메뉴 건너뛰기




Volumn 23, Issue 11, 2012, Pages 567-575

Regulation of lipid metabolism by p53 - fighting two villains with one sword

Author keywords

[No Author keywords available]

Indexed keywords

ABC TRANSPORTER A1; ADENYLATE KINASE; APOLIPOPROTEIN B; APOLIPOPROTEIN B MESSENGER RNA EDITING ENZYME CATALYTIC POLYPEPTIDE 1; CARBOXYLESTERASE; CELL NUCLEUS RECEPTOR; CELL PROTEIN; CERAMIDE; GUANIDINOACETATE METHYLTRANSFERASE; LIPIN 1; MAMMALIAN TARGET OF RAPAMYCIN; OXIDOREDUCTASE; PHOSPHOLIPID TRANSFER PROTEIN; PROTEIN DHRS3; PROTEIN NR0B2; PROTEIN P53; SPHINGOLIPID; UNCLASSIFIED DRUG;

EID: 84867142011     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2012.06.007     Document Type: Review
Times cited : (102)

References (79)
  • 1
    • 70349442548 scopus 로고    scopus 로고
    • The first 30 years of p53: growing ever more complex
    • Levine A.J., Oren M. The first 30 years of p53: growing ever more complex. Nat. Rev. Cancer 2009, 9:749-758.
    • (2009) Nat. Rev. Cancer , vol.9 , pp. 749-758
    • Levine, A.J.1    Oren, M.2
  • 2
    • 33745918951 scopus 로고    scopus 로고
    • TIGAR, a p53-inducible regulator of glycolysis and apoptosis
    • Bensaad K., et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006, 126:107-120.
    • (2006) Cell , vol.126 , pp. 107-120
    • Bensaad, K.1
  • 3
    • 77952212178 scopus 로고    scopus 로고
    • Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function
    • Hu W., et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7455-7460.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 7455-7460
    • Hu, W.1
  • 4
    • 43049139541 scopus 로고    scopus 로고
    • P53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation
    • Kawauchi K., et al. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat. Cell Biol. 2008, 10:611-618.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 611-618
    • Kawauchi, K.1
  • 5
    • 11244347171 scopus 로고    scopus 로고
    • Glycolytic enzymes can modulate cellular life span
    • Kondoh H., et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 2005, 65:177-185.
    • (2005) Cancer Res. , vol.65 , pp. 177-185
    • Kondoh, H.1
  • 6
    • 33745149291 scopus 로고    scopus 로고
    • P53 regulates mitochondrial respiration
    • Matoba S., et al. p53 regulates mitochondrial respiration. Science 2006, 312:1650-1653.
    • (2006) Science , vol.312 , pp. 1650-1653
    • Matoba, S.1
  • 7
    • 1942506067 scopus 로고    scopus 로고
    • The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression
    • Schwartzenberg-Bar-Yoseph F., et al. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004, 64:2627-2633.
    • (2004) Cancer Res. , vol.64 , pp. 2627-2633
    • Schwartzenberg-Bar-Yoseph, F.1
  • 8
    • 33751009381 scopus 로고    scopus 로고
    • Regulation of AIF expression by p53
    • Stambolsky P., et al. Regulation of AIF expression by p53. Cell Death Differ. 2006, 13:2140-2149.
    • (2006) Cell Death Differ. , vol.13 , pp. 2140-2149
    • Stambolsky, P.1
  • 9
    • 77952227625 scopus 로고    scopus 로고
    • Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species
    • Suzuki S., et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7461-7466.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 7461-7466
    • Suzuki, S.1
  • 10
    • 84858604270 scopus 로고    scopus 로고
    • Metabolic reprogramming: a cancer hallmark even warburg did not anticipate
    • Ward P.S., Thompson C.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012, 21:297-308.
    • (2012) Cancer Cell , vol.21 , pp. 297-308
    • Ward, P.S.1    Thompson, C.B.2
  • 11
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
    • DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7:11-20.
    • (2008) Cell Metab. , vol.7 , pp. 11-20
    • DeBerardinis, R.J.1
  • 12
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: the metabolic requirements of cell proliferation
    • Vander Heiden M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1
  • 14
    • 0004026407 scopus 로고    scopus 로고
    • W.H. Freeman and Company, L.N. David, M. Cox (Eds.)
    • Lehninger Principles of Biochemistry 2004, W.H. Freeman and Company. L.N. David, M. Cox (Eds.).
    • (2004) Lehninger Principles of Biochemistry
  • 15
    • 70449093664 scopus 로고    scopus 로고
    • GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress
    • Ide T., et al. GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Mol. Cell 2009, 36:379-392.
    • (2009) Mol. Cell , vol.36 , pp. 379-392
    • Ide, T.1
  • 16
    • 80555135898 scopus 로고    scopus 로고
    • ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress
    • Assaily W., et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol. Cell 2011, 44:491-501.
    • (2011) Mol. Cell , vol.44 , pp. 491-501
    • Assaily, W.1
  • 17
    • 33747853190 scopus 로고    scopus 로고
    • Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway
    • Finck B.N., et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab. 2006, 4:199-210.
    • (2006) Cell Metab. , vol.4 , pp. 199-210
    • Finck, B.N.1
  • 18
    • 81355153987 scopus 로고    scopus 로고
    • PGC-1alpha, a key modulator of p53, promotes cell survival upon metabolic stress
    • Sen N., et al. PGC-1alpha, a key modulator of p53, promotes cell survival upon metabolic stress. Mol. Cell 2011, 44:621-634.
    • (2011) Mol. Cell , vol.44 , pp. 621-634
    • Sen, N.1
  • 19
    • 79953186142 scopus 로고    scopus 로고
    • PGC-1 coactivators in the control of energy metabolism
    • Liu C., Lin J.D. PGC-1 coactivators in the control of energy metabolism. Acta Biochim. Biophys. Sin. (Shanghai) 2011, 43:248-257.
    • (2011) Acta Biochim. Biophys. Sin. (Shanghai) , vol.43 , pp. 248-257
    • Liu, C.1    Lin, J.D.2
  • 20
    • 84857372561 scopus 로고    scopus 로고
    • P53, a novel regulator of lipid metabolism pathways
    • Goldstein I., et al. p53, a novel regulator of lipid metabolism pathways. J. Hepatol. 2012, 56:656-662.
    • (2012) J. Hepatol. , vol.56 , pp. 656-662
    • Goldstein, I.1
  • 21
    • 79956326256 scopus 로고    scopus 로고
    • Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress
    • Zaugg K., et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 2011, 25:1041-1051.
    • (2011) Genes Dev. , vol.25 , pp. 1041-1051
    • Zaugg, K.1
  • 22
    • 10644256309 scopus 로고    scopus 로고
    • Structure and function of carnitine acyltransferases
    • Jogl G., et al. Structure and function of carnitine acyltransferases. Ann. N. Y. Acad. Sci. 2004, 1033:17-29.
    • (2004) Ann. N. Y. Acad. Sci. , vol.1033 , pp. 17-29
    • Jogl, G.1
  • 23
    • 44249098959 scopus 로고    scopus 로고
    • Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases
    • Hardwick J.P. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases. Biochem. Pharmacol. 2008, 75:2263-2275.
    • (2008) Biochem. Pharmacol. , vol.75 , pp. 2263-2275
    • Hardwick, J.P.1
  • 24
    • 79952280229 scopus 로고    scopus 로고
    • P53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase
    • Jiang P., et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 2011, 13:310-316.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 310-316
    • Jiang, P.1
  • 25
    • 0038491561 scopus 로고    scopus 로고
    • P53 Activation in adipocytes of obese mice
    • Yahagi N., et al. p53 Activation in adipocytes of obese mice. J. Biol. Chem. 2003, 278:25395-25400.
    • (2003) J. Biol. Chem. , vol.278 , pp. 25395-25400
    • Yahagi, N.1
  • 26
    • 67449097415 scopus 로고    scopus 로고
    • Guardian of corpulence: a hypothesis on p53 signaling in the fat cell
    • Bazuine M., et al. Guardian of corpulence: a hypothesis on p53 signaling in the fat cell. Clin. Lipidol. 2009, 4:231-243.
    • (2009) Clin. Lipidol. , vol.4 , pp. 231-243
    • Bazuine, M.1
  • 27
    • 77956280751 scopus 로고    scopus 로고
    • P53 is balancing development, differentiation and de-differentiation to assure cancer prevention
    • Molchadsky A., et al. p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis 2010, 31:1501-1508.
    • (2010) Carcinogenesis , vol.31 , pp. 1501-1508
    • Molchadsky, A.1
  • 28
    • 0012249041 scopus 로고
    • Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro
    • Medes G., et al. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res. 1953, 13:27-29.
    • (1953) Cancer Res. , vol.13 , pp. 27-29
    • Medes, G.1
  • 29
    • 33746291023 scopus 로고    scopus 로고
    • Increased lipogenesis in cancer cells: new players, novel targets
    • Swinnen J.V., et al. Increased lipogenesis in cancer cells: new players, novel targets. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9:358-365.
    • (2006) Curr. Opin. Clin. Nutr. Metab. Care , vol.9 , pp. 358-365
    • Swinnen, J.V.1
  • 30
    • 84861973567 scopus 로고    scopus 로고
    • Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence
    • Li T., et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 2012, 149:1269-1283.
    • (2012) Cell , vol.149 , pp. 1269-1283
    • Li, T.1
  • 31
    • 70349443284 scopus 로고    scopus 로고
    • When mutants gain new powers: news from the mutant p53 field
    • Brosh R., Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat. Rev. Cancer 2009, 9:701-713.
    • (2009) Nat. Rev. Cancer , vol.9 , pp. 701-713
    • Brosh, R.1    Rotter, V.2
  • 32
    • 78650308849 scopus 로고    scopus 로고
    • Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies
    • Goldstein I., et al. Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies. Cancer Gene Ther. 2011, 18:2-11.
    • (2011) Cancer Gene Ther. , vol.18 , pp. 2-11
    • Goldstein, I.1
  • 33
    • 84862908644 scopus 로고    scopus 로고
    • Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway
    • Freed-Pastor W.A., et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012, 148:244-258.
    • (2012) Cell , vol.148 , pp. 244-258
    • Freed-Pastor, W.A.1
  • 34
    • 77956989082 scopus 로고    scopus 로고
    • Dysregulation of the mevalonate pathway promotes transformation
    • Clendening J.W., et al. Dysregulation of the mevalonate pathway promotes transformation. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:15051-15056.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 15051-15056
    • Clendening, J.W.1
  • 35
    • 34047098778 scopus 로고    scopus 로고
    • Simvastatin induces apoptosis in human breast cancer cells: p53 and estrogen receptor independent pathway requiring signalling through JNK
    • Koyuturk M., et al. Simvastatin induces apoptosis in human breast cancer cells: p53 and estrogen receptor independent pathway requiring signalling through JNK. Cancer Lett. 2007, 250:220-228.
    • (2007) Cancer Lett. , vol.250 , pp. 220-228
    • Koyuturk, M.1
  • 37
    • 84858796689 scopus 로고    scopus 로고
    • Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR
    • Calkin A.C., Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 2012, 13:213-224.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 213-224
    • Calkin, A.C.1    Tontonoz, P.2
  • 38
    • 77957009531 scopus 로고    scopus 로고
    • ApoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53
    • Ashur-Fabian O., et al. apoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53. Cell Cycle 2010, 9:3761-3770.
    • (2010) Cell Cycle , vol.9 , pp. 3761-3770
    • Ashur-Fabian, O.1
  • 39
    • 79955928267 scopus 로고    scopus 로고
    • Role of phospholipid transfer protein in high-density lipoprotein-mediated reverse cholesterol transport
    • Yazdanyar A., et al. Role of phospholipid transfer protein in high-density lipoprotein-mediated reverse cholesterol transport. Curr. Atheroscler. Rep. 2011, 13:242-248.
    • (2011) Curr. Atheroscler. Rep. , vol.13 , pp. 242-248
    • Yazdanyar, A.1
  • 40
    • 3042692735 scopus 로고    scopus 로고
    • Carboxyl ester lipase cofractionates with scavenger receptor BI in hepatocyte lipid rafts and enhances selective uptake and hydrolysis of cholesteryl esters from HDL3
    • Camarota L.M., et al. Carboxyl ester lipase cofractionates with scavenger receptor BI in hepatocyte lipid rafts and enhances selective uptake and hydrolysis of cholesteryl esters from HDL3. J. Biol. Chem. 2004, 279:27599-27606.
    • (2004) J. Biol. Chem. , vol.279 , pp. 27599-27606
    • Camarota, L.M.1
  • 41
    • 0029983998 scopus 로고    scopus 로고
    • Bile salt stimulated cholesterol esterase increases uptake of high density lipoprotein-associated cholesteryl esters by HepG2 cells
    • Li F., et al. Bile salt stimulated cholesterol esterase increases uptake of high density lipoprotein-associated cholesteryl esters by HepG2 cells. Biochemistry 1996, 35:6657-6663.
    • (1996) Biochemistry , vol.35 , pp. 6657-6663
    • Li, F.1
  • 42
    • 73749084730 scopus 로고    scopus 로고
    • Characteristics of apolipoprotein M and its relation to atherosclerosis and diabetes
    • Hu Y.W., et al. Characteristics of apolipoprotein M and its relation to atherosclerosis and diabetes. Biochim. Biophys. Acta 2010, 1801:100-105.
    • (2010) Biochim. Biophys. Acta , vol.1801 , pp. 100-105
    • Hu, Y.W.1
  • 43
    • 79961041330 scopus 로고    scopus 로고
    • Tumor suppressor p53 regulates bile acid homeostasis via small heterodimer partner
    • Kim D.H., Lee J.W. Tumor suppressor p53 regulates bile acid homeostasis via small heterodimer partner. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:12266-12270.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 12266-12270
    • Kim, D.H.1    Lee, J.W.2
  • 44
    • 33947617210 scopus 로고    scopus 로고
    • Enzymes in the conversion of cholesterol into bile acids
    • Norlin M., Wikvall K. Enzymes in the conversion of cholesterol into bile acids. Curr. Mol. Med. 2007, 7:199-218.
    • (2007) Curr. Mol. Med. , vol.7 , pp. 199-218
    • Norlin, M.1    Wikvall, K.2
  • 45
    • 0034728387 scopus 로고    scopus 로고
    • P53 regulates caveolin gene transcription, cell cholesterol, and growth by a novel mechanism
    • Bist A., et al. p53 regulates caveolin gene transcription, cell cholesterol, and growth by a novel mechanism. Biochemistry 2000, 39:1966-1972.
    • (2000) Biochemistry , vol.39 , pp. 1966-1972
    • Bist, A.1
  • 46
    • 52949090042 scopus 로고    scopus 로고
    • A mouse model of harlequin ichthyosis delineates a key role for Abca12 in lipid homeostasis
    • Smyth I., et al. A mouse model of harlequin ichthyosis delineates a key role for Abca12 in lipid homeostasis. PLoS Genet. 2008, 4:e1000192.
    • (2008) PLoS Genet. , vol.4
    • Smyth, I.1
  • 47
    • 77951854093 scopus 로고    scopus 로고
    • Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice
    • Ye D., et al. Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice. Biochem. Biophys. Res. Commun. 2010, 395:387-394.
    • (2010) Biochem. Biophys. Res. Commun. , vol.395 , pp. 387-394
    • Ye, D.1
  • 48
    • 79956319051 scopus 로고    scopus 로고
    • Progress and challenges in translating the biology of atherosclerosis
    • Libby P., et al. Progress and challenges in translating the biology of atherosclerosis. Nature 2011, 473:317-325.
    • (2011) Nature , vol.473 , pp. 317-325
    • Libby, P.1
  • 49
    • 0032978142 scopus 로고    scopus 로고
    • The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo
    • Guevara N.V., et al. The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo. Nat. Med. 1999, 5:335-339.
    • (1999) Nat. Med. , vol.5 , pp. 335-339
    • Guevara, N.V.1
  • 50
    • 0042190568 scopus 로고    scopus 로고
    • Macrophage-specific p53 expression plays a crucial role in atherosclerosis development and plaque remodeling
    • Merched A.J., et al. Macrophage-specific p53 expression plays a crucial role in atherosclerosis development and plaque remodeling. Arterioscler. Thromb. Vasc. Biol. 2003, 23:1608-1614.
    • (2003) Arterioscler. Thromb. Vasc. Biol. , vol.23 , pp. 1608-1614
    • Merched, A.J.1
  • 51
    • 70450285259 scopus 로고    scopus 로고
    • Macrophage p53 controls macrophage death in atherosclerotic lesions of apolipoprotein E deficient mice
    • Boesten L.S., et al. Macrophage p53 controls macrophage death in atherosclerotic lesions of apolipoprotein E deficient mice. Atherosclerosis 2009, 207:399-404.
    • (2009) Atherosclerosis , vol.207 , pp. 399-404
    • Boesten, L.S.1
  • 52
    • 0035957575 scopus 로고    scopus 로고
    • Macrophage p53 deficiency leads to enhanced atherosclerosis in APOE*3-Leiden transgenic mice
    • van Vlijmen B.J., et al. Macrophage p53 deficiency leads to enhanced atherosclerosis in APOE*3-Leiden transgenic mice. Circ. Res. 2001, 88:780-786.
    • (2001) Circ. Res. , vol.88 , pp. 780-786
    • van Vlijmen, B.J.1
  • 53
    • 16444370187 scopus 로고    scopus 로고
    • Endogenous p53 protects vascular smooth muscle cells from apoptosis and reduces atherosclerosis in ApoE knockout mice
    • Mercer J., et al. Endogenous p53 protects vascular smooth muscle cells from apoptosis and reduces atherosclerosis in ApoE knockout mice. Circ. Res. 2005, 96:667-674.
    • (2005) Circ. Res. , vol.96 , pp. 667-674
    • Mercer, J.1
  • 54
    • 0346732306 scopus 로고    scopus 로고
    • Phospholipid transfer protein interacts with and stabilizes ATP-binding cassette transporter A1 and enhances cholesterol efflux from cells
    • Oram J.F., et al. Phospholipid transfer protein interacts with and stabilizes ATP-binding cassette transporter A1 and enhances cholesterol efflux from cells. J. Biol. Chem. 2003, 278:52379-52385.
    • (2003) J. Biol. Chem. , vol.278 , pp. 52379-52385
    • Oram, J.F.1
  • 55
    • 38049136570 scopus 로고    scopus 로고
    • Low phospholipid transfer protein (PLTP) is a risk factor for peripheral atherosclerosis
    • Schgoer W., et al. Low phospholipid transfer protein (PLTP) is a risk factor for peripheral atherosclerosis. Atherosclerosis 2008, 196:219-226.
    • (2008) Atherosclerosis , vol.196 , pp. 219-226
    • Schgoer, W.1
  • 56
    • 0942266124 scopus 로고    scopus 로고
    • Serum phospholipid transfer protein mass as a possible protective factor for coronary heart diseases
    • Yatsuya H., et al. Serum phospholipid transfer protein mass as a possible protective factor for coronary heart diseases. Circ. J. 2004, 68:11-16.
    • (2004) Circ. J. , vol.68 , pp. 11-16
    • Yatsuya, H.1
  • 57
    • 38349149516 scopus 로고    scopus 로고
    • Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice
    • Christoffersen C., et al. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice. J. Biol. Chem. 2008, 283:1839-1847.
    • (2008) J. Biol. Chem. , vol.283 , pp. 1839-1847
    • Christoffersen, C.1
  • 58
    • 17644393111 scopus 로고    scopus 로고
    • Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis
    • Wolfrum C., et al. Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat. Med. 2005, 11:418-422.
    • (2005) Nat. Med. , vol.11 , pp. 418-422
    • Wolfrum, C.1
  • 59
    • 77955827519 scopus 로고    scopus 로고
    • The origins and evolution of the p53 family of genes
    • Belyi V.A., et al. The origins and evolution of the p53 family of genes. Cold Spring Harb. Perspect. Biol. 2010, 2:a001198.
    • (2010) Cold Spring Harb. Perspect. Biol. , vol.2
    • Belyi, V.A.1
  • 60
    • 79959517565 scopus 로고    scopus 로고
    • Human fatty liver disease: old questions and new insights
    • Cohen J.C., et al. Human fatty liver disease: old questions and new insights. Science 2011, 332:1519-1523.
    • (2011) Science , vol.332 , pp. 1519-1523
    • Cohen, J.C.1
  • 61
    • 2442656430 scopus 로고    scopus 로고
    • P53 involvement in the pathogenesis of fatty liver disease
    • Yahagi N., et al. p53 involvement in the pathogenesis of fatty liver disease. J. Biol. Chem. 2004, 279:20571-20575.
    • (2004) J. Biol. Chem. , vol.279 , pp. 20571-20575
    • Yahagi, N.1
  • 62
    • 80051517670 scopus 로고    scopus 로고
    • P53-Inducible DHRS3 is an endoplasmic reticulum protein associated with lipid droplet accumulation
    • Deisenroth C., et al. p53-Inducible DHRS3 is an endoplasmic reticulum protein associated with lipid droplet accumulation. J. Biol. Chem. 2011, 286:28343-28356.
    • (2011) J. Biol. Chem. , vol.286 , pp. 28343-28356
    • Deisenroth, C.1
  • 63
    • 77953601542 scopus 로고    scopus 로고
    • The retinal dehydrogenase/reductase retSDR1/DHRS3 gene is activated by p53 and p63 but not by mutants derived from tumors or EEC/ADULT malformation syndromes
    • Kirschner R.D., et al. The retinal dehydrogenase/reductase retSDR1/DHRS3 gene is activated by p53 and p63 but not by mutants derived from tumors or EEC/ADULT malformation syndromes. Cell Cycle 2010, 9:2177-2188.
    • (2010) Cell Cycle , vol.9 , pp. 2177-2188
    • Kirschner, R.D.1
  • 64
    • 65249100143 scopus 로고    scopus 로고
    • Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy
    • Shangary S., Wang S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu. Rev. Pharmacol. Toxicol. 2009, 49:223-241.
    • (2009) Annu. Rev. Pharmacol. Toxicol. , vol.49 , pp. 223-241
    • Shangary, S.1    Wang, S.2
  • 65
    • 3543114272 scopus 로고    scopus 로고
    • Biologically active sphingolipids in cancer pathogenesis and treatment
    • Ogretmen B., Hannun Y.A. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat. Rev. Cancer 2004, 4:604-616.
    • (2004) Nat. Rev. Cancer , vol.4 , pp. 604-616
    • Ogretmen, B.1    Hannun, Y.A.2
  • 66
  • 67
    • 43049156529 scopus 로고    scopus 로고
    • De novo N-palmitoylsphingosine synthesis is the major biochemical mechanism of ceramide accumulation following p53 up-regulation
    • Panjarian S., et al. De novo N-palmitoylsphingosine synthesis is the major biochemical mechanism of ceramide accumulation following p53 up-regulation. Prostaglandins Other Lipid Mediat. 2008, 86:41-48.
    • (2008) Prostaglandins Other Lipid Mediat. , vol.86 , pp. 41-48
    • Panjarian, S.1
  • 68
    • 0029948396 scopus 로고    scopus 로고
    • Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate
    • Cuvillier O., et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 1996, 381:800-803.
    • (1996) Nature , vol.381 , pp. 800-803
    • Cuvillier, O.1
  • 69
    • 0344875587 scopus 로고    scopus 로고
    • Sphingosine kinase type 1 induces G12/13-mediated stress fiber formation, yet promotes growth and survival independent of G protein-coupled receptors
    • Olivera A., et al. Sphingosine kinase type 1 induces G12/13-mediated stress fiber formation, yet promotes growth and survival independent of G protein-coupled receptors. J. Biol. Chem. 2003, 278:46452-46460.
    • (2003) J. Biol. Chem. , vol.278 , pp. 46452-46460
    • Olivera, A.1
  • 70
    • 0041378169 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells
    • Van Brocklyn J.R., et al. Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells. Cancer Lett. 2003, 199:53-60.
    • (2003) Cancer Lett. , vol.199 , pp. 53-60
    • Van Brocklyn, J.R.1
  • 71
    • 0034735916 scopus 로고    scopus 로고
    • An oncogenic role of sphingosine kinase
    • Xia P., et al. An oncogenic role of sphingosine kinase. Curr. Biol. 2000, 10:1527-1530.
    • (2000) Curr. Biol. , vol.10 , pp. 1527-1530
    • Xia, P.1
  • 72
    • 2442494074 scopus 로고    scopus 로고
    • Down-regulation of sphingosine kinase-1 by DNA damage: dependence on proteases and p53
    • Taha T.A., et al. Down-regulation of sphingosine kinase-1 by DNA damage: dependence on proteases and p53. J. Biol. Chem. 2004, 279:20546-20554.
    • (2004) J. Biol. Chem. , vol.279 , pp. 20546-20554
    • Taha, T.A.1
  • 73
    • 80053035284 scopus 로고    scopus 로고
    • AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function
    • Hardie D.G. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011, 25:1895-1908.
    • (2011) Genes Dev. , vol.25 , pp. 1895-1908
    • Hardie, D.G.1
  • 74
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki K., et al. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115:577-590.
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1
  • 75
    • 50049116472 scopus 로고    scopus 로고
    • SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
    • Porstmann T., et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008, 8:224-236.
    • (2008) Cell Metab. , vol.8 , pp. 224-236
    • Porstmann, T.1
  • 76
    • 77954310492 scopus 로고    scopus 로고
    • The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein
    • Feng Z., Levine A.J. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol. 2010, 20:427-434.
    • (2010) Trends Cell Biol. , vol.20 , pp. 427-434
    • Feng, Z.1    Levine, A.J.2
  • 77
    • 0035929359 scopus 로고    scopus 로고
    • Cell cycle regulation via p53 phosphorylation by a 5'-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line
    • Imamura K., et al. Cell cycle regulation via p53 phosphorylation by a 5'-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem. Biophys. Res. Commun. 2001, 287:562-567.
    • (2001) Biochem. Biophys. Res. Commun. , vol.287 , pp. 562-567
    • Imamura, K.1
  • 78
    • 20844449238 scopus 로고    scopus 로고
    • AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
    • Jones R.G., et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 2005, 18:283-293.
    • (2005) Mol. Cell , vol.18 , pp. 283-293
    • Jones, R.G.1
  • 79
    • 34547114031 scopus 로고    scopus 로고
    • Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth
    • Buzzai M., et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007, 67:6745-6752.
    • (2007) Cancer Res. , vol.67 , pp. 6745-6752
    • Buzzai, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.