메뉴 건너뛰기




Volumn 1353, Issue 1, 2015, Pages 72-88

MicroRNAs in diabetic nephropathy: Functions, biomarkers, and therapeutic targets

Author keywords

Biomarkers; Diabetic nephropathy; MicroRNAs; Noncoding RNA; Signal transduction; Therapeutics; Transforming growth factor 1

Indexed keywords

BIOLOGICAL MARKER; BONE MORPHOGENETIC PROTEIN; COLLAGEN; COLLAGEN TYPE 4; DICER; GLUCOSE; HOMEODOMAIN INTERACTING PROTEIN KINASE 2; LOCKED NUCLEIC ACID; METHYL CPG BINDING PROTEIN 2; MICRORNA; MICRORNA 192; MICRORNA 200; MICRORNA 200B; MICRORNA 200C; MICRORNA 21; MICRORNA 214; MICRORNA 29A; NUCLEAR RNA; PHOSPHATIDYLINOSITOL 3 KINASE; PHOSPHATIDYLINOSITOL 3,4,5 TRISPHOSPHATE 3 PHOSPHATASE; PROTEIN; PROTEIN KINASE B; PROTEIN P53; RHO KINASE; RIBONUCLEASE; RNA INDUCED SILENCING COMPLEX; RNA POLYMERASE II; SCLEROPROTEIN; TRANSFORMING GROWTH FACTOR BETA; UPSTREAM STIMULATORY FACTOR;

EID: 84945444690     PISSN: 00778923     EISSN: 17496632     Source Type: Journal    
DOI: 10.1111/nyas.12758     Document Type: Article
Times cited : (144)

References (143)
  • 2
    • 17744374798 scopus 로고    scopus 로고
    • Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause?
    • Jones, C.A. et al. 2005. Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause? Kidney Int. 67: 1684-1691.
    • (2005) Kidney Int , vol.67 , pp. 1684-1691
    • Jones, C.A.1
  • 3
    • 0141468244 scopus 로고    scopus 로고
    • Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention
    • Sarnak, M.J. et al. 2003. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 108: 2154-2169.
    • (2003) Circulation , vol.108 , pp. 2154-2169
    • Sarnak, M.J.1
  • 4
    • 84855245399 scopus 로고    scopus 로고
    • Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes
    • de Boer, I.H. et al. 2011. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N. Engl. J. Med. 365: 2366-2376.
    • (2011) N. Engl. J. Med , vol.365 , pp. 2366-2376
    • de Boer, I.H.1
  • 5
    • 84891790939 scopus 로고    scopus 로고
    • Diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: advances and contributions
    • Nathan, D.M. et al. 2013. Diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: advances and contributions. Diabetes 62: 3976-3986.
    • (2013) Diabetes , vol.62 , pp. 3976-3986
    • Nathan, D.M.1
  • 6
    • 0036674992 scopus 로고    scopus 로고
    • Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes? U.K. Prospective Diabetes Study 61
    • Colagiuri, S., C.A. Cull & R.R. Holman . 2002. Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes? U.K. Prospective Diabetes Study 61. Diab. Care. 25: 1410-1417.
    • (2002) Diab. Care , vol.25 , pp. 1410-1417
    • Colagiuri, S.1    Cull, C.A.2    Holman, R.R.3
  • 7
    • 45149133036 scopus 로고    scopus 로고
    • Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes
    • Patel, A. et al. 2008. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358: 2560-2572.
    • (2008) N. Engl. J. Med , vol.358 , pp. 2560-2572
    • Patel, A.1
  • 8
    • 84918503918 scopus 로고    scopus 로고
    • Obesity and kidney disease: differential effects of obesity on adipose tissue and kidney inflammation and fibrosis
    • Decleves, A.E. & K. Sharma . 2015. Obesity and kidney disease: differential effects of obesity on adipose tissue and kidney inflammation and fibrosis. Curr. Opin. Nephrol. Hypertens. 24: 28-36.
    • (2015) Curr. Opin. Nephrol. Hypertens. , vol.24 , pp. 28-36
    • Decleves, A.E.1    Sharma, K.2
  • 9
    • 84921437510 scopus 로고    scopus 로고
    • Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial
    • The Look AHEAD Research Group. 2014. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diab. Endocrinol. 2: 801-809.
    • (2014) Lancet Diab. Endocrinol , vol.2 , pp. 801-809
  • 10
    • 0348226831 scopus 로고    scopus 로고
    • Diabetic nephropathy and transforming growth factor-β: transforming our view of glomerulosclerosis and fibrosis build-up
    • Chen, S., B. Jim & F.N. Ziyadeh . 2003. Diabetic nephropathy and transforming growth factor-β: transforming our view of glomerulosclerosis and fibrosis build-up. Semin. Nephrol. 23: 532-543.
    • (2003) Semin. Nephrol , vol.23 , pp. 532-543
    • Chen, S.1    Jim, B.2    Ziyadeh, F.N.3
  • 11
    • 48249127629 scopus 로고    scopus 로고
    • From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy
    • Qian, Y. et al. 2008. From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes 57: 1439-1445.
    • (2008) Diabetes , vol.57 , pp. 1439-1445
    • Qian, Y.1
  • 12
    • 79751477368 scopus 로고    scopus 로고
    • A glimpse of various pathogenetic mechanisms of diabetic nephropathy
    • Kanwar, Y.S. et al. 2011. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Ann. Rev. Pathol. 6: 395-423.
    • (2011) Ann. Rev. Pathol , vol.6 , pp. 395-423
    • Kanwar, Y.S.1
  • 13
    • 84906939393 scopus 로고    scopus 로고
    • Diabetic nephropathy-emerging epigenetic mechanisms
    • Kato, M. & R. Natarajan . 2014. Diabetic nephropathy-emerging epigenetic mechanisms. Nat. Rev. Nephrol. 10: 517-530.
    • (2014) Nat. Rev. Nephrol. , vol.10 , pp. 517-530
    • Kato, M.1    Natarajan, R.2
  • 14
    • 0031029379 scopus 로고    scopus 로고
    • Podocyte loss and progressive glomerular injury in type II diabetes
    • Pagtalunan, M.E. et al. 1997. Podocyte loss and progressive glomerular injury in type II diabetes. J. Clin. Invest. 99: 342-348.
    • (1997) J. Clin. Invest , vol.99 , pp. 342-348
    • Pagtalunan, M.E.1
  • 15
    • 0032710966 scopus 로고    scopus 로고
    • Podocyte number predicts long-term urinary albumin excretion in Pima Indians with type II diabetes and microalbuminuria
    • Meyer, T.W., P.H. Bennett & R.G. Nelson . 1999. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with type II diabetes and microalbuminuria. Diabetologia 42: 1341-1344.
    • (1999) Diabetologia , vol.42 , pp. 1341-1344
    • Meyer, T.W.1    Bennett, P.H.2    Nelson, R.G.3
  • 16
    • 84885183542 scopus 로고    scopus 로고
    • MicroRNAs: potential mediators and biomarkers of diabetic complications
    • Kato, M., N.E. Castro & R. Natarajan . 2013. MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic. Biol. Med. 64: 85-94.
    • (2013) Free Radic. Biol. Med. , vol.64 , pp. 85-94
    • Kato, M.1    Castro, N.E.2    Natarajan, R.3
  • 17
    • 84903532662 scopus 로고    scopus 로고
    • Proteostasis in endoplasmic reticulum-new mechanisms in kidney disease
    • Inagi, R., Y. Ishimoto & M. Nangaku . 2014. Proteostasis in endoplasmic reticulum-new mechanisms in kidney disease. Nat. Rev. Nephrol. 10: 369-378.
    • (2014) Nat. Rev. Nephrol. , vol.10 , pp. 369-378
    • Inagi, R.1    Ishimoto, Y.2    Nangaku, M.3
  • 18
    • 0029076281 scopus 로고
    • Hyperglycemia and diabetic kidney disease: the case for transforming growth factor-β as a key mediator
    • Sharma, K. & F.N. Ziyadeh . 1995. Hyperglycemia and diabetic kidney disease: the case for transforming growth factor-β as a key mediator. Diabetes 44: 1139-1146.
    • (1995) Diabetes , vol.44 , pp. 1139-1146
    • Sharma, K.1    Ziyadeh, F.N.2
  • 19
    • 0027479442 scopus 로고
    • Expression of transforming growth factor β is elevated in human and experimental diabetic nephropathy
    • Yamamoto, T. et al. 1993. Expression of transforming growth factor β is elevated in human and experimental diabetic nephropathy. Proc. Natl. Acad. Sci. USA 90: 1814-1818.
    • (1993) Proc. Natl. Acad. Sci. USA , vol.90 , pp. 1814-1818
    • Yamamoto, T.1
  • 21
    • 0035856980 scopus 로고    scopus 로고
    • Biochemistry and molecular cell biology of diabetic complications
    • Brownlee, M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813-820.
    • (2001) Nature , vol.414 , pp. 813-820
    • Brownlee, M.1
  • 22
    • 77956644609 scopus 로고    scopus 로고
    • The RAAS in the pathogenesis and treatment of diabetic nephropathy
    • Ruggenenti, P., P. Cravedi & G. Remuzzi . 2010. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat. Rev. Nephrol. 6: 319-330.
    • (2010) Nat. Rev. Nephrol. , vol.6 , pp. 319-330
    • Ruggenenti, P.1    Cravedi, P.2    Remuzzi, G.3
  • 23
    • 0028954214 scopus 로고
    • Role of platelet-derived growth factor in renal injury
    • Abboud, H.E. 1995. Role of platelet-derived growth factor in renal injury. Ann. Rev. Physiol. 57: 297-309.
    • (1995) Ann. Rev. Physiol. , vol.57 , pp. 297-309
    • Abboud, H.E.1
  • 24
    • 21344452081 scopus 로고    scopus 로고
    • Role of upstream stimulatory factors in regulation of renal transforming growth factor-β1
    • Zhu, Y. et al. 2005. Role of upstream stimulatory factors in regulation of renal transforming growth factor-β1. Diabetes 54: 1976-1984.
    • (2005) Diabetes , vol.54 , pp. 1976-1984
    • Zhu, Y.1
  • 25
    • 80052248898 scopus 로고    scopus 로고
    • A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells
    • Kato, M. et al. 2011. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int. 80: 358-368.
    • (2011) Kidney Int , vol.80 , pp. 358-368
    • Kato, M.1
  • 26
    • 0029786212 scopus 로고    scopus 로고
    • Receptor-associated Mad homologues synergize as effectors of the TGF-β response
    • Zhang, Y. et al. 1996. Receptor-associated Mad homologues synergize as effectors of the TGF-β response. Nature 383: 168-172.
    • (1996) Nature , vol.383 , pp. 168-172
    • Zhang, Y.1
  • 27
    • 0026560454 scopus 로고
    • TGF-β: regulation of extracellular matrix
    • Roberts, A.B., B.K. McCune & M.B. Sporn . 1992. TGF-β: regulation of extracellular matrix. Kidney Int. 41: 557-559.
    • (1992) Kidney Int , vol.41 , pp. 557-559
    • Roberts, A.B.1    McCune, B.K.2    Sporn, M.B.3
  • 28
    • 0035831503 scopus 로고    scopus 로고
    • Sp1 and Smad proteins cooperate to mediate transforming growth factor-β 1-induced alpha 2(I) collagen expression in human glomerular mesangial cells
    • Poncelet, A.C. & H.W. Schnaper . 2001. Sp1 and Smad proteins cooperate to mediate transforming growth factor-β 1-induced alpha 2(I) collagen expression in human glomerular mesangial cells. J. Biol. Chem. 276: 6983-6992.
    • (2001) J. Biol. Chem , vol.276 , pp. 6983-6992
    • Poncelet, A.C.1    Schnaper, H.W.2
  • 29
    • 0037513430 scopus 로고    scopus 로고
    • Role of Smad4 on TGF-β-induced extracellular matrix stimulation in mesangial cells
    • Tsuchida, K. et al. 2003. Role of Smad4 on TGF-β-induced extracellular matrix stimulation in mesangial cells. Kidney Int. 63: 2000-2009.
    • (2003) Kidney Int , vol.63 , pp. 2000-2009
    • Tsuchida, K.1
  • 30
    • 20544459331 scopus 로고    scopus 로고
    • Novel interactions between TGF-β1 actions and the 12/15-lipoxygenase pathway in mesangial cells
    • Kim, Y.S. et al. 2005. Novel interactions between TGF-β1 actions and the 12/15-lipoxygenase pathway in mesangial cells. J. Am. Soc. Nephrol. 16: 352-362.
    • (2005) J. Am. Soc. Nephrol , vol.16 , pp. 352-362
    • Kim, Y.S.1
  • 31
    • 0034991582 scopus 로고    scopus 로고
    • Stimulation of pro-alpha(1)(I) collagen by TGF-β(1) in mesangial cells: role of the p38 MAPK pathway
    • Chin, B.Y. et al. 2001. Stimulation of pro-alpha(1)(I) collagen by TGF-β(1) in mesangial cells: role of the p38 MAPK pathway. Am. J. Physiol. Renal Physiol. 280: F495-504.
    • (2001) Am. J. Physiol. Renal Physiol , vol.280 , pp. F495-F504
    • Chin, B.Y.1
  • 32
    • 0032589970 scopus 로고    scopus 로고
    • TGF-β1 activates MAP kinase in human mesangial cells: a possible role in collagen expression
    • Hayashida, T. et al. 1999. TGF-β1 activates MAP kinase in human mesangial cells: a possible role in collagen expression. Kidney Int. 56: 1710-1720.
    • (1999) Kidney Int , vol.56 , pp. 1710-1720
    • Hayashida, T.1
  • 33
    • 33845262863 scopus 로고    scopus 로고
    • Role of the Akt/FoxO3a pathway in TGF-β1-mediated mesangial cell dysfunction: a novel mechanism related to diabetic kidney disease
    • Kato, M. et al. 2006. Role of the Akt/FoxO3a pathway in TGF-β1-mediated mesangial cell dysfunction: a novel mechanism related to diabetic kidney disease. J. Am. Soc. Nephrol. 17: 3325-3335.
    • (2006) J. Am. Soc. Nephrol , vol.17 , pp. 3325-3335
    • Kato, M.1
  • 34
    • 33747043113 scopus 로고    scopus 로고
    • Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN
    • Mahimainathan, L. et al. 2006. Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN. Diabetes 55: 2115-2125.
    • (2006) Diabetes , vol.55 , pp. 2115-2125
    • Mahimainathan, L.1
  • 35
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: target recognition and regulatory functions
    • Bartel, D.P. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215-233.
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 36
    • 38349169664 scopus 로고    scopus 로고
    • Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?
    • Filipowicz, W., S.N. Bhattacharyya & N. Sonenberg . 2008. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9: 102-114.
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 102-114
    • Filipowicz, W.1    Bhattacharyya, S.N.2    Sonenberg, N.3
  • 37
    • 18344369543 scopus 로고    scopus 로고
    • MicroRNA biogenesis: coordinated cropping and dicing
    • Kim, V.N. 2005. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. 6: 376-385.
    • (2005) Nat. Rev , vol.6 , pp. 376-385
    • Kim, V.N.1
  • 38
    • 77955484492 scopus 로고    scopus 로고
    • Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha
    • Davis, B.N. et al. 2010. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol. Cell 39: 373-384.
    • (2010) Mol. Cell , vol.39 , pp. 373-384
    • Davis, B.N.1
  • 39
    • 46449128469 scopus 로고    scopus 로고
    • SMAD proteins control DROSHA-mediated microRNA maturation
    • Davis, B.N. et al. 2008. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454: 56-61.
    • (2008) Nature , vol.454 , pp. 56-61
    • Davis, B.N.1
  • 40
    • 67749143728 scopus 로고    scopus 로고
    • Modulation of microRNA processing by p53
    • Suzuki, H.I. et al. 2009. Modulation of microRNA processing by p53. Nature 460: 529-533.
    • (2009) Nature , vol.460 , pp. 529-533
    • Suzuki, H.I.1
  • 41
    • 20044395613 scopus 로고    scopus 로고
    • RAS is regulated by the let-7 microRNA family
    • Johnson, S.M. et al. 2005. RAS is regulated by the let-7 microRNA family. Cell 120: 635-647.
    • (2005) Cell , vol.120 , pp. 635-647
    • Johnson, S.M.1
  • 42
    • 35449003175 scopus 로고    scopus 로고
    • MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells
    • Sampson, V.B. et al. 2007. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 67: 9762-9770.
    • (2007) Cancer Res , vol.67 , pp. 9762-9770
    • Sampson, V.B.1
  • 43
    • 33947431322 scopus 로고    scopus 로고
    • Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation
    • Mayr, C., M.T. Hemann & D.P. Bartel . 2007. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315: 1576-1579.
    • (2007) Science , vol.315 , pp. 1576-1579
    • Mayr, C.1    Hemann, M.T.2    Bartel, D.P.3
  • 44
    • 70349820140 scopus 로고    scopus 로고
    • Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells
    • Hagan, J.P., E. Piskounova & R.I. Gregory . 2009. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 16: 1021-1025.
    • (2009) Nat. Struct. Mol. Biol , vol.16 , pp. 1021-1025
    • Hagan, J.P.1    Piskounova, E.2    Gregory, R.I.3
  • 45
    • 53949088050 scopus 로고    scopus 로고
    • Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA
    • Heo, I. et al. 2008. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell 32: 276-284.
    • (2008) Mol. Cell , vol.32 , pp. 276-284
    • Heo, I.1
  • 46
    • 81855183636 scopus 로고    scopus 로고
    • Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms
    • Piskounova, E. et al. 2011. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147: 1066-1079.
    • (2011) Cell , vol.147 , pp. 1066-1079
    • Piskounova, E.1
  • 47
    • 53549133101 scopus 로고    scopus 로고
    • The perfect storm of tiny RNAs
    • Ruvkun, G. 2008. The perfect storm of tiny RNAs. Nat. Med. 14: 1041-1045.
    • (2008) Nat. Med , vol.14 , pp. 1041-1045
    • Ruvkun, G.1
  • 48
    • 84895740923 scopus 로고    scopus 로고
    • MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex
    • Cheng, T.L. et al. 2014. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev. Cell 28: 547-560.
    • (2014) Dev. Cell , vol.28 , pp. 547-560
    • Cheng, T.L.1
  • 49
    • 84895761370 scopus 로고    scopus 로고
    • MeCP2 caught moonlighting as a suppressor of microRNA processing
    • Woo, J.S. & V.N. Kim . 2014. MeCP2 caught moonlighting as a suppressor of microRNA processing. Dev. Cell 28: 477-478.
    • (2014) Dev. Cell , vol.28 , pp. 477-478
    • Woo, J.S.1    Kim, V.N.2
  • 50
    • 73849097618 scopus 로고    scopus 로고
    • Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis
    • Bracaglia, G. et al. 2009. Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis. EMBO Rep. 10: 1327-1333.
    • (2009) EMBO Rep , vol.10 , pp. 1327-1333
    • Bracaglia, G.1
  • 51
    • 84859589441 scopus 로고    scopus 로고
    • A systems approach identifies HIPK2 as a key regulator of kidney fibrosis
    • Jin, Y. et al. 2012. A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nat. Med. 18: 580-588.
    • (2012) Nat. Med , vol.18 , pp. 580-588
    • Jin, Y.1
  • 52
    • 80555127350 scopus 로고    scopus 로고
    • MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation
    • Suzuki, H.I. et al. 2011. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol. Cell 44: 424-436.
    • (2011) Mol. Cell , vol.44 , pp. 424-436
    • Suzuki, H.I.1
  • 53
    • 84876892072 scopus 로고    scopus 로고
    • ADAR1 forms a complex with dicer to promote microRNA processing and RNA-induced gene silencing
    • Ota, H. et al. 2013. ADAR1 forms a complex with dicer to promote microRNA processing and RNA-induced gene silencing. Cell 153: 575-589.
    • (2013) Cell , vol.153 , pp. 575-589
    • Ota, H.1
  • 54
    • 84867553154 scopus 로고    scopus 로고
    • Human RNA methyltransferase BCDIN3D regulates microRNA processing
    • Xhemalce, B., S.C. Robson & T. Kouzarides . 2012. Human RNA methyltransferase BCDIN3D regulates microRNA processing. Cell 151: 278-288.
    • (2012) Cell , vol.151 , pp. 278-288
    • Xhemalce, B.1    Robson, S.C.2    Kouzarides, T.3
  • 55
    • 77953183812 scopus 로고    scopus 로고
    • A dicer-independent miRNA biogenesis pathway that requires Ago catalysis
    • Cheloufi, S. et al. 2010. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465: 584-589.
    • (2010) Nature , vol.465 , pp. 584-589
    • Cheloufi, S.1
  • 56
    • 84870601009 scopus 로고    scopus 로고
    • Selective autophagy degrades DICER and AGO2 and regulates miRNA activity
    • Gibbings, D. et al. 2012. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat. Cell Biol. 14: 1314-1321.
    • (2012) Nat. Cell Biol , vol.14 , pp. 1314-1321
    • Gibbings, D.1
  • 57
    • 84868525253 scopus 로고    scopus 로고
    • IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2
    • Upton, J.P. et al. 2012. IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 338: 818-822.
    • (2012) Science , vol.338 , pp. 818-822
    • Upton, J.P.1
  • 58
    • 55749103053 scopus 로고    scopus 로고
    • Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease
    • Harvey, S.J. et al. 2008. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J. Am. Soc. Nephrol. 19: 2150-2158.
    • (2008) J. Am. Soc. Nephrol , vol.19 , pp. 2150-2158
    • Harvey, S.J.1
  • 59
    • 55749104549 scopus 로고    scopus 로고
    • Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury
    • Ho, J. et al. 2008. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J. Am. Soc. Nephrol. 19: 2069-2075.
    • (2008) J. Am. Soc. Nephrol , vol.19 , pp. 2069-2075
    • Ho, J.1
  • 60
    • 79957743788 scopus 로고    scopus 로고
    • The pro-apoptotic protein Bim is a microRNA target in kidney progenitors
    • Ho, J. et al. 2011. The pro-apoptotic protein Bim is a microRNA target in kidney progenitors. J. Am. Soc. Nephrol. 22: 1053-1063.
    • (2011) J. Am. Soc. Nephrol , vol.22 , pp. 1053-1063
    • Ho, J.1
  • 61
    • 55749112141 scopus 로고    scopus 로고
    • Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis
    • Shi, S. et al. 2008. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am. Soc. Nephrol. 19: 2159-2169.
    • (2008) J Am. Soc. Nephrol , vol.19 , pp. 2159-2169
    • Shi, S.1
  • 62
    • 78651387406 scopus 로고    scopus 로고
    • Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney
    • Nagalakshmi, V.K. et al. 2011. Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int. 79: 317-330.
    • (2011) Kidney Int , vol.79 , pp. 317-330
    • Nagalakshmi, V.K.1
  • 63
    • 80052829130 scopus 로고    scopus 로고
    • The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy
    • Zhdanova, O. et al. 2011. The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy. Kidney Int. 80: 719-730.
    • (2011) Kidney Int , vol.80 , pp. 719-730
    • Zhdanova, O.1
  • 64
    • 34147153781 scopus 로고    scopus 로고
    • Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2
    • Zhao, Y. et al. 2007. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129: 303-317.
    • (2007) Cell , vol.129 , pp. 303-317
    • Zhao, Y.1
  • 65
    • 41149147013 scopus 로고    scopus 로고
    • Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure
    • Chen, J.F. et al. 2008. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc. Natl. Acad. Sci. USA 105: 2111-2116.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 2111-2116
    • Chen, J.F.1
  • 66
    • 16344383409 scopus 로고    scopus 로고
    • Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs
    • Sun, Y. et al. 2004. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 32: e188.
    • (2004) Nucleic Acids Res , vol.32 , pp. e188
    • Sun, Y.1
  • 67
    • 40449104335 scopus 로고    scopus 로고
    • MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis
    • Tian, Z. et al. 2008. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res. 18: 404-411.
    • (2008) Genome Res , vol.18 , pp. 404-411
    • Tian, Z.1
  • 68
    • 33847682663 scopus 로고    scopus 로고
    • MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors
    • Kato, M. et al. 2007. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc. Natl. Acad. Sci. USA 104: 3432-3437.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 3432-3437
    • Kato, M.1
  • 69
    • 67650085171 scopus 로고    scopus 로고
    • TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN
    • Kato, M. et al. 2009. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 11: 881-889.
    • (2009) Nat. Cell Biol , vol.11 , pp. 881-889
    • Kato, M.1
  • 70
    • 77958583070 scopus 로고    scopus 로고
    • Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-β-induced collagen expression in kidney cells
    • Kato, M. et al. 2010. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-β-induced collagen expression in kidney cells. J. Biol. Chem. 285: 34004-34015.
    • (2010) J. Biol. Chem , vol.285 , pp. 34004-34015
    • Kato, M.1
  • 71
    • 84881239289 scopus 로고    scopus 로고
    • FOG2 protein down-regulation by transforming growth factor-β1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy
    • Park, J.T. et al. 2013. FOG2 protein down-regulation by transforming growth factor-β1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy. J. Biol. Chem. 288: 22469-22480.
    • (2013) J. Biol. Chem , vol.288 , pp. 22469-22480
    • Park, J.T.1
  • 72
    • 84884793994 scopus 로고    scopus 로고
    • Transforming growth factor-β-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy
    • Deshpande, S.D. et al. 2013. Transforming growth factor-β-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes 62: 3151-3162.
    • (2013) Diabetes , vol.62 , pp. 3151-3162
    • Deshpande, S.D.1
  • 73
    • 84857979740 scopus 로고    scopus 로고
    • Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy
    • Putta, S. et al. 2012. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J. Am. Soc. Nephrol. 23: 458-469.
    • (2012) J. Am. Soc. Nephrol , vol.23 , pp. 458-469
    • Putta, S.1
  • 74
    • 84864139464 scopus 로고    scopus 로고
    • MicroRNA circuits in transforming growth factor-β actions and diabetic nephropathy
    • Kato, M. & R. Natarajan . 2012. MicroRNA circuits in transforming growth factor-β actions and diabetic nephropathy. Semin. Nephrol. 32: 253-260.
    • (2012) Semin. Nephrol. , vol.32 , pp. 253-260
    • Kato, M.1    Natarajan, R.2
  • 75
    • 84878912696 scopus 로고    scopus 로고
    • TGF-β induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy
    • Kato, M. et al. 2013. TGF-β induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Sci. Signal. 6: ra43.
    • (2013) Sci. Signal , vol.6 , pp. ra43
    • Kato, M.1
  • 76
    • 77955611511 scopus 로고    scopus 로고
    • miR-192 mediates TGF-β/Smad3-driven renal fibrosis
    • Chung, A.C. et al. 2010. miR-192 mediates TGF-β/Smad3-driven renal fibrosis. J. Am. Soc. Nephrol. 21: 1317-1325.
    • (2010) J. Am. Soc. Nephrol , vol.21 , pp. 1317-1325
    • Chung, A.C.1
  • 77
    • 84859462370 scopus 로고    scopus 로고
    • Transforming growth factor β1 represses proximal tubular cell microRNA-192 expression through decreased hepatocyte nuclear factor DNA binding
    • Jenkins, R.H. et al. 2012. Transforming growth factor β1 represses proximal tubular cell microRNA-192 expression through decreased hepatocyte nuclear factor DNA binding. Biochem. J. 443: 407-416.
    • (2012) Biochem. J , vol.443 , pp. 407-416
    • Jenkins, R.H.1
  • 78
    • 57349186092 scopus 로고    scopus 로고
    • MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy
    • Wang, Q. et al. 2008. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. Faseb J. 22: 4126-4135.
    • (2008) Faseb J , vol.22 , pp. 4126-4135
    • Wang, Q.1
  • 79
    • 78049299629 scopus 로고    scopus 로고
    • Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model
    • Wang, X.X. et al. 2010. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes 59: 2916-2927.
    • (2010) Diabetes , vol.59 , pp. 2916-2927
    • Wang, X.X.1
  • 80
    • 79953215711 scopus 로고    scopus 로고
    • MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy
    • Long, J. et al. 2011. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J. Biol. Chem. 286: 11837-11848.
    • (2011) J. Biol. Chem , vol.286 , pp. 11837-11848
    • Long, J.1
  • 81
    • 84874830679 scopus 로고    scopus 로고
    • Functional implications of microRNA-215 in TGF-β1-induced phenotypic transition of mesangial cells by targeting CTNNBIP1
    • Mu, J. et al. 2013. Functional implications of microRNA-215 in TGF-β1-induced phenotypic transition of mesangial cells by targeting CTNNBIP1. PloS ONE 8: e58622.
    • (2013) PloS ONE , vol.8 , pp. e58622
    • Mu, J.1
  • 82
    • 80054771082 scopus 로고    scopus 로고
    • Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192
    • Sun, L. et al. 2011. Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192. J. Pathol. 225: 364-377.
    • (2011) J. Pathol , vol.225 , pp. 364-377
    • Sun, L.1
  • 83
    • 84904726017 scopus 로고    scopus 로고
    • MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1
    • He, F. et al. 2014. MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1. Diabetologia 57: 1726-1736.
    • (2014) Diabetologia , vol.57 , pp. 1726-1736
    • He, F.1
  • 84
    • 79960418116 scopus 로고    scopus 로고
    • MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes
    • Dey, N. et al. 2011. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J. Biol. Chem. 286: 25586-25603.
    • (2011) J. Biol. Chem , vol.286 , pp. 25586-25603
    • Dey, N.1
  • 85
    • 84878269299 scopus 로고    scopus 로고
    • miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes
    • Zhong, X. et al. 2013. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56: 663-674.
    • (2013) Diabetologia , vol.56 , pp. 663-674
    • Zhong, X.1
  • 86
    • 84886590520 scopus 로고    scopus 로고
    • Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice
    • Wang, J. et al. 2013. Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem. Biophys. 67: 537-546.
    • (2013) Cell Biochem. Biophys , vol.67 , pp. 537-546
    • Wang, J.1
  • 87
    • 84863116324 scopus 로고    scopus 로고
    • MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways
    • 121ra118
    • Chau, B.N. et al. 2012. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Trans. Med. 4: 121ra118.
    • (2012) Sci. Trans. Med , vol.4
    • Chau, B.N.1
  • 88
    • 67349089523 scopus 로고    scopus 로고
    • MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice
    • Zhang, Z. et al. 2009. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett. 583: 2009-2014.
    • (2009) FEBS Lett , vol.583 , pp. 2009-2014
    • Zhang, Z.1
  • 89
    • 84926429026 scopus 로고    scopus 로고
    • MicroRNA-21 in glomerular injury
    • Lai, J.Y. et al. 2015. MicroRNA-21 in glomerular injury. J. Am. Soc. Nephrol. 26: 805-816.
    • (2015) J. Am. Soc. Nephrol. , vol.26 , pp. 805-816
    • Lai, J.Y.1
  • 90
    • 79951838008 scopus 로고    scopus 로고
    • Role of microRNA-214-targeting phosphatase and tensin homolog in advanced glycation end product-induced apoptosis delay in monocytes
    • Li, L.-M. et al. 2011. Role of microRNA-214-targeting phosphatase and tensin homolog in advanced glycation end product-induced apoptosis delay in monocytes. J. Immunol. 186: 2552-2560.
    • (2011) J. Immunol , vol.186 , pp. 2552-2560
    • Li, L.-M.1
  • 91
    • 84891795621 scopus 로고    scopus 로고
    • MicroRNA-214 antagonism protects against renal fibrosis
    • Denby, L. et al. 2014. MicroRNA-214 antagonism protects against renal fibrosis. J. Am. Soc. Nephrol. 25: 65-80.
    • (2014) J. Am. Soc. Nephrol , vol.25 , pp. 65-80
    • Denby, L.1
  • 92
    • 84655163918 scopus 로고    scopus 로고
    • MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy
    • Zhang, Z. et al. 2012. MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy. FEBS Lett. 586: 20-26.
    • (2012) FEBS Lett , vol.586 , pp. 20-26
    • Zhang, Z.1
  • 93
    • 84863115180 scopus 로고    scopus 로고
    • Suppression of microRNA-29 Expression by TGF-β1 promotes collagen expression and renal fibrosis
    • Wang, B. et al. 2012. Suppression of microRNA-29 Expression by TGF-β1 promotes collagen expression and renal fibrosis. J. Am. Soc. Nephrol. 23: 252-265.
    • (2012) J. Am. Soc. Nephrol , vol.23 , pp. 252-265
    • Wang, B.1
  • 94
    • 84897577501 scopus 로고    scopus 로고
    • MicroRNA-29b inhibits diabetic nephropathy in db/db mice
    • Chen, H.Y. et al. 2014. MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol. Ther. 22: 842-853.
    • (2014) Mol. Ther , vol.22 , pp. 842-853
    • Chen, H.Y.1
  • 95
    • 79960946532 scopus 로고    scopus 로고
    • TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29
    • Qin, W. et al. 2011. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J. Am. Soc. Nephrol. 22: 1462-1474.
    • (2011) J. Am. Soc. Nephrol , vol.22 , pp. 1462-1474
    • Qin, W.1
  • 96
    • 77649270362 scopus 로고    scopus 로고
    • High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells
    • Du, B. et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett. 584: 811-816.
    • FEBS Lett , vol.584 , pp. 811-816
    • Du, B.1
  • 97
    • 84901309585 scopus 로고    scopus 로고
    • Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen
    • Kanasaki, K. et al. 2014. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes 63: 2120-2131.
    • (2014) Diabetes , vol.63 , pp. 2120-2131
    • Kanasaki, K.1
  • 98
    • 84875711412 scopus 로고    scopus 로고
    • Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFβR1
    • Brennan, E.P. et al. 2013. Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFβR1. J. Am. Soc. Nephrol. 24: 627-637.
    • (2013) J. Am. Soc. Nephrol , vol.24 , pp. 627-637
    • Brennan, E.P.1
  • 99
    • 84895900338 scopus 로고    scopus 로고
    • Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b
    • Wang, B. et al. 2014. Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int. 85: 352-361.
    • (2014) Kidney Int , vol.85 , pp. 352-361
    • Wang, B.1
  • 100
    • 84918834795 scopus 로고    scopus 로고
    • Repression of let-7 by transforming growth factor-β1-induced Lin28 up-regulates collagen expression in glomerular mesangial cells under diabetic conditions
    • Park, J.T. et al. 2014. Repression of let-7 by transforming growth factor-β1-induced Lin28 up-regulates collagen expression in glomerular mesangial cells under diabetic conditions. Am. J. Physiol. Renal Physiol. 307: F1390-1403.
    • (2014) Am. J. Physiol. Renal Physiol. , vol.307 , pp. F1390-F1403
    • Park, J.T.1
  • 101
    • 84888638018 scopus 로고    scopus 로고
    • The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway
    • Li, R. et al. 2013. The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway. Kidney Int. 84: 1129-1144.
    • (2013) Kidney Int , vol.84 , pp. 1129-1144
    • Li, R.1
  • 102
    • 84908093833 scopus 로고    scopus 로고
    • Transforming growth factor β1 (TGF-β1) enhances expression of profibrotic genes through a novel signaling cascade and microRNAs in renal mesangial cells
    • Castro, N.E. et al. 2014. Transforming growth factor β1 (TGF-β1) enhances expression of profibrotic genes through a novel signaling cascade and microRNAs in renal mesangial cells. J. Biol. Chem. 289: 29001-29013.
    • (2014) J. Biol. Chem , vol.289 , pp. 29001-29013
    • Castro, N.E.1
  • 103
    • 84891802173 scopus 로고    scopus 로고
    • Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids
    • Wu, J. et al. 2014. Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids. J. Am. Soc. Nephrol. 25: 92-104.
    • (2014) J. Am. Soc. Nephrol , vol.25 , pp. 92-104
    • Wu, J.1
  • 104
    • 84890904166 scopus 로고    scopus 로고
    • MicroRNA-22 is a master regulator of bone morphogenetic protein-7/6 homeostasis in the kidney
    • Long, J. et al. 2013. MicroRNA-22 is a master regulator of bone morphogenetic protein-7/6 homeostasis in the kidney. J. Biol. Chem. 288: 36202-36214.
    • (2013) J. Biol. Chem , vol.288 , pp. 36202-36214
    • Long, J.1
  • 105
    • 77954941124 scopus 로고    scopus 로고
    • Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions
    • Long, J. et al. 2010. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J. Biol. Chem. 285: 23457-23465.
    • (2010) J. Biol. Chem , vol.285 , pp. 23457-23465
    • Long, J.1
  • 106
    • 84866068439 scopus 로고    scopus 로고
    • Oxidative stress, Nox isoforms and complications of diabetes-potential targets for novel therapies
    • Sedeek, M. et al. 2012. Oxidative stress, Nox isoforms and complications of diabetes-potential targets for novel therapies. J. Cardiovasc. Transl. Res. 5: 509-518.
    • (2012) J. Cardiovasc. Transl. Res , vol.5 , pp. 509-518
    • Sedeek, M.1
  • 107
    • 84864414285 scopus 로고    scopus 로고
    • Role of Nox4 in murine models of kidney disease
    • Babelova, A. et al. 2012. Role of Nox4 in murine models of kidney disease. Free Radic. Biol. Med. 53: 842-853.
    • (2012) Free Radic. Biol. Med , vol.53 , pp. 842-853
    • Babelova, A.1
  • 108
    • 34147159558 scopus 로고    scopus 로고
    • Regulation of transforming growth factor β in diabetic nephropathy: implications for treatment
    • Zhu, Y., H.K. Usui & K. Sharma . 2007. Regulation of transforming growth factor β in diabetic nephropathy: implications for treatment. Semin. Nephrol. 27: 153-160.
    • (2007) Semin. Nephrol. , vol.27 , pp. 153-160
    • Zhu, Y.1    Usui, H.K.2    Sharma, K.3
  • 109
    • 78149352664 scopus 로고    scopus 로고
    • Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy
    • Fu, Y. et al. 2010. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Am. J. Nephrol. 32: 581-589.
    • (2010) Am. J. Nephrol , vol.32 , pp. 581-589
    • Fu, Y.1
  • 110
    • 80755152827 scopus 로고    scopus 로고
    • miR-146a-mediated extracellular matrix protein production in chronic diabetes complications
    • Feng, B. et al. 2011. miR-146a-mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 60: 2975-2984.
    • (2011) Diabetes , vol.60 , pp. 2975-2984
    • Feng, B.1
  • 111
    • 84864452770 scopus 로고    scopus 로고
    • Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells
    • Muratsu-Ikeda, S. et al. 2012. Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells. PloS ONE 7: e41462.
    • (2012) PloS ONE , vol.7 , pp. e41462
    • Muratsu-Ikeda, S.1
  • 112
    • 84888092409 scopus 로고    scopus 로고
    • Aldose reductase regulates miR-200a-3p/141-3p to coordinate Keap1-Nrf2, Tgfβ1/2, and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice
    • Wei, J. et al. 2014. Aldose reductase regulates miR-200a-3p/141-3p to coordinate Keap1-Nrf2, Tgfβ1/2, and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice. Free Radical Biol. Med. 67: 91-102.
    • (2014) Free Radical Biol. Med , vol.67 , pp. 91-102
    • Wei, J.1
  • 113
    • 77949892330 scopus 로고    scopus 로고
    • Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy
    • Krupa, A. et al. 2010. Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy. J. Am. Soc. Nephrol. 21: 438-447.
    • (2010) J. Am. Soc. Nephrol , vol.21 , pp. 438-447
    • Krupa, A.1
  • 114
    • 77954274715 scopus 로고    scopus 로고
    • E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-β
    • Wang, B. et al. 2010. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-β. Diabetes 59: 1794-1802.
    • (2010) Diabetes , vol.59 , pp. 1794-1802
    • Wang, B.1
  • 115
    • 78751516162 scopus 로고    scopus 로고
    • miR-200a prevents renal fibrogenesis through repression of TGF-β2 expression
    • Wang, B. et al. 2011. miR-200a prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes 60: 280-287.
    • (2011) Diabetes , vol.60 , pp. 280-287
    • Wang, B.1
  • 116
    • 43049103824 scopus 로고    scopus 로고
    • The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
    • Gregory, P.A. et al. 2008. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10: 593-601.
    • (2008) Nat. Cell Biol , vol.10 , pp. 593-601
    • Gregory, P.A.1
  • 118
    • 84882289111 scopus 로고    scopus 로고
    • Origin and function of myofibroblasts in kidney fibrosis
    • LeBleu, V.S. et al. 2013. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19: 1047-1053.
    • (2013) Nat. Med , vol.19 , pp. 1047-1053
    • Le Bleu, V.S.1
  • 119
    • 79551521517 scopus 로고    scopus 로고
    • Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy?
    • Kriz, W., B. Kaissling & M. Le Hir . 2011. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J. Clin. Invest. 121: 468-474.
    • (2011) J. Clin. Invest. , vol.121 , pp. 468-474
    • Kriz, W.1    Kaissling, B.2    Le Hir, M.3
  • 120
    • 21644463370 scopus 로고    scopus 로고
    • Mouse models of diabetic nephropathy
    • Breyer, M.D. et al. 2005. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 16: 27-45.
    • (2005) J. Am. Soc. Nephrol , vol.16 , pp. 27-45
    • Breyer, M.D.1
  • 121
    • 80053565042 scopus 로고    scopus 로고
    • Biomarkers in chronic kidney disease: a review
    • Fassett, R.G. et al. 2011. Biomarkers in chronic kidney disease: a review. Kidney Int. 80: 806-821.
    • (2011) Kidney Int , vol.80 , pp. 806-821
    • Fassett, R.G.1
  • 122
    • 78650034475 scopus 로고    scopus 로고
    • miRNAs in human cancer
    • Farazi, T.A. et al. 2011. miRNAs in human cancer. J. Pathol. 223: 102-115.
    • (2011) J. Pathol , vol.223 , pp. 102-115
    • Farazi, T.A.1
  • 123
    • 77952522153 scopus 로고    scopus 로고
    • miRNAs as molecular biomarkers of cancer
    • Fabbri, M. 2010. miRNAs as molecular biomarkers of cancer. Expert Rev. Mol. Diagn. 10: 435-444.
    • (2010) Expert Rev. Mol. Diagn , vol.10 , pp. 435-444
    • Fabbri, M.1
  • 124
    • 63149121152 scopus 로고    scopus 로고
    • Circulating microRNAs, potential biomarkers for drug-induced liver injury
    • Wang, K. et al. 2009. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl. Acad. Sci. USA 106: 4402-4407.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 4402-4407
    • Wang, K.1
  • 125
    • 77950973372 scopus 로고    scopus 로고
    • MiR423-5p as a circulating biomarker for heart failure
    • Tijsen, A.J. et al. 2010. MiR423-5p as a circulating biomarker for heart failure. Circ. Res. 106: 1035-1039.
    • (2010) Circ. Res , vol.106 , pp. 1035-1039
    • Tijsen, A.J.1
  • 126
    • 84867529562 scopus 로고    scopus 로고
    • Micro-RNA expression in the urinary sediment of patients with chronic kidney diseases
    • Szeto, C.C. et al. 2012. Micro-RNA expression in the urinary sediment of patients with chronic kidney diseases. Dis. Markers 33: 137-144.
    • (2012) Dis. Markers , vol.33 , pp. 137-144
    • Szeto, C.C.1
  • 127
    • 80155210177 scopus 로고    scopus 로고
    • Circulating microRNA expression is reduced in chronic kidney disease
    • Neal, C.S. et al. 2011. Circulating microRNA expression is reduced in chronic kidney disease. Nephrol. Dial. Transplant. 26: 3794-3802.
    • (2011) Nephrol. Dial. Transplant , vol.26 , pp. 3794-3802
    • Neal, C.S.1
  • 128
    • 84874375470 scopus 로고    scopus 로고
    • Urinary biomarkers for the prediction of reversibility in acute-on-chronic renal failure
    • Luk, C.C. et al. 2013. Urinary biomarkers for the prediction of reversibility in acute-on-chronic renal failure. Dis. Markers 34: 179-185.
    • (2013) Dis. Markers , vol.34 , pp. 179-185
    • Luk, C.C.1
  • 129
    • 84872766915 scopus 로고    scopus 로고
    • Urinary sediment miRNA levels in adult nephrotic syndrome
    • Wang, G. et al. 2013. Urinary sediment miRNA levels in adult nephrotic syndrome. Clin. Chim. Acta 418: 5-11.
    • (2013) Clin. Chim. Acta , vol.418 , pp. 5-11
    • Wang, G.1
  • 130
    • 84880044154 scopus 로고    scopus 로고
    • Urine miRNAs: potential biomarkers for monitoring progression of early stages of diabetic nephropathy
    • Yang, Y. et al. 2013. Urine miRNAs: potential biomarkers for monitoring progression of early stages of diabetic nephropathy. Med. Hypotheses 81: 274-278.
    • (2013) Med. Hypotheses , vol.81 , pp. 274-278
    • Yang, Y.1
  • 131
    • 84856737411 scopus 로고    scopus 로고
    • Altered expression of microRNA miR-146a correlates with the development of chronic renal inflammation
    • Ichii, O. et al. 2012. Altered expression of microRNA miR-146a correlates with the development of chronic renal inflammation. Kidney Int. 81: 280-292.
    • (2012) Kidney Int , vol.81 , pp. 280-292
    • Ichii, O.1
  • 132
    • 84880134824 scopus 로고    scopus 로고
    • Emerging roles for miRNAs in the development, diagnosis, and treatment of diabetic nephropathy
    • DiStefano, J.K., M. Taila & M.L. Alvarez . 2013. Emerging roles for miRNAs in the development, diagnosis, and treatment of diabetic nephropathy. Curr. Diab. Rep. 13: 582-591.
    • (2013) Curr. Diab. Rep , vol.13 , pp. 582-591
    • DiStefano, J.K.1    Taila, M.2    Alvarez, M.L.3
  • 133
    • 84881042001 scopus 로고    scopus 로고
    • Serum microRNAs levels in primary focal segmental glomerulosclerosis
    • Cai, X. et al. 2013. Serum microRNAs levels in primary focal segmental glomerulosclerosis. Pediatric Nephrol. (Berlin, Germany). 28: 1797-1801.
    • (2013) Pediatric Nephrol. (Berlin, Germany) , vol.28 , pp. 1797-1801
    • Cai, X.1
  • 134
    • 84907918081 scopus 로고    scopus 로고
    • Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury
    • Huang, Y. et al. 2014. Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury. BMC Nephrol. 15: 142.
    • (2014) BMC Nephrol , vol.15 , pp. 142
    • Huang, Y.1
  • 135
    • 84867897248 scopus 로고    scopus 로고
    • Urinary miR-21, miR-29, and miR-93: novel biomarkers of fibrosis
    • Wang, G. et al. 2012. Urinary miR-21, miR-29, and miR-93: novel biomarkers of fibrosis. Am. J. Nephrol. 36: 412-418.
    • (2012) Am. J. Nephrol , vol.36 , pp. 412-418
    • Wang, G.1
  • 136
    • 84892387470 scopus 로고    scopus 로고
    • Urinary exosomal microRNAs in incipient diabetic nephropathy
    • Barutta, F. et al. 2013. Urinary exosomal microRNAs in incipient diabetic nephropathy. PloS ONE 8: e73798.
    • (2013) PloS ONE , vol.8 , pp. e73798
    • Barutta, F.1
  • 137
    • 84872860732 scopus 로고    scopus 로고
    • Urinary microRNA profiling in the nephropathy of type 1 diabetes
    • Argyropoulos, C. et al. 2013. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PloS ONE 8: e54662.
    • (2013) PloS ONE , vol.8 , pp. e54662
    • Argyropoulos, C.1
  • 138
    • 0034608948 scopus 로고    scopus 로고
    • Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in db/db diabetic mice
    • Ziyadeh, F.N. et al. 2000. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in db/db diabetic mice. Proc. Natl. Acad. Sci. USA 97: 8015-8020.
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 8015-8020
    • Ziyadeh, F.N.1
  • 139
    • 77956628272 scopus 로고    scopus 로고
    • New pharmacological treatments for improving renal outcomes in diabetes
    • Decleves, A.E. & K. Sharma . 2010. New pharmacological treatments for improving renal outcomes in diabetes. Nat. Rev. Nephrol. 6: 371-380.
    • (2010) Nat. Rev. Nephrol. , vol.6 , pp. 371-380
    • Decleves, A.E.1    Sharma, K.2
  • 140
    • 28444469246 scopus 로고    scopus 로고
    • Silencing of microRNAs in vivo with 'antagomirs
    • Krutzfeldt, J. et al. 2005. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438: 685-689.
    • (2005) Nature , vol.438 , pp. 685-689
    • Krutzfeldt, J.1
  • 141
    • 84903717510 scopus 로고    scopus 로고
    • Development of microRNA therapeutics is coming of age
    • van Rooij, E. & S. Kauppinen . 2014. Development of microRNA therapeutics is coming of age. EMBO Mol. Med. 6: 851-864.
    • (2014) EMBO Mol. Med. , vol.6 , pp. 851-864
    • van Rooij, E.1    Kauppinen, S.2
  • 142
    • 84869120708 scopus 로고    scopus 로고
    • Discovering the first microRNA-targeted drug
    • Lindow, M. & S. Kauppinen . 2012. Discovering the first microRNA-targeted drug. J. Cell Biol. 199: 407-412.
    • (2012) J. Cell Biol. , vol.199 , pp. 407-412
    • Lindow, M.1    Kauppinen, S.2
  • 143
    • 84875822153 scopus 로고    scopus 로고
    • MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice
    • Pan, Y. et al. 2012. MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice. Intl. J. Nanomed. 7: 5957-5967.
    • (2012) Intl. J. Nanomed , vol.7 , pp. 5957-5967
    • Pan, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.