T.1
-
24
-
-
77956649260
-
The FoxA factors in organogenesis and differentiation
-
Kaestner K.H. The FoxA factors in organogenesis and differentiation. Curr. Opin. Genet. Dev. 2010, 20:527-532.
-
(2010)
Curr. Opin. Genet. Dev.
, vol.20
, pp. 527-532
-
-
Kaestner, K.H.1
-
25
-
-
11144244418
-
Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes
-
Wolfrum C., et al. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 2004, 432:1027-1032.
-
(2004)
Nature
, vol.432
, pp. 1027-1032
-
-
Wolfrum, C.1
-
26
-
-
25144482864
-
Foxa2 integrates the transcriptional response of the hepatocyte to fasting
-
Zhang L., et al. Foxa2 integrates the transcriptional response of the hepatocyte to fasting. Cell Metab. 2005, 2:141-148.
-
(2005)
Cell Metab.
, vol.2
, pp. 141-148
-
-
Zhang, L.1
-
27
-
-
0034943544
-
The role of C/EBP in nutrient and hormonal regulation of gene expression
-
Roesler W.J. The role of C/EBP in nutrient and hormonal regulation of gene expression. Annu. Rev. Nutr. 2001, 21:141-165.
-
(2001)
Annu. Rev. Nutr.
, vol.21
, pp. 141-165
-
-
Roesler, W.J.1
-
28
-
-
84922337132
-
The constitutive activation of Egr-1/C/EBPa mediates the development of type 2 diabetes mellitus by enhancing hepatic gluconeogenesis
-
Shen N., et al. The constitutive activation of Egr-1/C/EBPa mediates the development of type 2 diabetes mellitus by enhancing hepatic gluconeogenesis. Am. J. Pathol. 2015, 185:513-523.
-
(2015)
Am. J. Pathol.
, vol.185
, pp. 513-523
-
-
Shen, N.1
-
29
-
-
84864027402
-
The histone demethylase Jhdm1a regulates hepatic gluconeogenesis
-
Pan D., et al. The histone demethylase Jhdm1a regulates hepatic gluconeogenesis. PLoS Genet. 2012, 8:e1002761.
-
(2012)
PLoS Genet.
, vol.8
, pp. e1002761
-
-
Pan, D.1
-
30
-
-
78649516570
-
The coactivator SRC-1 is an essential coordinator of hepatic glucose production
-
Louet J.F., et al. The coactivator SRC-1 is an essential coordinator of hepatic glucose production. Cell Metab. 2010, 12:606-618.
-
(2010)
Cell Metab.
, vol.12
, pp. 606-618
-
-
Louet, J.F.1
-
31
-
-
84867142011
-
Regulation of lipid metabolism by p53 - fighting two villains with one sword
-
Goldstein I., Rotter V. Regulation of lipid metabolism by p53 - fighting two villains with one sword. Trends Endocrinol. Metab. 2012, 23:567-575.
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 567-575
-
-
Goldstein, I.1
Rotter, V.2
-
32
-
-
84884560637
-
P53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production
-
Goldstein I., et al. p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production. Cancer Metab. 2013, 1:9.
-
(2013)
Cancer Metab.
, vol.1
, pp. 9
-
-
Goldstein, I.1
-
33
-
-
84874604123
-
P53-Dependent regulation of metabolic function through transcriptional activation of pantothenate kinase-1 gene
-
Wang S.J., et al. p53-Dependent regulation of metabolic function through transcriptional activation of pantothenate kinase-1 gene. Cell Cycle 2013, 12:753-761.
-
(2013)
Cell Cycle
, vol.12
, pp. 753-761
-
-
Wang, S.J.1
-
34
-
-
84857372561
-
P53, a novel regulator of lipid metabolism pathways
-
Goldstein I., et al. p53, a novel regulator of lipid metabolism pathways. J. Hepatol. 2012, 56:656-662.
-
(2012)
J. Hepatol.
, vol.56
, pp. 656-662
-
-
Goldstein, I.1
-
35
-
-
84902131086
-
Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation
-
Liu Y., et al. Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E2414-E2422.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. E2414-E2422
-
-
Liu, Y.1
-
36
-
-
84904687584
-
Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion
-
Zhang P., et al. Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:10684-10689.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 10684-10689
-
-
Zhang, P.1
-
37
-
-
77953292238
-
SIRT1 and p53, effect on cancer, senescence and beyond
-
Yi J., Luo J. SIRT1 and p53, effect on cancer, senescence and beyond. Biochim. Biophys. Acta 2010, 1804:1684-1689.
-
(2010)
Biochim. Biophys. Acta
, vol.1804
, pp. 1684-1689
-
-
Yi, J.1
Luo, J.2
-
38
-
-
56249100986
-
A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
-
Liu Y., et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 2008, 456:269-273.
-
(2008)
Nature
, vol.456
, pp. 269-273
-
-
Liu, Y.1
-
39
-
-
37049203609
-
Some observations on the cortico-adrenal hormone
-
Britton S.W., Silvette H. Some observations on the cortico-adrenal hormone. Science 1931, 73:373-374.
-
(1931)
Science
, vol.73
, pp. 373-374
-
-
Britton, S.W.1
Silvette, H.2
-
40
-
-
84903575036
-
Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues
-
Patel R., et al. Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol. Endocrinol. 2014, 28:999-1011.
-
(2014)
Mol. Endocrinol.
, vol.28
, pp. 999-1011
-
-
Patel, R.1
-
41
-
-
2542495763
-
Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus
-
Opherk C., et al. Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus. Mol. Endocrinol. 2004, 18:1346-1353.
-
(2004)
Mol. Endocrinol.
, vol.18
, pp. 1346-1353
-
-
Opherk, C.1
-
42
-
-
33846887168
-
Liver-selective glucocorticoid receptor antagonism decreases glucose production and increases glucose disposal, ameliorating insulin resistance
-
Zinker B., et al. Liver-selective glucocorticoid receptor antagonism decreases glucose production and increases glucose disposal, ameliorating insulin resistance. Metab. Clin. Exp. 2007, 56:380-387.
-
(2007)
Metab. Clin. Exp.
, vol.56
, pp. 380-387
-
-
Zinker, B.1
-
43
-
-
84902355023
-
Integrated physiology and systems biology of PPARalpha
-
Kersten S. Integrated physiology and systems biology of PPARalpha. Mol. Metab. 2014, 3:354-371.
-
(2014)
Mol. Metab.
, vol.3
, pp. 354-371
-
-
Kersten, S.1
-
44
-
-
0042967650
-
Dexamethasone induction of hypertension and diabetes is PPAR-alpha dependent in LDL receptor-null mice
-
Bernal-Mizrachi C., et al. Dexamethasone induction of hypertension and diabetes is PPAR-alpha dependent in LDL receptor-null mice. Nat. Med. 2003, 9:1069-1075.
-
(2003)
Nat. Med.
, vol.9
, pp. 1069-1075
-
-
Bernal-Mizrachi, C.1
-
45
-
-
0028131951
-
Dexamethasone and insulin demonstrate marked and opposite regulation of the steady-state mRNA level of the peroxisomal proliferator-activated receptor (PPAR) in hepatic cells. Hormonal modulation of fatty-acid-induced transcription
-
Steineger H.H., et al. Dexamethasone and insulin demonstrate marked and opposite regulation of the steady-state mRNA level of the peroxisomal proliferator-activated receptor (PPAR) in hepatic cells. Hormonal modulation of fatty-acid-induced transcription. Eur. J. Biochem. 1994, 225:967-974.
-
(1994)
Eur. J. Biochem.
, vol.225
, pp. 967-974
-
-
Steineger, H.H.1
-
46
-
-
84933074090
-
PPAR-alpha and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal
-
Lee H.Y., et al. PPAR-alpha and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal. Nature 2015, 522:474-477.
-
(2015)
Nature
, vol.522
, pp. 474-477
-
-
Lee, H.Y.1
-
47
-
-
84924907552
-
Maturity-onset diabetes of the young (MODY): an update
-
Anik A., et al. Maturity-onset diabetes of the young (MODY): an update. J. Pediatr. Endocrinol. Metab. 2015, 28:251-263.
-
(2015)
J. Pediatr. Endocrinol. Metab.
, vol.28
, pp. 251-263
-
-
Anik, A.1
-
48
-
-
83555166240
-
Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis
-
Jitrapakdee S. Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int. J. Biochem. Cell Biol. 2012, 44:33-45.
-
(2012)
Int. J. Biochem. Cell Biol.
, vol.44
, pp. 33-45
-
-
Jitrapakdee, S.1
-
49
-
-
0242349197
-
Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis
-
Rhee J., et al. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:4012-4017.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 4012-4017
-
-
Rhee, J.1
-
50
-
-
77954952689
-
CAMP-mediated regulation of HNF-4alpha depends on the level of coactivator PGC-1alpha
-
Dankel S.N., et al. cAMP-mediated regulation of HNF-4alpha depends on the level of coactivator PGC-1alpha. Biochim. Biophys. Acta 2010, 1803:1013-1019.
-
(2010)
Biochim. Biophys. Acta
, vol.1803
, pp. 1013-1019
-
-
Dankel, S.N.1
-
51
-
-
84900404900
-
Thyroid hormone regulation of metabolism
-
Mullur R., et al. Thyroid hormone regulation of metabolism. Physiol. Rev. 2014, 94:355-382.
-
(2014)
Physiol. Rev.
, vol.94
, pp. 355-382
-
-
Mullur, R.1
-
52
-
-
11144221621
-
Peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) enhances the thyroid hormone induction of carnitine palmitoyltransferase I (CPT-I alpha)
-
Zhang Y., et al. Peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) enhances the thyroid hormone induction of carnitine palmitoyltransferase I (CPT-I alpha). J. Biol. Chem. 2004, 279:53963-53971.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 53963-53971
-
-
Zhang, Y.1
-
53
-
-
0017876746
-
Effect of thyrotoxicosis on gluconeogenesis from alanine in the perfused rat liver
-
Singh S.P., Snyder A.K. Effect of thyrotoxicosis on gluconeogenesis from alanine in the perfused rat liver. Endocrinology 1978, 102:182-187.
-
(1978)
Endocrinology
, vol.102
, pp. 182-187
-
-
Singh, S.P.1
Snyder, A.K.2
-
54
-
-
0037424254
-
A thyroid hormone response unit formed between the promoter and first intron of the carnitine palmitoyltransferase-Ialpha gene mediates the liver-specific induction by thyroid hormone
-
Jackson-Hayes L., et al. A thyroid hormone response unit formed between the promoter and first intron of the carnitine palmitoyltransferase-Ialpha gene mediates the liver-specific induction by thyroid hormone. J. Biol. Chem. 2003, 278:7964-7972.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 7964-7972
-
-
Jackson-Hayes, L.1
-
55
-
-
84923031534
-
Nutrient-sensing nuclear receptors coordinate autophagy
-
Lee J.M., et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 2014, 516:112-115.
-
(2014)
Nature
, vol.516
, pp. 112-115
-
-
Lee, J.M.1
-
56
-
-
84863544286
-
Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy
-
Sinha R.A., et al. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J. Clin. Invest. 2012, 122:2428-2438.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 2428-2438
-
-
Sinha, R.A.1
-
57
-
-
84899450857
-
Transcriptional enhancers: from properties to genome-wide predictions
-
Shlyueva D., et al. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 2014, 15:272-286.
-
(2014)
Nat. Rev. Genet.
, vol.15
, pp. 272-286
-
-
Shlyueva, D.1
-
58
-
-
78650304236
-
Charting histone modifications and the functional organization of mammalian genomes
-
Zhou V.W., et al. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 2011, 12:7-18.
-
(2011)
Nat. Rev. Genet.
, vol.12
, pp. 7-18
-
-
Zhou, V.W.1
-
59
-
-
47249142028
-
Glucocorticoid receptor-dependent gene regulatory networks
-
Phuc Le P., et al. Glucocorticoid receptor-dependent gene regulatory networks. PLoS Genet. 2005, 1:e16.
-
(2005)
PLoS Genet.
, vol.1
, pp. e16
-
-
Phuc Le, P.1
-
60
-
-
84878547373
-
C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements
-
Grontved L., et al. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements. EMBO J. 2013, 32:1568-1583.
-
(2013)
EMBO J.
, vol.32
, pp. 1568-1583
-
-
Grontved, L.1
-
61
-
-
84877811076
-
Integrative genomic analysis of CREB defines a critical role for transcription factor networks in mediating the fed/fasted switch in liver
-
Everett L.J., et al. Integrative genomic analysis of CREB defines a critical role for transcription factor networks in mediating the fed/fasted switch in liver. BMC Genomics 2013, 14:337.
-
(2013)
BMC Genomics
, vol.14
, pp. 337
-
-
Everett, L.J.1
-
62
-
-
20144379523
-
Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues, Proc
-
Zhang X., et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues, Proc. Natl. Acad. Sci. U.S.A. 2005, 102:4459-4464.
-
(2005)
Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 4459-4464
-
-
Zhang, X.1
-
63
-
-
84892660787
-
Novel mechanism of positive versus negative regulation by thyroid hormone receptor beta1 (TRbeta1) identified by genome-wide profiling of binding sites in mouse liver
-
Ramadoss P., et al. Novel mechanism of positive versus negative regulation by thyroid hormone receptor beta1 (TRbeta1) identified by genome-wide profiling of binding sites in mouse liver. J. Biol. Chem. 2014, 289:1313-1328.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 1313-1328
-
-
Ramadoss, P.1
-
64
-
-
84928788176
-
Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling
-
Grontved L., et al. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling. Nat. Commun. 2015, 6:7048.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7048
-
-
Grontved, L.1
-
65
-
-
78650933929
-
LXRbeta is required for glucocorticoid-induced hyperglycemia and hepatosteatosis in mice
-
Patel R., et al. LXRbeta is required for glucocorticoid-induced hyperglycemia and hepatosteatosis in mice. J. Clin. Invest. 2011, 121:431-441.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 431-441
-
-
Patel, R.1
-
66
-
-
77953246434
-
Profiling of promoter occupancy by PPARalpha in human hepatoma cells via ChIP-chip analysis
-
van der Meer D.L., et al. Profiling of promoter occupancy by PPARalpha in human hepatoma cells via ChIP-chip analysis. Nucleic Acids Res. 2010, 38:2839-2850.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 2839-2850
-
-
van der Meer, D.L.1
-
67
-
-
84856777771
-
Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor alpha in mouse liver reveals extensive sharing of binding sites
-
Boergesen M., et al. Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor alpha in mouse liver reveals extensive sharing of binding sites. Mol. Cell. Biol. 2012, 32:852-867.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 852-867
-
-
Boergesen, M.1
-
68
-
-
84891514922
-
A map of the PPARalpha transcription regulatory network for primary human hepatocytes
-
McMullen P.D., et al. A map of the PPARalpha transcription regulatory network for primary human hepatocytes. Chem. Biol. Interact. 2014, 209:14-24.
-
(2014)
Chem. Biol. Interact.
, vol.209
, pp. 14-24
-
-
McMullen, P.D.1
-
69
-
-
84858796689
-
Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR
-
Calkin A.C., Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 2012, 13:213-224.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 213-224
-
-
Calkin, A.C.1
Tontonoz, P.2
-
70
-
-
84871184914
-
Genome-wide analysis of FoxO1 binding in hepatic chromatin: potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis
-
Shin D.J., et al. Genome-wide analysis of FoxO1 binding in hepatic chromatin: potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis. Nucleic Acids Res. 2012, 40:11499-11509.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 11499-11509
-
-
Shin, D.J.1
-
71
-
-
84862909192
-
Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer
-
Li Z., et al. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell 2012, 148:72-83.
-
(2012)
Cell
, vol.148
, pp. 72-83
-
-
Li, Z.1
-
72
-
-
84905860812
-
Genome-wide analyses of ChIP-Seq derived FOXA2 DNA occupancy in liver points to genetic networks underpinning multiple complex traits
-
Johnson M.E., et al. Genome-wide analyses of ChIP-Seq derived FOXA2 DNA occupancy in liver points to genetic networks underpinning multiple complex traits. J. Clin. Endocrinol. Metab. 2014, 99:E1580-E1585.
-
(2014)
J. Clin. Endocrinol. Metab.
, vol.99
, pp. E1580-E1585
-
-
Johnson, M.E.1
-
73
-
-
77953062527
-
Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding
-
Schmidt D., et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 2010, 328:1036-1040.
-
(2010)
Science
, vol.328
, pp. 1036-1040
-
-
Schmidt, D.1
-
74
-
-
80052000538
-
Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism
-
Voss T.C., et al. Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell 2011, 146:544-554.
-
(2011)
Cell
, vol.146
, pp. 544-554
-
-
Voss, T.C.1
-
75
-
-
33748463364
-
NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism
-
Pei L., et al. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat. Med. 2006, 12:1048-1055.
-
(2006)
Nat. Med.
, vol.12
, pp. 1048-1055
-
-
Pei, L.1
-
76
-
-
84904961213
-
Orphan nuclear receptor Nur77 mediates fasting-induced hepatic fibroblast growth factor 21 expression
-
Min A.K., et al. Orphan nuclear receptor Nur77 mediates fasting-induced hepatic fibroblast growth factor 21 expression. Endocrinology 2014, 155:2924-2931.
-
(2014)
Endocrinology
, vol.155
, pp. 2924-2931
-
-
Min, A.K.1
-
77
-
-
84922968506
-
Transcriptional regulation of autophagy by an FXR-CREB axis
-
Seok S., et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature 2014, 516:108-111.
-
(2014)
Nature
, vol.516
, pp. 108-111
-
-
Seok, S.1
-
78
-
-
84878606239
-
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
-
Settembre C., et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 2013, 15:647-658.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 647-658
-
-
Settembre, C.1
-
79
-
-
54849431792
-
The glucagon receptor is required for the adaptive metabolic response to fasting
-
Longuet C., et al. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab. 2008, 8:359-371.
-
(2008)
Cell Metab.
, vol.8
, pp. 359-371
-
-
Longuet, C.1
-
80
-
-
84875472538
-
Yin Yang 1 promotes hepatic gluconeogenesis through upregulation of glucocorticoid receptor
-
Lu Y., et al. Yin Yang 1 promotes hepatic gluconeogenesis through upregulation of glucocorticoid receptor. Diabetes 2013, 62:1064-1073.
-
(2013)
Diabetes
, vol.62
, pp. 1064-1073
-
-
Lu, Y.1
-
81
-
-
77954282799
-
Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action
-
Takashima M., et al. Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action. Diabetes 2010, 59:1608-1615.
-
(2010)
Diabetes
, vol.59
, pp. 1608-1615
-
-
Takashima, M.1
-
82
-
-
33947575572
-
Regulation of gluconeogenesis by Kruppel-like factor 15
-
Gray S., et al. Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab. 2007, 5:305-312.
-
(2007)
Cell Metab.
, vol.5
, pp. 305-312
-
-
Gray, S.1
-
83
-
-
84914158653
-
Control of hepatic gluconeogenesis by the promyelocytic leukemia zinc finger protein
-
Chen S., et al. Control of hepatic gluconeogenesis by the promyelocytic leukemia zinc finger protein. Mol. Endocrinol. 2014, 28:1987-1998.
-
(2014)
Mol. Endocrinol.
, vol.28
, pp. 1987-1998
-
-
Chen, S.1
-
84
-
-
73449099559
-
The liver-enriched transcription factor CREBH is nutritionally regulated and activated by fatty acids and PPARalpha
-
Danno H., et al. The liver-enriched transcription factor CREBH is nutritionally regulated and activated by fatty acids and PPARalpha. Biochem. Biophys. Res. Commun. 2010, 391:1222-1227.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.391
, pp. 1222-1227
-
-
Danno, H.1
-
85
-
-
77950285163
-
Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH
-
Lee M.W., et al. Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH. Cell Metab. 2010, 11:331-339.
-
(2010)
Cell Metab.
, vol.11
, pp. 331-339
-
-
Lee, M.W.1
-
86
-
-
84914174003
-
Alpha lipoic acid induces hepatic fibroblast growth factor 21 expression via up-regulation of CREBH
-
Bae K.H., et al. Alpha lipoic acid induces hepatic fibroblast growth factor 21 expression via up-regulation of CREBH. Biochem. Biophys. Res. Commun. 2014, 455:212-217.
-
(2014)
Biochem. Biophys. Res. Commun.
, vol.455
, pp. 212-217
-
-
Bae, K.H.1
-
87
-
-
84896838463
-
Liver-enriched transcription factor CREBH interacts with peroxisome proliferator-activated receptor alpha to regulate metabolic hormone FGF21
-
Kim H., et al. Liver-enriched transcription factor CREBH interacts with peroxisome proliferator-activated receptor alpha to regulate metabolic hormone FGF21. Endocrinology 2014, 155:769-782.
-
(2014)
Endocrinology
, vol.155
, pp. 769-782
-
-
Kim, H.1
-
88
-
-
84914141378
-
Hepatic CREB3L3 controls whole-body energy homeostasis and improves obesity and diabetes
-
Nakagawa Y., et al. Hepatic CREB3L3 controls whole-body energy homeostasis and improves obesity and diabetes. Endocrinology 2014, 155:4706-4719.
-
(2014)
Endocrinology
, vol.155
, pp. 4706-4719
-
-
Nakagawa, Y.1
-
89
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
-
Badman M.K., et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007, 5:426-437.
-
(2007)
Cell Metab.
, vol.5
, pp. 426-437
-
-
Badman, M.K.1
-
90
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
-
Inagaki T., et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007, 5:415-425.
-
(2007)
Cell Metab.
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
-
91
-
-
84922331368
-
Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop
-
Patel R., et al. Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop. Mol. Endocrinol. 2015, 29:213-223.
-
(2015)
Mol. Endocrinol.
, vol.29
, pp. 213-223
-
-
Patel, R.1
-
92
-
-
84899893219
-
Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)
-
Cheng X., et al. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR). Toxicol. Appl. Pharmacol. 2014, 278:65-71.
-
(2014)
Toxicol. Appl. Pharmacol.
, vol.278
, pp. 65-71
-
-
Cheng, X.1
-
93
-
-
84858311217
-
Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation
-
De Sousa-Coelho A.L., et al. Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem. J. 2012, 443:165-171.
-
(2012)
Biochem. J.
, vol.443
, pp. 165-171
-
-
De Sousa-Coelho, A.L.1
-
94
-
-
77952334180
-
Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha
-
Wang Y., et al. Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha. J. Biol. Chem. 2010, 285:15668-15673.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 15668-15673
-
-
Wang, Y.1
-
95
-
-
84864105994
-
Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21
-
Cyphert H.A., et al. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21. J. Biol. Chem. 2012, 287:25123-25138.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 25123-25138
-
-
Cyphert, H.A.1
-
96
-
-
84859529243
-
Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3
-
Li H., et al. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes 2012, 61:797-806.
-
(2012)
Diabetes
, vol.61
, pp. 797-806
-
-
Li, H.1
|