-
1
-
-
70349442548
-
The first 30 years of p53: growing ever more complex
-
Levine A.J., Oren M. The first 30 years of p53: growing ever more complex. Nat. Rev. Cancer 2009, 9:749-758.
-
(2009)
Nat. Rev. Cancer
, vol.9
, pp. 749-758
-
-
Levine, A.J.1
Oren, M.2
-
2
-
-
33745918951
-
TIGAR, a p53-inducible regulator of glycolysis and apoptosis
-
Bensaad K., et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006, 126:107-120.
-
(2006)
Cell
, vol.126
, pp. 107-120
-
-
Bensaad, K.1
-
3
-
-
77952212178
-
Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function
-
Hu W., et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7455-7460.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 7455-7460
-
-
Hu, W.1
-
4
-
-
43049139541
-
P53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation
-
Kawauchi K., et al. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat. Cell Biol. 2008, 10:611-618.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 611-618
-
-
Kawauchi, K.1
-
5
-
-
11244347171
-
Glycolytic enzymes can modulate cellular life span
-
Kondoh H., et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 2005, 65:177-185.
-
(2005)
Cancer Res.
, vol.65
, pp. 177-185
-
-
Kondoh, H.1
-
6
-
-
33745149291
-
P53 regulates mitochondrial respiration
-
Matoba S., et al. p53 regulates mitochondrial respiration. Science 2006, 312:1650-1653.
-
(2006)
Science
, vol.312
, pp. 1650-1653
-
-
Matoba, S.1
-
7
-
-
1942506067
-
The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression
-
Schwartzenberg-Bar-Yoseph F., et al. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 2004, 64:2627-2633.
-
(2004)
Cancer Res.
, vol.64
, pp. 2627-2633
-
-
Schwartzenberg-Bar-Yoseph, F.1
-
8
-
-
33751009381
-
Regulation of AIF expression by p53
-
Stambolsky P., et al. Regulation of AIF expression by p53. Cell Death Differ. 2006, 13:2140-2149.
-
(2006)
Cell Death Differ.
, vol.13
, pp. 2140-2149
-
-
Stambolsky, P.1
-
9
-
-
77952227625
-
Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species
-
Suzuki S., et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7461-7466.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 7461-7466
-
-
Suzuki, S.1
-
10
-
-
84858604270
-
Metabolic reprogramming: a cancer hallmark even warburg did not anticipate
-
Ward P.S., Thompson C.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012, 21:297-308.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
Thompson, C.B.2
-
11
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7:11-20.
-
(2008)
Cell Metab.
, vol.7
, pp. 11-20
-
-
DeBerardinis, R.J.1
-
12
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
-
14
-
-
0004026407
-
-
W.H. Freeman and Company, L.N. David, M. Cox (Eds.)
-
Lehninger Principles of Biochemistry 2004, W.H. Freeman and Company. L.N. David, M. Cox (Eds.).
-
(2004)
Lehninger Principles of Biochemistry
-
-
-
15
-
-
70449093664
-
GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress
-
Ide T., et al. GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress. Mol. Cell 2009, 36:379-392.
-
(2009)
Mol. Cell
, vol.36
, pp. 379-392
-
-
Ide, T.1
-
16
-
-
80555135898
-
ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress
-
Assaily W., et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol. Cell 2011, 44:491-501.
-
(2011)
Mol. Cell
, vol.44
, pp. 491-501
-
-
Assaily, W.1
-
17
-
-
33747853190
-
Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway
-
Finck B.N., et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab. 2006, 4:199-210.
-
(2006)
Cell Metab.
, vol.4
, pp. 199-210
-
-
Finck, B.N.1
-
18
-
-
81355153987
-
PGC-1alpha, a key modulator of p53, promotes cell survival upon metabolic stress
-
Sen N., et al. PGC-1alpha, a key modulator of p53, promotes cell survival upon metabolic stress. Mol. Cell 2011, 44:621-634.
-
(2011)
Mol. Cell
, vol.44
, pp. 621-634
-
-
Sen, N.1
-
19
-
-
79953186142
-
PGC-1 coactivators in the control of energy metabolism
-
Liu C., Lin J.D. PGC-1 coactivators in the control of energy metabolism. Acta Biochim. Biophys. Sin. (Shanghai) 2011, 43:248-257.
-
(2011)
Acta Biochim. Biophys. Sin. (Shanghai)
, vol.43
, pp. 248-257
-
-
Liu, C.1
Lin, J.D.2
-
20
-
-
84857372561
-
P53, a novel regulator of lipid metabolism pathways
-
Goldstein I., et al. p53, a novel regulator of lipid metabolism pathways. J. Hepatol. 2012, 56:656-662.
-
(2012)
J. Hepatol.
, vol.56
, pp. 656-662
-
-
Goldstein, I.1
-
21
-
-
79956326256
-
Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress
-
Zaugg K., et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 2011, 25:1041-1051.
-
(2011)
Genes Dev.
, vol.25
, pp. 1041-1051
-
-
Zaugg, K.1
-
22
-
-
10644256309
-
Structure and function of carnitine acyltransferases
-
Jogl G., et al. Structure and function of carnitine acyltransferases. Ann. N. Y. Acad. Sci. 2004, 1033:17-29.
-
(2004)
Ann. N. Y. Acad. Sci.
, vol.1033
, pp. 17-29
-
-
Jogl, G.1
-
23
-
-
44249098959
-
Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases
-
Hardwick J.P. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases. Biochem. Pharmacol. 2008, 75:2263-2275.
-
(2008)
Biochem. Pharmacol.
, vol.75
, pp. 2263-2275
-
-
Hardwick, J.P.1
-
24
-
-
79952280229
-
P53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase
-
Jiang P., et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 2011, 13:310-316.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 310-316
-
-
Jiang, P.1
-
25
-
-
0038491561
-
P53 Activation in adipocytes of obese mice
-
Yahagi N., et al. p53 Activation in adipocytes of obese mice. J. Biol. Chem. 2003, 278:25395-25400.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 25395-25400
-
-
Yahagi, N.1
-
26
-
-
67449097415
-
Guardian of corpulence: a hypothesis on p53 signaling in the fat cell
-
Bazuine M., et al. Guardian of corpulence: a hypothesis on p53 signaling in the fat cell. Clin. Lipidol. 2009, 4:231-243.
-
(2009)
Clin. Lipidol.
, vol.4
, pp. 231-243
-
-
Bazuine, M.1
-
27
-
-
77956280751
-
P53 is balancing development, differentiation and de-differentiation to assure cancer prevention
-
Molchadsky A., et al. p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis 2010, 31:1501-1508.
-
(2010)
Carcinogenesis
, vol.31
, pp. 1501-1508
-
-
Molchadsky, A.1
-
28
-
-
0012249041
-
Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro
-
Medes G., et al. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res. 1953, 13:27-29.
-
(1953)
Cancer Res.
, vol.13
, pp. 27-29
-
-
Medes, G.1
-
29
-
-
33746291023
-
Increased lipogenesis in cancer cells: new players, novel targets
-
Swinnen J.V., et al. Increased lipogenesis in cancer cells: new players, novel targets. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9:358-365.
-
(2006)
Curr. Opin. Clin. Nutr. Metab. Care
, vol.9
, pp. 358-365
-
-
Swinnen, J.V.1
-
30
-
-
84861973567
-
Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence
-
Li T., et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 2012, 149:1269-1283.
-
(2012)
Cell
, vol.149
, pp. 1269-1283
-
-
Li, T.1
-
31
-
-
70349443284
-
When mutants gain new powers: news from the mutant p53 field
-
Brosh R., Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat. Rev. Cancer 2009, 9:701-713.
-
(2009)
Nat. Rev. Cancer
, vol.9
, pp. 701-713
-
-
Brosh, R.1
Rotter, V.2
-
32
-
-
78650308849
-
Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies
-
Goldstein I., et al. Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies. Cancer Gene Ther. 2011, 18:2-11.
-
(2011)
Cancer Gene Ther.
, vol.18
, pp. 2-11
-
-
Goldstein, I.1
-
33
-
-
84862908644
-
Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway
-
Freed-Pastor W.A., et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012, 148:244-258.
-
(2012)
Cell
, vol.148
, pp. 244-258
-
-
Freed-Pastor, W.A.1
-
34
-
-
77956989082
-
Dysregulation of the mevalonate pathway promotes transformation
-
Clendening J.W., et al. Dysregulation of the mevalonate pathway promotes transformation. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:15051-15056.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 15051-15056
-
-
Clendening, J.W.1
-
35
-
-
34047098778
-
Simvastatin induces apoptosis in human breast cancer cells: p53 and estrogen receptor independent pathway requiring signalling through JNK
-
Koyuturk M., et al. Simvastatin induces apoptosis in human breast cancer cells: p53 and estrogen receptor independent pathway requiring signalling through JNK. Cancer Lett. 2007, 250:220-228.
-
(2007)
Cancer Lett.
, vol.250
, pp. 220-228
-
-
Koyuturk, M.1
-
37
-
-
84858796689
-
Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR
-
Calkin A.C., Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 2012, 13:213-224.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 213-224
-
-
Calkin, A.C.1
Tontonoz, P.2
-
38
-
-
77957009531
-
ApoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53
-
Ashur-Fabian O., et al. apoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53. Cell Cycle 2010, 9:3761-3770.
-
(2010)
Cell Cycle
, vol.9
, pp. 3761-3770
-
-
Ashur-Fabian, O.1
-
39
-
-
79955928267
-
Role of phospholipid transfer protein in high-density lipoprotein-mediated reverse cholesterol transport
-
Yazdanyar A., et al. Role of phospholipid transfer protein in high-density lipoprotein-mediated reverse cholesterol transport. Curr. Atheroscler. Rep. 2011, 13:242-248.
-
(2011)
Curr. Atheroscler. Rep.
, vol.13
, pp. 242-248
-
-
Yazdanyar, A.1
-
40
-
-
3042692735
-
Carboxyl ester lipase cofractionates with scavenger receptor BI in hepatocyte lipid rafts and enhances selective uptake and hydrolysis of cholesteryl esters from HDL3
-
Camarota L.M., et al. Carboxyl ester lipase cofractionates with scavenger receptor BI in hepatocyte lipid rafts and enhances selective uptake and hydrolysis of cholesteryl esters from HDL3. J. Biol. Chem. 2004, 279:27599-27606.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 27599-27606
-
-
Camarota, L.M.1
-
41
-
-
0029983998
-
Bile salt stimulated cholesterol esterase increases uptake of high density lipoprotein-associated cholesteryl esters by HepG2 cells
-
Li F., et al. Bile salt stimulated cholesterol esterase increases uptake of high density lipoprotein-associated cholesteryl esters by HepG2 cells. Biochemistry 1996, 35:6657-6663.
-
(1996)
Biochemistry
, vol.35
, pp. 6657-6663
-
-
Li, F.1
-
42
-
-
73749084730
-
Characteristics of apolipoprotein M and its relation to atherosclerosis and diabetes
-
Hu Y.W., et al. Characteristics of apolipoprotein M and its relation to atherosclerosis and diabetes. Biochim. Biophys. Acta 2010, 1801:100-105.
-
(2010)
Biochim. Biophys. Acta
, vol.1801
, pp. 100-105
-
-
Hu, Y.W.1
-
43
-
-
79961041330
-
Tumor suppressor p53 regulates bile acid homeostasis via small heterodimer partner
-
Kim D.H., Lee J.W. Tumor suppressor p53 regulates bile acid homeostasis via small heterodimer partner. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:12266-12270.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 12266-12270
-
-
Kim, D.H.1
Lee, J.W.2
-
44
-
-
33947617210
-
Enzymes in the conversion of cholesterol into bile acids
-
Norlin M., Wikvall K. Enzymes in the conversion of cholesterol into bile acids. Curr. Mol. Med. 2007, 7:199-218.
-
(2007)
Curr. Mol. Med.
, vol.7
, pp. 199-218
-
-
Norlin, M.1
Wikvall, K.2
-
45
-
-
0034728387
-
P53 regulates caveolin gene transcription, cell cholesterol, and growth by a novel mechanism
-
Bist A., et al. p53 regulates caveolin gene transcription, cell cholesterol, and growth by a novel mechanism. Biochemistry 2000, 39:1966-1972.
-
(2000)
Biochemistry
, vol.39
, pp. 1966-1972
-
-
Bist, A.1
-
46
-
-
52949090042
-
A mouse model of harlequin ichthyosis delineates a key role for Abca12 in lipid homeostasis
-
Smyth I., et al. A mouse model of harlequin ichthyosis delineates a key role for Abca12 in lipid homeostasis. PLoS Genet. 2008, 4:e1000192.
-
(2008)
PLoS Genet.
, vol.4
-
-
Smyth, I.1
-
47
-
-
77951854093
-
Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice
-
Ye D., et al. Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice. Biochem. Biophys. Res. Commun. 2010, 395:387-394.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.395
, pp. 387-394
-
-
Ye, D.1
-
48
-
-
79956319051
-
Progress and challenges in translating the biology of atherosclerosis
-
Libby P., et al. Progress and challenges in translating the biology of atherosclerosis. Nature 2011, 473:317-325.
-
(2011)
Nature
, vol.473
, pp. 317-325
-
-
Libby, P.1
-
49
-
-
0032978142
-
The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo
-
Guevara N.V., et al. The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo. Nat. Med. 1999, 5:335-339.
-
(1999)
Nat. Med.
, vol.5
, pp. 335-339
-
-
Guevara, N.V.1
-
50
-
-
0042190568
-
Macrophage-specific p53 expression plays a crucial role in atherosclerosis development and plaque remodeling
-
Merched A.J., et al. Macrophage-specific p53 expression plays a crucial role in atherosclerosis development and plaque remodeling. Arterioscler. Thromb. Vasc. Biol. 2003, 23:1608-1614.
-
(2003)
Arterioscler. Thromb. Vasc. Biol.
, vol.23
, pp. 1608-1614
-
-
Merched, A.J.1
-
51
-
-
70450285259
-
Macrophage p53 controls macrophage death in atherosclerotic lesions of apolipoprotein E deficient mice
-
Boesten L.S., et al. Macrophage p53 controls macrophage death in atherosclerotic lesions of apolipoprotein E deficient mice. Atherosclerosis 2009, 207:399-404.
-
(2009)
Atherosclerosis
, vol.207
, pp. 399-404
-
-
Boesten, L.S.1
-
52
-
-
0035957575
-
Macrophage p53 deficiency leads to enhanced atherosclerosis in APOE*3-Leiden transgenic mice
-
van Vlijmen B.J., et al. Macrophage p53 deficiency leads to enhanced atherosclerosis in APOE*3-Leiden transgenic mice. Circ. Res. 2001, 88:780-786.
-
(2001)
Circ. Res.
, vol.88
, pp. 780-786
-
-
van Vlijmen, B.J.1
-
53
-
-
16444370187
-
Endogenous p53 protects vascular smooth muscle cells from apoptosis and reduces atherosclerosis in ApoE knockout mice
-
Mercer J., et al. Endogenous p53 protects vascular smooth muscle cells from apoptosis and reduces atherosclerosis in ApoE knockout mice. Circ. Res. 2005, 96:667-674.
-
(2005)
Circ. Res.
, vol.96
, pp. 667-674
-
-
Mercer, J.1
-
54
-
-
0346732306
-
Phospholipid transfer protein interacts with and stabilizes ATP-binding cassette transporter A1 and enhances cholesterol efflux from cells
-
Oram J.F., et al. Phospholipid transfer protein interacts with and stabilizes ATP-binding cassette transporter A1 and enhances cholesterol efflux from cells. J. Biol. Chem. 2003, 278:52379-52385.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 52379-52385
-
-
Oram, J.F.1
-
55
-
-
38049136570
-
Low phospholipid transfer protein (PLTP) is a risk factor for peripheral atherosclerosis
-
Schgoer W., et al. Low phospholipid transfer protein (PLTP) is a risk factor for peripheral atherosclerosis. Atherosclerosis 2008, 196:219-226.
-
(2008)
Atherosclerosis
, vol.196
, pp. 219-226
-
-
Schgoer, W.1
-
56
-
-
0942266124
-
Serum phospholipid transfer protein mass as a possible protective factor for coronary heart diseases
-
Yatsuya H., et al. Serum phospholipid transfer protein mass as a possible protective factor for coronary heart diseases. Circ. J. 2004, 68:11-16.
-
(2004)
Circ. J.
, vol.68
, pp. 11-16
-
-
Yatsuya, H.1
-
57
-
-
38349149516
-
Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice
-
Christoffersen C., et al. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice. J. Biol. Chem. 2008, 283:1839-1847.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 1839-1847
-
-
Christoffersen, C.1
-
58
-
-
17644393111
-
Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis
-
Wolfrum C., et al. Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat. Med. 2005, 11:418-422.
-
(2005)
Nat. Med.
, vol.11
, pp. 418-422
-
-
Wolfrum, C.1
-
59
-
-
77955827519
-
The origins and evolution of the p53 family of genes
-
Belyi V.A., et al. The origins and evolution of the p53 family of genes. Cold Spring Harb. Perspect. Biol. 2010, 2:a001198.
-
(2010)
Cold Spring Harb. Perspect. Biol.
, vol.2
-
-
Belyi, V.A.1
-
60
-
-
79959517565
-
Human fatty liver disease: old questions and new insights
-
Cohen J.C., et al. Human fatty liver disease: old questions and new insights. Science 2011, 332:1519-1523.
-
(2011)
Science
, vol.332
, pp. 1519-1523
-
-
Cohen, J.C.1
-
61
-
-
2442656430
-
P53 involvement in the pathogenesis of fatty liver disease
-
Yahagi N., et al. p53 involvement in the pathogenesis of fatty liver disease. J. Biol. Chem. 2004, 279:20571-20575.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 20571-20575
-
-
Yahagi, N.1
-
62
-
-
80051517670
-
P53-Inducible DHRS3 is an endoplasmic reticulum protein associated with lipid droplet accumulation
-
Deisenroth C., et al. p53-Inducible DHRS3 is an endoplasmic reticulum protein associated with lipid droplet accumulation. J. Biol. Chem. 2011, 286:28343-28356.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 28343-28356
-
-
Deisenroth, C.1
-
63
-
-
77953601542
-
The retinal dehydrogenase/reductase retSDR1/DHRS3 gene is activated by p53 and p63 but not by mutants derived from tumors or EEC/ADULT malformation syndromes
-
Kirschner R.D., et al. The retinal dehydrogenase/reductase retSDR1/DHRS3 gene is activated by p53 and p63 but not by mutants derived from tumors or EEC/ADULT malformation syndromes. Cell Cycle 2010, 9:2177-2188.
-
(2010)
Cell Cycle
, vol.9
, pp. 2177-2188
-
-
Kirschner, R.D.1
-
64
-
-
65249100143
-
Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy
-
Shangary S., Wang S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu. Rev. Pharmacol. Toxicol. 2009, 49:223-241.
-
(2009)
Annu. Rev. Pharmacol. Toxicol.
, vol.49
, pp. 223-241
-
-
Shangary, S.1
Wang, S.2
-
65
-
-
3543114272
-
Biologically active sphingolipids in cancer pathogenesis and treatment
-
Ogretmen B., Hannun Y.A. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat. Rev. Cancer 2004, 4:604-616.
-
(2004)
Nat. Rev. Cancer
, vol.4
, pp. 604-616
-
-
Ogretmen, B.1
Hannun, Y.A.2
-
67
-
-
43049156529
-
De novo N-palmitoylsphingosine synthesis is the major biochemical mechanism of ceramide accumulation following p53 up-regulation
-
Panjarian S., et al. De novo N-palmitoylsphingosine synthesis is the major biochemical mechanism of ceramide accumulation following p53 up-regulation. Prostaglandins Other Lipid Mediat. 2008, 86:41-48.
-
(2008)
Prostaglandins Other Lipid Mediat.
, vol.86
, pp. 41-48
-
-
Panjarian, S.1
-
68
-
-
0029948396
-
Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate
-
Cuvillier O., et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 1996, 381:800-803.
-
(1996)
Nature
, vol.381
, pp. 800-803
-
-
Cuvillier, O.1
-
69
-
-
0344875587
-
Sphingosine kinase type 1 induces G12/13-mediated stress fiber formation, yet promotes growth and survival independent of G protein-coupled receptors
-
Olivera A., et al. Sphingosine kinase type 1 induces G12/13-mediated stress fiber formation, yet promotes growth and survival independent of G protein-coupled receptors. J. Biol. Chem. 2003, 278:46452-46460.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 46452-46460
-
-
Olivera, A.1
-
70
-
-
0041378169
-
Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells
-
Van Brocklyn J.R., et al. Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells. Cancer Lett. 2003, 199:53-60.
-
(2003)
Cancer Lett.
, vol.199
, pp. 53-60
-
-
Van Brocklyn, J.R.1
-
71
-
-
0034735916
-
An oncogenic role of sphingosine kinase
-
Xia P., et al. An oncogenic role of sphingosine kinase. Curr. Biol. 2000, 10:1527-1530.
-
(2000)
Curr. Biol.
, vol.10
, pp. 1527-1530
-
-
Xia, P.1
-
72
-
-
2442494074
-
Down-regulation of sphingosine kinase-1 by DNA damage: dependence on proteases and p53
-
Taha T.A., et al. Down-regulation of sphingosine kinase-1 by DNA damage: dependence on proteases and p53. J. Biol. Chem. 2004, 279:20546-20554.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 20546-20554
-
-
Taha, T.A.1
-
73
-
-
80053035284
-
AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function
-
Hardie D.G. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011, 25:1895-1908.
-
(2011)
Genes Dev.
, vol.25
, pp. 1895-1908
-
-
Hardie, D.G.1
-
74
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K., et al. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115:577-590.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
-
75
-
-
50049116472
-
SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
-
Porstmann T., et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008, 8:224-236.
-
(2008)
Cell Metab.
, vol.8
, pp. 224-236
-
-
Porstmann, T.1
-
76
-
-
77954310492
-
The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein
-
Feng Z., Levine A.J. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol. 2010, 20:427-434.
-
(2010)
Trends Cell Biol.
, vol.20
, pp. 427-434
-
-
Feng, Z.1
Levine, A.J.2
-
77
-
-
0035929359
-
Cell cycle regulation via p53 phosphorylation by a 5'-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line
-
Imamura K., et al. Cell cycle regulation via p53 phosphorylation by a 5'-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem. Biophys. Res. Commun. 2001, 287:562-567.
-
(2001)
Biochem. Biophys. Res. Commun.
, vol.287
, pp. 562-567
-
-
Imamura, K.1
-
78
-
-
20844449238
-
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
-
Jones R.G., et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 2005, 18:283-293.
-
(2005)
Mol. Cell
, vol.18
, pp. 283-293
-
-
Jones, R.G.1
-
79
-
-
34547114031
-
Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth
-
Buzzai M., et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007, 67:6745-6752.
-
(2007)
Cancer Res.
, vol.67
, pp. 6745-6752
-
-
Buzzai, M.1
|