메뉴 건너뛰기




Volumn 12, Issue 8, 2015, Pages 488-497

Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; CYTOSINE; HISTONE; LONG UNTRANSLATED RNA; MICRORNA; UNTRANSLATED RNA; CARDIOTONIC AGENT; CHROMATIN; DNA;

EID: 84938203151     PISSN: 17595002     EISSN: 17595010     Source Type: Journal    
DOI: 10.1038/nrcardio.2015.71     Document Type: Review
Times cited : (119)

References (116)
  • 1
    • 0018728257 scopus 로고
    • Myosin isoenzyme redistribution in chronic heart overload
    • Lompre, A. M., et al. Myosin isoenzyme redistribution in chronic heart overload. Nature 282, 105-107 (1979
    • (1979) Nature , vol.282 , pp. 105-107
    • Lompre, A.M.1
  • 2
    • 0023713203 scopus 로고
    • Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload
    • Izumo, S., Nadal-Ginard, B., & Mahdavi, V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc. Natl Acad. Sci. USA 85, 339-343 (1988
    • (1988) Proc. Natl Acad. Sci. USA , vol.85 , pp. 339-343
    • Izumo, S.1    Nadal-Ginard, B.2    Mahdavi, V.3
  • 3
    • 0033592754 scopus 로고    scopus 로고
    • Signaling pathways for cardiac hypertrophy and failure
    • Hunter, J. J., & Chien, K. R. Signaling pathways for cardiac hypertrophy and failure. N. Engl. J. Med. 341, 1276-1283 (1999
    • (1999) N. Engl. J. Med , vol.341 , pp. 1276-1283
    • Hunter, J.J.1    Chien, K.R.2
  • 5
    • 58249086425 scopus 로고    scopus 로고
    • Understanding the words of chromatin regulation
    • Wu, J. I., Lessard, J., & Crabtree, G. R. Understanding the words of chromatin regulation. Cell 136, 200-206 (2009
    • (2009) Cell , vol.136 , pp. 200-206
    • Wu, J.I.1    Lessard, J.2    Crabtree, G.R.3
  • 7
    • 84874194072 scopus 로고    scopus 로고
    • DNA methylation: Roles in mammalian development
    • Smith, Z. D., & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204-220 (2013
    • (2013) Nat. Rev. Genet , vol.14 , pp. 204-220
    • Smith, Z.D.1    Meissner, A.2
  • 8
    • 84892763878 scopus 로고    scopus 로고
    • Reversing DNA methylation: Mechanisms, genomics, and biological functions
    • Wu, H., & Zhang, Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45-68 (2014
    • (2014) Cell , vol.156 , pp. 45-68
    • Wu, H.1    Zhang, Y.2
  • 9
    • 0035839126 scopus 로고    scopus 로고
    • Epigenetic reprogramming in mammalian development
    • Reik, W., Dean, W., & Walter, J. Epigenetic reprogramming in mammalian development. Science 293, 1089-1093 (2001
    • (2001) Science , vol.293 , pp. 1089-1093
    • Reik, W.1    Dean, W.2    Walter, J.3
  • 10
    • 0033615717 scopus 로고    scopus 로고
    • DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
    • Okano, M., Bell, D. W., Haber, D. A., & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257 (1999
    • (1999) Cell , vol.99 , pp. 247-257
    • Okano, M.1    Bell, D.W.2    Haber, D.A.3    Li, E.4
  • 11
    • 66149146320 scopus 로고    scopus 로고
    • Conversion of 5 methylcytosine to 5 hydroxymethylcytosine in mammalian DNA by MLL partner TET1
    • Tahiliani, M., et al Conversion of 5 methylcytosine to 5 hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930-935 (2009
    • (2009) Science , vol.324 , pp. 930-935
    • Tahiliani, M.1
  • 12
    • 0037406067 scopus 로고    scopus 로고
    • The methyl-CpG binding domain and the evolving role of DNA methylation in animals
    • Hendrich, B., & Tweedie, S. The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 19, 269-277 (2003
    • (2003) Trends Genet , vol.19 , pp. 269-277
    • Hendrich, B.1    Tweedie, S.2
  • 13
    • 82355180985 scopus 로고    scopus 로고
    • Distinct epigenomic features in end-stage failing human hearts
    • Movassagh, M., et al. Distinct epigenomic features in end-stage failing human hearts. Circulation 124, 2411-2422 (2011
    • (2011) Circulation , vol.124 , pp. 2411-2422
    • Movassagh, M.1
  • 14
    • 84866839590 scopus 로고    scopus 로고
    • The landscape of DNA repeat elements in human heart failure
    • Haider, S., et al. The landscape of DNA repeat elements in human heart failure. Genome Biol. 13, R90 (2012
    • (2012) Genome Biol , vol.13 , pp. R90
    • Haider, S.1
  • 15
    • 84874746425 scopus 로고    scopus 로고
    • Alterations in cardiac DNA methylation in human dilated cardiomyopathy
    • Haas, J., et al. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol. Med. 5, 413-429 (2013
    • (2013) EMBO Mol. Med , vol.5 , pp. 413-429
    • Haas, J.1
  • 16
    • 84924367822 scopus 로고    scopus 로고
    • Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease
    • Gilsbach, R., et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat. Commun. 5, 5288 (2014
    • (2014) Nat. Commun , vol.5 , pp. 5288
    • Gilsbach, R.1
  • 17
    • 84882884517 scopus 로고    scopus 로고
    • Charting a dynamic DNA methylation landscape of the human genome
    • Ziller, M. J., et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477-481 (2013
    • (2013) Nature , vol.500 , pp. 477-481
    • Ziller, M.J.1
  • 18
    • 77954362183 scopus 로고    scopus 로고
    • Examination of the specificity of DNA methylation profiling techniques towards 5 methylcytosine and 5 hydroxymethylcytosine
    • Jin, S. G., Kadam, S., & Pfeifer, G. P. Examination of the specificity of DNA methylation profiling techniques towards 5 methylcytosine and 5 hydroxymethylcytosine. Nucleic Acids Res. 38, e125 (2010
    • (2010) Nucleic Acids Res , vol.38 , pp. e125
    • Jin, S.G.1    Kadam, S.2    Pfeifer, G.P.3
  • 19
    • 37549023859 scopus 로고    scopus 로고
    • Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure
    • Wang, X., & Hayes, J. J. Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol. Cell. Biol. 28, 227-236 (2008
    • (2008) Mol. Cell. Biol , vol.28 , pp. 227-236
    • Wang, X.1    Hayes, J.J.2
  • 20
    • 34547911052 scopus 로고    scopus 로고
    • Chemistry of acetyl transfer by histone modifying enzymes: Structure, mechanism and implications for effector design
    • Hodawadekar, S. C., & Marmorstein, R. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 26, 5528-5540 (2007
    • (2007) Oncogene , vol.26 , pp. 5528-5540
    • Hodawadekar, S.C.1    Marmorstein, R.2
  • 21
    • 17644445419 scopus 로고    scopus 로고
    • Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300
    • Yao, T P., et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361-372 (1998
    • (1998) Cell , vol.93 , pp. 361-372
    • Yao, T.P.1
  • 22
    • 0141753974 scopus 로고    scopus 로고
    • Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation
    • Shikama, N., et al. Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J. 22, 5175-5185 (2003
    • (2003) EMBO J. , vol.22 , pp. 5175-5185
    • Shikama, N.1
  • 23
    • 52049099175 scopus 로고    scopus 로고
    • Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300
    • Wei, J Q., et al. Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 118, 934-946 (2008
    • (2008) Circulation , vol.118 , pp. 934-946
    • Wei, J.Q.1
  • 24
    • 0038302887 scopus 로고    scopus 로고
    • Cardiac p300 is involved in myocyte growth with decompensated heart failure
    • Yanazume, T., et al. Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol. Cell. Biol. 23, 3593-3606 (2003
    • (2003) Mol. Cell. Biol , vol.23 , pp. 3593-3606
    • Yanazume, T.1
  • 25
    • 40549135974 scopus 로고    scopus 로고
    • The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats
    • Morimoto, T., et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J. Clin. Invest. 118, 868-878 (2008
    • (2008) J. Clin. Invest , vol.118 , pp. 868-878
    • Morimoto, T.1
  • 26
    • 0037162697 scopus 로고    scopus 로고
    • Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy
    • Zhang, C. L., et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479-488 (2002
    • (2002) Cell , vol.110 , pp. 479-488
    • Zhang, C.L.1
  • 27
    • 4544358659 scopus 로고    scopus 로고
    • Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development
    • Chang, S., et al. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol. Cell. Biol. 24, 8467-8476 (2004
    • (2004) Mol. Cell. Biol , vol.24 , pp. 8467-8476
    • Chang, S.1
  • 28
    • 44649184557 scopus 로고    scopus 로고
    • A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy
    • Ago, T., et al. A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133, 978-993 (2008
    • (2008) Cell , vol.133 , pp. 978-993
    • Ago, T.1
  • 29
    • 84874589977 scopus 로고    scopus 로고
    • HDAC4 controls histone methylation in response to elevated cardiac load
    • Hohl, M., et al. HDAC4 controls histone methylation in response to elevated cardiac load. J. Clin. Invest. 123, 1359-1370 (2013
    • (2013) J. Clin. Invest , vol.123 , pp. 1359-1370
    • Hohl, M.1
  • 30
    • 33745812011 scopus 로고    scopus 로고
    • CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy
    • Backs, J., Song, K., Bezprozvannaya, S., Chang, S., & Olson, E. N. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J. Clin. Invest. 116, 1853-1864 (2006
    • (2006) J. Clin. Invest , vol.116 , pp. 1853-1864
    • Backs, J.1    Song, K.2    Bezprozvannaya, S.3    Chang, S.4    Olson, E.N.5
  • 31
    • 4544315655 scopus 로고    scopus 로고
    • Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5
    • Vega, R. B., et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol. Cell Biol. 24, 8374-8385 (2004
    • (2004) Mol. Cell Biol , vol.24 , pp. 8374-8385
    • Vega, R.B.1
  • 32
    • 33644641253 scopus 로고    scopus 로고
    • Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-Transcription coupling
    • Wu, X., et al. Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-Transcription coupling. J. Clin. Invest. 116, 675-682 (2006
    • (2006) J. Clin. Invest , vol.116 , pp. 675-682
    • Wu, X.1
  • 33
    • 84855753309 scopus 로고    scopus 로고
    • Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4
    • Backs, J., et al. Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J. Cell Biol. 195, 403-415 (2011
    • (2011) J Cell Biol , vol.195 , pp. 403-415
    • Backs, J.1
  • 34
    • 77957261983 scopus 로고    scopus 로고
    • PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy
    • Ha, C. H., et al. PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc. Natl Acad. Sci. USA 107, 15467-15472 (2010
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 15467-15472
    • Ha, C.H.1
  • 35
    • 79956317095 scopus 로고    scopus 로고
    • Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension
    • Lemon, D. D., et al. Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension. J. Mol. Cell. Cardiol. 51, 41-50 (2011
    • (2011) J. Mol. Cell. Cardiol , vol.51 , pp. 41-50
    • Lemon, D.D.1
  • 36
    • 84904293106 scopus 로고    scopus 로고
    • HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling
    • Demos-Davies, K. M., et al. HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling. Am. J. Physiol. Heart Circ. Physiol. 307, H252-H258 (2014
    • (2014) Am. J. Physiol. Heart Circ. Physiol , vol.307 , pp. H252-H258
    • Demos-Davies, K.M.1
  • 37
    • 33847695362 scopus 로고    scopus 로고
    • Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity
    • Trivedi, C. M., et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity. Nat. Med. 13, 324-331 (2007
    • (2007) Nat. Med , vol.13 , pp. 324-331
    • Trivedi, C.M.1
  • 38
    • 55849084700 scopus 로고    scopus 로고
    • Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice
    • Montgomery, R. L., et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J. Clin. Invest. 118, 3588-3597 (2008
    • (2008) J. Clin. Invest , vol.118 , pp. 3588-3597
    • Montgomery, R.L.1
  • 39
    • 0037452677 scopus 로고    scopus 로고
    • Regulation of peroxisome proliferator-Activated receptor gamma coactivator 1 alpha (PGC 1 alpha) and mitochondrial function by MEF2 and HDAC5
    • Czubryt, M. P., McAnally, J., Fishman, G. I., & Olson, E. N. Regulation of peroxisome proliferator-Activated receptor gamma coactivator 1 alpha (PGC 1 alpha) and mitochondrial function by MEF2 and HDAC5. Proc. Natl Acad. Sci. USA 100, 1711-1716 (2003
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 1711-1716
    • Czubryt, M.P.1    McAnally, J.2    Fishman, G.I.3    Olson, E.N.4
  • 40
    • 33745173485 scopus 로고    scopus 로고
    • Suppression of class i and II histone deacetylases blunts pressure-overload cardiac hypertrophy
    • Kong, Y., et al. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 113, 2579-2588 (2006
    • (2006) Circulation , vol.113 , pp. 2579-2588
    • Kong, Y.1
  • 41
    • 33644861578 scopus 로고    scopus 로고
    • Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding
    • Kee, H. J., et al. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113, 51-59 (2006
    • (2006) Circulation , vol.113 , pp. 51-59
    • Kee, H.J.1
  • 42
    • 84895923936 scopus 로고    scopus 로고
    • Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy
    • Xie, M., et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 129, 1139-1151 (2014
    • (2014) Circulation , vol.129 , pp. 1139-1151
    • Xie, M.1
  • 43
    • 56549128210 scopus 로고    scopus 로고
    • Inhibition of class i histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure
    • Gallo, P., et al. Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc. Res. 80, 416-424 (2008
    • (2008) Cardiovasc. Res , vol.80 , pp. 416-424
    • Gallo, P.1
  • 44
    • 24144475284 scopus 로고    scopus 로고
    • Reversing histone methylation
    • Bannister, A. J., & Kouzarides, T. Reversing histone methylation. Nature 436, 1103-1106 (2005
    • (2005) Nature , vol.436 , pp. 1103-1106
    • Bannister, A.J.1    Kouzarides, T.2
  • 45
    • 84859893371 scopus 로고    scopus 로고
    • Histone methylation: A dynamic mark in health, disease and inheritance
    • Greer, E. L., & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343-357 (2012
    • (2012) Nat. Rev. Genet , vol.13 , pp. 343-357
    • Greer, E.L.1    Shi, Y.2
  • 46
    • 0035883954 scopus 로고    scopus 로고
    • Transcription regulation by histone methylation: Interplay between different covalent modifications of the core histone tails
    • Zhang, Y., & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343-2360 (2001
    • (2001) Genes Dev , vol.15 , pp. 2343-2360
    • Zhang, Y.1    Reinberg, D.2
  • 47
    • 43249102851 scopus 로고    scopus 로고
    • Erasing the methyl mark: Histone demethylases at the center of cellular differentiation and disease
    • Cloos, P. A., Christensen, J., Agger, K., & Helin, K. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev. 22, 1115-1140 (2008
    • (2008) Genes Dev , vol.22 , pp. 1115-1140
    • Cloos, P.A.1    Christensen, J.2    Agger, K.3    Helin, K.4
  • 48
    • 79957892087 scopus 로고    scopus 로고
    • The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice
    • Zhang, Q. J., et al. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J. Clin. Invest. 121, 2447-2456 (2011
    • (2011) J. Clin. Invest , vol.121 , pp. 2447-2456
    • Zhang, Q.J.1
  • 49
    • 79959980701 scopus 로고    scopus 로고
    • Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes
    • Stein, A. B., et al. Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J. Clin. Invest. 121, 2641-2650 (2011
    • (2011) J. Clin. Invest , vol.121 , pp. 2641-2650
    • Stein, A.B.1
  • 50
    • 84960807202 scopus 로고    scopus 로고
    • DOT1L-mediated H3K79me2 modification critically regulates gene expression during cardiomyocyte differentiation
    • Cattaneo, P., et al. DOT1L-mediated H3K79me2 modification critically regulates gene expression during cardiomyocyte differentiation. Cell Death Differ. http://dx.doi.org/10.1038/cdd.2014.199
    • Cell Death Differ
    • Cattaneo, P.1
  • 51
    • 79551607266 scopus 로고    scopus 로고
    • DOT1L regulates dystrophin expression and is critical for cardiac function
    • Nguyen, A. T., et al. DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev. 25, 263-274 (2011
    • (2011) Genes Dev , vol.25 , pp. 263-274
    • Nguyen, A.T.1
  • 52
    • 84890255267 scopus 로고    scopus 로고
    • Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy
    • Papait, R., et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc. Natl Acad. Sci. USA 110, 20164-20169 (2013
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 20164-20169
    • Papait, R.1
  • 53
    • 67650725820 scopus 로고    scopus 로고
    • The biology of chromatin remodeling complexes
    • Clapier, C. R., & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273-304 (2009
    • (2009) Annu. Rev. Biochem , vol.78 , pp. 273-304
    • Clapier, C.R.1    Cairns, B.R.2
  • 54
    • 14544308853 scopus 로고    scopus 로고
    • Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes
    • Mohrmann, L., & Verrijzer, C. P. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim. Biophys. Acta 1681, 59-73 (2005
    • (2005) Biochim. Biophys. Acta , vol.1681 , pp. 59-73
    • Mohrmann, L.1    Verrijzer, C.P.2
  • 55
    • 34147101544 scopus 로고    scopus 로고
    • INO80 subfamily of chromatin remodeling complexes
    • Bao, Y., & Shen, X. INO80 subfamily of chromatin remodeling complexes. Mutat. Res. 618, 18-29 (2007
    • (2007) Mutat. Res , vol.618 , pp. 18-29
    • Bao, Y.1    Shen, X.2
  • 56
    • 1542358189 scopus 로고    scopus 로고
    • Multiple roles for ISWI in transcription, chromosome organization and DNA replication
    • Corona, D. F., & Tamkun, J. W. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta 1677, 113-119 (2004
    • (2004) Biochim. Biophys. Acta , vol.1677 , pp. 113-119
    • Corona, D.F.1    Tamkun, J.W.2
  • 57
    • 34147158728 scopus 로고    scopus 로고
    • The Chd family of chromatin remodelers
    • Marfella, C. G., & Imbalzano, A. N. The Chd family of chromatin remodelers. Mutat. Res. 618, 30-40 (2007
    • (2007) Mutat. Res , vol.618 , pp. 30-40
    • Marfella, C.G.1    Imbalzano, A.N.2
  • 58
    • 0035962662 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling factors: Nucleosome shufflers with many missions
    • Varga-Weisz, P. ATP-dependent chromatin remodeling factors: nucleosome shufflers with many missions. Oncogene 20, 3076-3085 (2001
    • (2001) Oncogene , vol.20 , pp. 3076-3085
    • Varga-Weisz, P.1
  • 59
    • 79751473406 scopus 로고    scopus 로고
    • Chromatin remodeling in cardiovascular development and physiology
    • Han, P., Hang, C. T., Yang, J., & Chang, C. P. Chromatin remodeling in cardiovascular development and physiology. Circ. Res. 108, 378-396 (2011
    • (2011) Circ. Res , vol.108 , pp. 378-396
    • Han, P.1    Hang, C.T.2    Yang, J.3    Chang, C.P.4
  • 60
    • 34447249019 scopus 로고    scopus 로고
    • An essential switch in subunit composition of a chromatin remodeling complex during neural development
    • Lessard, J., et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55, 201-215 (2007
    • (2007) Neuron , vol.55 , pp. 201-215
    • Lessard, J.1
  • 61
    • 77954222814 scopus 로고    scopus 로고
    • Chromatin regulation by Brg1 underlies heart muscle development and disease
    • Hang, C. T., et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466, 62-67 (2010
    • (2010) Nature , vol.466 , pp. 62-67
    • Hang, C.T.1
  • 62
    • 84882972257 scopus 로고    scopus 로고
    • SWI/SNF chromatin remodeling enzymes are associated with cardiac hypertrophy in a genetic rat model of hypertension
    • Mehrotra, A., Joe, B., & de la Serna, I. L. SWI/SNF chromatin remodeling enzymes are associated with cardiac hypertrophy in a genetic rat model of hypertension. J. Cell. Physiol. 228, 2337-2342 (2013
    • (2013) J. Cell. Physiol , vol.228 , pp. 2337-2342
    • Mehrotra, A.1    Joe, B.2    De La Serna, I.L.3
  • 64
    • 79954416946 scopus 로고    scopus 로고
    • Readers of histone modifications
    • Yun, M., Wu, J., Workman, J. L., & Li, B. Readers of histone modifications. Cell Res. 21, 564-578 (2011
    • (2011) Cell Res , vol.21 , pp. 564-578
    • Yun, M.1    Wu, J.2    Workman, J.L.3    Li, B.4
  • 65
    • 84883084726 scopus 로고    scopus 로고
    • BET acetyl-lysine binding proteins control pathological cardiac hypertrophy
    • Spiltoir, J. I., et al. BET acetyl-lysine binding proteins control pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 63, 175-179 (2013
    • (2013) J. Mol. Cell. Cardiol , vol.63 , pp. 175-179
    • Spiltoir, J.I.1
  • 66
    • 84881192460 scopus 로고    scopus 로고
    • BET bromodomains mediate transcriptional pause release in heart failure
    • Anand, P., et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 154, 569-582 (2013
    • (2013) Cell , vol.154 , pp. 569-582
    • Anand, P.1
  • 67
    • 80053045739 scopus 로고    scopus 로고
    • Molecular mechanisms of long noncoding RNAs
    • Wang, K. C., & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904-914 (2011
    • (2011) Mol. Cell , vol.43 , pp. 904-914
    • Wang, K.C.1    Chang, H.Y.2
  • 68
    • 84868664680 scopus 로고    scopus 로고
    • A central role for long non-coding RNA in cancer
    • Mitra, S. A., Mitra, A. P., & Triche, T. J. A central role for long non-coding RNA in cancer. Front. Genet. 3, 17 (2012
    • (2012) Front. Genet , vol.3 , pp. 17
    • Mitra, S.A.1    Mitra, A.P.2    Triche, T.J.3
  • 69
    • 84864126183 scopus 로고    scopus 로고
    • Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease
    • Qureshi, I. A., & Mehler, M. F. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat. Rev. Neurosci. 13, 528-541 (2012
    • (2012) Nat. Rev. Neurosci , vol.13 , pp. 528-541
    • Qureshi, I.A.1    Mehler, M.F.2
  • 70
    • 65649092633 scopus 로고    scopus 로고
    • The genetic signatures of noncoding RNAs
    • Mattick, J. S. The genetic signatures of noncoding RNAs. PLoS Genet. 5, e1000459 (2009
    • (2009) PLoS Genet , vol.5 , pp. e1000459
    • Mattick, J.S.1
  • 72
    • 84899658554 scopus 로고    scopus 로고
    • MicroRNAs in cardiovascular diseases: Current knowledge and the road ahead
    • Condorelli, G., Latronico, M. V., & Cavarretta, E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J. Am. Coll. Cardiol. 63, 2177-2187 (2014
    • (2014) J. Am. Coll. Cardiol , vol.63 , pp. 2177-2187
    • Condorelli, G.1    Latronico, M.V.2    Cavarretta, E.3
  • 73
    • 84924145079 scopus 로고    scopus 로고
    • Long noncoding RNAs and microRNAs in cardiovascular pathophysiology
    • Thum, T., & Condorelli, G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ. Res. 116, 751-762 (2015
    • (2015) Circ. Res , vol.116 , pp. 751-762
    • Thum, T.1    Condorelli, G.2
  • 74
    • 84903166837 scopus 로고    scopus 로고
    • MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease
    • 239ps3
    • Olson, E. N. MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci. Transl. Med. 6, 239ps3 (2014
    • (2014) Sci. Transl. Med , vol.6
    • Olson, E.N.1
  • 75
    • 33744805399 scopus 로고    scopus 로고
    • Specific activation of microRNA 127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells
    • Saito, Y., et al. Specific activation of microRNA 127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9, 435-443 (2006
    • (2006) Cancer Cell , vol.9 , pp. 435-443
    • Saito, Y.1
  • 76
    • 84920828175 scopus 로고    scopus 로고
    • MiRNA and methylation: A multifaceted liaison
    • Chhabra, R. miRNA and methylation: a multifaceted liaison. Chembiochem 16, 195-203 (2014
    • (2014) Chembiochem , vol.16 , pp. 195-203
    • Chhabra, R.1
  • 77
    • 84928406659 scopus 로고    scopus 로고
    • Global DNA methylation analysis of human atherosclerotic plaques reveals extensive genomic hypomethylation and reactivation at imprinted locus 14q32 involving induction of a miRNA cluster
    • Aavik, E., et al. Global DNA methylation analysis of human atherosclerotic plaques reveals extensive genomic hypomethylation and reactivation at imprinted locus 14q32 involving induction of a miRNA cluster. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehu437
    • Eur. Heart J.
    • Aavik, E.1
  • 78
    • 35649020283 scopus 로고    scopus 로고
    • MicroRNA 29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B
    • Fabbri, M., et al. MicroRNA 29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA 104, 15805-15810 (2007
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 15805-15810
    • Fabbri, M.1
  • 79
    • 67650588646 scopus 로고    scopus 로고
    • MicroRNA 29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1
    • Garzon, R., et al MicroRNA 29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113, 6411-6418 (2009
    • (2009) Blood , vol.113 , pp. 6411-6418
    • Garzon, R.1
  • 80
    • 84895521111 scopus 로고    scopus 로고
    • Circulating MIR 29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy
    • Roncarati, R., et al. Circulating miR 29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 63, 920-927 (2014
    • (2014) J. Am. Coll. Cardiol , vol.63 , pp. 920-927
    • Roncarati, R.1
  • 81
    • 51349141401 scopus 로고    scopus 로고
    • Dysregulation of microRNAs after myocardial infarction reveals a role of MIR 29 in cardiac fibrosis
    • van Rooij, E., et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR 29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 105, 13027-13032 (2008
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 13027-13032
    • Van Rooij, E.1
  • 82
    • 84865565944 scopus 로고    scopus 로고
    • MicroRNA 133a regulates DNA methylation in diabetic cardiomyocytes
    • Chavali, V., Tyagi, S. C., & Mishra, P. K. MicroRNA 133a regulates DNA methylation in diabetic cardiomyocytes. Biochem. Biophys. Res. Commun. 425, 668-672 (2012
    • (2012) Biochem. Biophys. Res. Commun , vol.425 , pp. 668-672
    • Chavali, V.1    Tyagi, S.C.2    Mishra, P.K.3
  • 83
    • 34249279050 scopus 로고    scopus 로고
    • MicroRNA 133 controls cardiac hypertrophy
    • Care, A., et al. MicroRNA 133 controls cardiac hypertrophy. Nat. Med. 13, 613-618 (2007
    • (2007) Nat. Med , vol.13 , pp. 613-618
    • Care, A.1
  • 84
    • 84887161037 scopus 로고    scopus 로고
    • Control of transcriptional elongation
    • Kwak, H., & Lis, J. T. Control of transcriptional elongation. Annu. Rev. Genet. 47, 483-508 (2013
    • (2013) Annu. Rev. Genet , vol.47 , pp. 483-508
    • Kwak, H.1    Lis, J.T.2
  • 85
    • 84871699564 scopus 로고    scopus 로고
    • Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans
    • Adelman, K., & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720-731 (2012
    • (2012) Nat. Rev. Genet , vol.13 , pp. 720-731
    • Adelman, K.1    Lis, J.T.2
  • 86
    • 79952228130 scopus 로고    scopus 로고
    • MicroRNAs MIR 199a 5p and-3p target the Brm subunit of SWI/SNF to generate a double-negative feedback loop in a variety of human cancers
    • Sakurai, K., et al. MicroRNAs miR 199a 5p and-3p target the Brm subunit of SWI/SNF to generate a double-negative feedback loop in a variety of human cancers. Cancer Res. 71, 1680-1689 (2011
    • (2011) Cancer Res , vol.71 , pp. 1680-1689
    • Sakurai, K.1
  • 87
    • 31744432337 scopus 로고    scopus 로고
    • The role of microRNA 1 and microRNA 133 in skeletal muscle proliferation and differentiation
    • Chen, J. F., et al. The role of microRNA 1 and microRNA 133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228-233 (2006
    • (2006) Nat. Genet , vol.38 , pp. 228-233
    • Chen, J.F.1
  • 88
    • 84893302190 scopus 로고    scopus 로고
    • The primary microRNA 208b interacts with Polycomb-group protein, Ezh2, to regulate gene expression in the heart
    • Mathiyalagan, P., et al. The primary microRNA 208b interacts with Polycomb-group protein, Ezh2, to regulate gene expression in the heart. Nucleic Acids Res. 42, 790-803 (2014
    • (2014) Nucleic Acids Res , vol.42 , pp. 790-803
    • Mathiyalagan, P.1
  • 89
    • 67650921949 scopus 로고    scopus 로고
    • Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression
    • Khalil, A. M., et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667-11672 (2009
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 11667-11672
    • Khalil, A.M.1
  • 90
    • 0026638672 scopus 로고
    • Cardiac expressions of alpha-And beta-myosin heavy chains and sarcomeric alpha-Actins are regulated through transcriptional mechanisms: Results from nuclear run-on assays in isolated rat cardiac nuclei
    • Boheler, K. R., Chassagne, C., Martin, X., Wisnewsky, C., & Schwartz, K. Cardiac expressions of alpha-And beta-myosin heavy chains and sarcomeric alpha-Actins are regulated through transcriptional mechanisms: results from nuclear run-on assays in isolated rat cardiac nuclei. J. Biol. Chem. 267, 12979-12985 (1992
    • (1992) J. Biol. Chem , vol.267 , pp. 12979-12985
    • Boheler, K.R.1    Chassagne, C.2    Martin, X.3    Wisnewsky, C.4    Schwartz, K.5
  • 91
    • 84873300214 scopus 로고    scopus 로고
    • Braveheart, a long noncoding RNA required for cardiovascular lineage commitment
    • Klattenhoff, C. A., et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152, 570-583 (2013
    • (2013) Cell , vol.152 , pp. 570-583
    • Klattenhoff, C.A.1
  • 92
    • 84873829893 scopus 로고    scopus 로고
    • The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse
    • Grote, P., et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell 24, 206-214 (2013
    • (2013) Dev. Cell , vol.24 , pp. 206-214
    • Grote, P.1
  • 93
    • 84907770650 scopus 로고    scopus 로고
    • Functional importance of cardiac enhancer-Associated noncoding RNAs in heart development and disease
    • Ounzain, S., et al. Functional importance of cardiac enhancer-Associated noncoding RNAs in heart development and disease. J. Mol. Cell. Cardiol. 76, 55-70 (2014
    • (2014) J. Mol. Cell. Cardiol , vol.76 , pp. 55-70
    • Ounzain, S.1
  • 94
    • 84895552736 scopus 로고    scopus 로고
    • Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support
    • Yang, K. C., et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation 129, 1009-1021 (2014
    • (2014) Circulation , vol.129 , pp. 1009-1021
    • Yang, K.C.1
  • 96
    • 84899912204 scopus 로고    scopus 로고
    • The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting MIR 489
    • Wang, K., et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR 489. Circ. Res. 114, 1377-1388 (2014
    • (2014) Circ. Res , vol.114 , pp. 1377-1388
    • Wang, K.1
  • 97
    • 84928233559 scopus 로고    scopus 로고
    • Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs
    • Ounzain, S., et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur. Heart J. 36, 353-368 (2015
    • (2015) Eur. Heart J. , vol.36 , pp. 353-368
    • Ounzain, S.1
  • 98
    • 69349092918 scopus 로고    scopus 로고
    • Natural antisense transcript of natriuretic peptide precursor A (NPPA): Structural organization and modulation of NPPA expression
    • Annilo, T., Kepp, K., & Laan, M. Natural antisense transcript of natriuretic peptide precursor A (NPPA): structural organization and modulation of NPPA expression. BMC Mol. Biol. 10, 81 (2009
    • (2009) BMC Mol. Biol , vol.10 , pp. 81
    • Annilo, T.1    Kepp, K.2    Laan, M.3
  • 99
    • 59649084181 scopus 로고    scopus 로고
    • Cell type-specific expression of endogenous cardiac troponin i antisense RNA in the neonatal rat heart
    • Voigtsberger, S., Bartsch, H., Baumann, G., & Luther, H. P. Cell type-specific expression of endogenous cardiac troponin I antisense RNA in the neonatal rat heart. Mol. Cell. Biochem. 324, 1-11 (2009
    • (2009) Mol. Cell. Biochem , vol.324 , pp. 1-11
    • Voigtsberger, S.1    Bartsch, H.2    Baumann, G.3    Luther, H.P.4
  • 100
    • 0033567836 scopus 로고    scopus 로고
    • Remodeling of the hypertrophied human myocardium by cardiac bHLH transcription factors
    • Ritter, O., Haase, H., Schulte, H. D., Lange, P. E., & Morano, I. Remodeling of the hypertrophied human myocardium by cardiac bHLH transcription factors. J. Cell. Biochem. 74, 551-561 (1999
    • (1999) J. Cell. Biochem , vol.74 , pp. 551-561
    • Ritter, O.1    Haase, H.2    Schulte, H.D.3    Lange, P.E.4    Morano, I.5
  • 101
    • 38149070767 scopus 로고    scopus 로고
    • Intergenic transcription and developmental regulation of cardiac myosin heavy chain genes
    • Haddad, F., et al. Intergenic transcription and developmental regulation of cardiac myosin heavy chain genes. Am. J. Physiol. Heart Circ. Physiol. 294, H29-H40 (2008
    • (2008) Am. J. Physiol. Heart Circ. Physiol , vol.294 , pp. H29-H40
    • Haddad, F.1
  • 102
    • 80052869283 scopus 로고    scopus 로고
    • LincRNAs act in the circuitry controlling pluripotency and differentiation
    • Guttman, M., et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295-300 (2011
    • (2011) Nature , vol.477 , pp. 295-300
    • Guttman, M.1
  • 103
    • 84869015900 scopus 로고    scopus 로고
    • Genome-wide analysis reveals distinct patterns of epigenetic features in long non-coding RNA loci
    • Sati, S., Ghosh, S., Jain, V., Scaria, V., & Sengupta, S. Genome-wide analysis reveals distinct patterns of epigenetic features in long non-coding RNA loci. Nucleic Acids Res. 40, 10018-10031 (2012
    • (2012) Nucleic Acids Res , vol.40 , pp. 10018-10031
    • Sati, S.1    Ghosh, S.2    Jain, V.3    Scaria, V.4    Sengupta, S.5
  • 104
    • 0036479009 scopus 로고    scopus 로고
    • Chromosomal silencing and localization are mediated by different domains of Xist RNA
    • Wutz, A., Rasmussen, T. P., & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167-174 (2002
    • (2002) Nat. Genet , vol.30 , pp. 167-174
    • Wutz, A.1    Rasmussen, T.P.2    Jaenisch, R.3
  • 105
    • 34250729138 scopus 로고    scopus 로고
    • Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs
    • Rinn, J. L., et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311-1323 (2007
    • (2007) Cell , vol.129 , pp. 1311-1323
    • Rinn, J.L.1
  • 106
    • 77955757309 scopus 로고    scopus 로고
    • Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1
    • Mohammad, F., Mondal, T., Guseva, N., Pandey, GK., & Kanduri, C. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137, 2493-2499 (2010
    • (2010) Development , vol.137 , pp. 2493-2499
    • Mohammad, F.1    Mondal, T.2    Guseva, N.3    Pandey, G.K.4    Kanduri, C.5
  • 107
    • 84888057006 scopus 로고    scopus 로고
    • DNMT1-interacting RNAs block gene-specific DNA methylation
    • Di Ruscio, A., et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503, 371-376 (2013
    • (2013) Nature , vol.503 , pp. 371-376
    • Di Ruscio, A.1
  • 108
    • 84908020927 scopus 로고    scopus 로고
    • A long noncoding RNA protects the heart from pathological hypertrophy
    • Han, P., et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514, 102-106 (2014
    • (2014) Nature , vol.514 , pp. 102-106
    • Han, P.1
  • 109
    • 0035895505 scopus 로고    scopus 로고
    • The sequence of the human genome
    • Venter, J. C., et al. The sequence of the human genome. Science 291, 1304-1351 (2001
    • (2001) Science , vol.291 , pp. 1304-1351
    • Venter, J.C.1
  • 110
    • 15744393452 scopus 로고    scopus 로고
    • DNA looping in gene regulation: From the assembly of macromolecular complexes to the control of transcriptional noise
    • Vilar, J. M., & Saiz, L. DNA looping in gene regulation: from the assembly of macromolecular complexes to the control of transcriptional noise. Curr. Opin. Genet. Dev. 15, 136-144 (2005
    • (2005) Curr. Opin. Genet. Dev , vol.15 , pp. 136-144
    • Vilar, J.M.1    Saiz, L.2
  • 111
    • 33847334699 scopus 로고    scopus 로고
    • Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome
    • Heintzman, N. D., et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311-318 (2007
    • (2007) Nat. Genet , vol.39 , pp. 311-318
    • Heintzman, N.D.1
  • 112
    • 60149091656 scopus 로고    scopus 로고
    • ChIP-seq accurately predicts tissue-specific activity of enhancers
    • Visel, A., et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854-858 (2009
    • (2009) Nature , vol.457 , pp. 854-858
    • Visel, A.1
  • 113
    • 34249026300 scopus 로고    scopus 로고
    • High-resolution profiling of histone methylations in the human genome
    • Barski, A., et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837 (2007
    • (2007) Cell , vol.129 , pp. 823-837
    • Barski, A.1
  • 114
    • 79951516056 scopus 로고    scopus 로고
    • A unique chromatin signature uncovers early developmental enhancers in humans
    • Rada-Iglesias, A., et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279-283 (2011
    • (2011) Nature , vol.470 , pp. 279-283
    • Rada-Iglesias, A.1
  • 115
    • 79952534189 scopus 로고    scopus 로고
    • Regulation of chromatin by histone modifications
    • Bannister, A. J., & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381-395 (2011
    • (2011) Cell Res , vol.21 , pp. 381-395
    • Bannister, A.J.1    Kouzarides, T.2
  • 116
    • 33847076849 scopus 로고    scopus 로고
    • Chromatin modifications and their function
    • Kouzarides, T. Chromatin modifications and their function. Cell 128, 693-705 (2007
    • (2007) Cell , vol.128 , pp. 693-705
    • Kouzarides, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.