-
1
-
-
0033592754
-
Signaling pathways for cardiac hypertrophy and failure
-
Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med. 1999;341:1276-1283. doi: 10.1056/NEJM199910213411706.
-
(1999)
N Engl J Med
, vol.341
, pp. 1276-1283
-
-
Hunter, J.J.1
Chien, K.R.2
-
2
-
-
0018728257
-
Myosin isoenzyme redistribution in chronic heart overload
-
Lompre AM, Schwartz K, d'Albis A, Lacombe G, Van Thiem N, Swynghedauw B. Myosin isoenzyme redistribution in chronic heart overload. Nature. 1979;282:105-107.
-
(1979)
Nature
, vol.282
, pp. 105-107
-
-
Lompre, A.M.1
Schwartz, K.2
D'Albis, A.3
Lacombe, G.4
Van Thiem, N.5
Swynghedauw, B.6
-
3
-
-
0023713203
-
Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload
-
Izumo S, Nadal-Ginard B, Mahdavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci U S A. 1988;85:339-343.
-
(1988)
Proc Natl Acad Sci U S a
, vol.85
, pp. 339-343
-
-
Izumo, S.1
Nadal-Ginard, B.2
Mahdavi, V.3
-
4
-
-
84865727393
-
The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression
-
Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775-1789. doi: 10.1101/gr.132159.111.
-
(2012)
Genome Res
, vol.22
, pp. 1775-1789
-
-
Derrien, T.1
Johnson, R.2
Bussotti, G.3
-
5
-
-
33847698971
-
The relationship between non-protein-coding DNA and eukaryotic complexity
-
Taft RJ, Pheasant M, Mattick JS. The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays. 2007;29:288-299. doi: 10.1002/bies.20544.
-
(2007)
Bioessays
, vol.29
, pp. 288-299
-
-
Taft, R.J.1
Pheasant, M.2
Mattick, J.S.3
-
6
-
-
84864126183
-
Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease
-
Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci. 2012;13:528-541. doi: 10.1038/nrn3234.
-
(2012)
Nat Rev Neurosci
, vol.13
, pp. 528-541
-
-
Qureshi, I.A.1
Mehler, M.F.2
-
7
-
-
84868664680
-
A central role for long non-coding RNA in cancer
-
Mitra SA, Mitra AP, Triche TJ. A central role for long non-coding RNA in cancer. Front Genet. 2012;3:17. doi: 10.3389/fgene.2012.00017.
-
(2012)
Front Genet.
, vol.3
, pp. 17
-
-
Mitra, S.A.1
Mitra, A.P.2
Triche, T.J.3
-
8
-
-
80053045739
-
Molecular mechanisms of long noncoding RNAs
-
Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904-914. doi: 10.1016/j.molcel.2011.08.018.
-
(2011)
Mol Cell
, vol.43
, pp. 904-914
-
-
Wang, K.C.1
Chang, H.Y.2
-
9
-
-
80054684399
-
Long non-coding RNA modifies chromatin: Epigenetic silencing by long non-coding RNAs
-
Saxena A, Carninci P. Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. Bioessays. 2011;33:830-839. doi: 10.1002/bies.201100084.
-
(2011)
Bioessays
, vol.33
, pp. 830-839
-
-
Saxena, A.1
Carninci, P.2
-
10
-
-
78651293534
-
miRBase: Integrating microRNA annotation and deep-sequencing data
-
Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152-D157. doi: 10.1093/nar/gkq1027.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. D152-D157
-
-
Kozomara, A.1
Griffiths-Jones, S.2
-
11
-
-
34347376692
-
Characterization of microRNA expression profiles in normal human tissues
-
Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007;8:166. doi: 10.1186/1471-2164-8-166.
-
(2007)
BMC Genomics
, vol.8
, pp. 166
-
-
Liang, Y.1
Ridzon, D.2
Wong, L.3
Chen, C.4
-
12
-
-
84860319206
-
Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression
-
Zardo G, Ciolfi A, Vian L, et al. Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood. 2012;119:4034-4046. doi: 10.1182/blood-2011-08-371344.
-
(2012)
Blood.
, vol.119
, pp. 4034-4046
-
-
Zardo, G.1
Ciolfi, A.2
Vian, L.3
-
13
-
-
84867261219
-
Transcriptional targeting by microRNA-polycomb complexes: A novel route in cell fate determination
-
Zardo G, Ciolfi A, Vian L, Billi M, Racanicchi S, Grignani F, Nervi C. Transcriptional targeting by microRNA-polycomb complexes: a novel route in cell fate determination. Cell Cycle. 2012;11:3543-3549. doi: 10.4161/cc.21468.
-
(2012)
Cell Cycle.
, vol.11
, pp. 3543-3549
-
-
Zardo, G.1
Ciolfi, A.2
Vian, L.3
Billi, M.4
Racanicchi, S.5
Grignani, F.6
Nervi, C.7
-
14
-
-
84856695673
-
Circulating microRNAs: Novel biomarkers and extracellular communicators in cardiovascular disease?
-
Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110:483-495. doi: 10.1161/CIRCRESAHA.111.247452.
-
(2012)
Circ Res
, vol.110
, pp. 483-495
-
-
Creemers, E.E.1
Tijsen, A.J.2
Pinto, Y.M.3
-
15
-
-
84883593177
-
Non-coding RNAs in cardiac remodeling and heart failure
-
Kumarswamy R, Thum T. Non-coding RNAs in cardiac remodeling and heart failure. Circ Res. 2013;113:676-689. doi: 10.1161/CIRCRESAHA.113.300226.
-
(2013)
Circ Res
, vol.113
, pp. 676-689
-
-
Kumarswamy, R.1
Thum, T.2
-
16
-
-
84899658554
-
microRNAs in cardiovascular diseases: Current knowledge and the road ahead
-
Condorelli G, Latronico MV, Cavarretta E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol. 2014;63:2177-2187. doi: 10.1016/j.jacc.2014.01.050.
-
(2014)
J Am Coll Cardiol.
, vol.63
, pp. 2177-2187
-
-
Condorelli, G.1
Latronico, M.V.2
Cavarretta, E.3
-
17
-
-
84891848945
-
microRNA therapeutics in cardiovascular disease models
-
Dangwal S, Thum T. microRNA therapeutics in cardiovascular disease models. Annu Rev Pharmacol Toxicol. 2014;54:185-203. doi: 10.1146/annurev-pharmtox-011613-135957.
-
(2014)
Annu Rev Pharmacol Toxicol.
, vol.54
, pp. 185-203
-
-
Dangwal, S.1
Thum, T.2
-
18
-
-
84855244103
-
MicroRNA therapeutics in cardiovascular medicine
-
Thum T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol Med. 2012;4:3-14. doi: 10.1002/emmm.201100191.
-
(2012)
EMBO Mol Med
, vol.4
, pp. 3-14
-
-
Thum, T.1
-
19
-
-
78751660177
-
Pervasive roles of microRNAs in cardiovascular biology
-
Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469:336-342. doi: 10.1038/nature09783.
-
(2011)
Nature
, vol.469
, pp. 336-342
-
-
Small, E.M.1
Olson, E.N.2
-
20
-
-
0032540267
-
A calcineurin-dependent transcriptional pathway for cardiac hypertrophy
-
Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93:215-228.
-
(1998)
Cell.
, vol.93
, pp. 215-228
-
-
Molkentin, J.D.1
Lu, J.R.2
Antos, C.L.3
Markham, B.4
Richardson, J.5
Robbins, J.6
Grant, S.R.7
Olson, E.N.8
-
21
-
-
34247589595
-
Control of stress-dependent cardiac growth and gene expression by a microRNA
-
van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316:575-579. doi: 10.1126/science.1139089.
-
(2007)
Science.
, vol.316
, pp. 575-579
-
-
Van Rooij, E.1
Sutherland, L.B.2
Qi, X.3
Richardson, J.A.4
Hill, J.5
Olson, E.N.6
-
22
-
-
34249279050
-
MicroRNA-133 controls cardiac hypertrophy
-
Carè A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13:613-618. doi: 10.1038/nm1582.
-
(2007)
Nat Med.
, vol.13
, pp. 613-618
-
-
Carè, A.1
Catalucci, D.2
Felicetti, F.3
-
23
-
-
73449086958
-
Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions
-
Elia L, Contu R, Quintavalle M, Varrone F, Chimenti C, Russo MA, Cimino V, De Marinis L, Frustaci A, Catalucci D, Condorelli G. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation. 2009;120:2377-2385. doi: 10.1161/CIRCULATIONAHA.109.879429.
-
(2009)
Circulation.
, vol.120
, pp. 2377-2385
-
-
Elia, L.1
Contu, R.2
Quintavalle, M.3
Varrone, F.4
Chimenti, C.5
Russo, Ma.6
Cimino, V.7
De Marinis, L.8
Frustaci, A.9
Catalucci, D.10
Condorelli, G.11
-
24
-
-
84872038762
-
The circulating level of FABP3 is an indirect biomarker of microRNA-1
-
Varrone F, Gargano B, Carullo P, et al. The circulating level of FABP3 is an indirect biomarker of microRNA-1. J Am Coll Cardiol. 2013;61:88-95. doi: 10.1016/j.jacc.2012.08.1003.
-
(2013)
J Am Coll Cardiol.
, vol.61
, pp. 88-95
-
-
Varrone, F.1
Gargano, B.2
Carullo, P.3
-
25
-
-
64649094112
-
MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes
-
Ikeda S, He A, Kong SW, Lu J, Bejar R, Bodyak N, Lee KH, Ma Q, Kang PM, Golub TR, Pu WT. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol. 2009;29:2193-2204. doi: 10.1128/MCB.01222-08.
-
(2009)
Mol Cell Biol.
, vol.29
, pp. 2193-2204
-
-
Ikeda, S.1
He, A.2
Kong, S.W.3
Lu, J.4
Bejar, R.5
Bodyak, N.6
Lee, K.H.7
Ma, Q.8
Kang, P.M.9
Golub, T.R.10
Pu, W.T.11
-
26
-
-
84904040454
-
MicroRNA-133 modulates the β1-adrenergic receptor transduction cascade
-
Castaldi A, Zaglia T, Di Mauro V, et al. MicroRNA-133 modulates the β1-adrenergic receptor transduction cascade. Circ Res. 2014;115:273-283. doi: 10.1161/CIRCRESAHA.115.303252.
-
(2014)
Circ Res.
, vol.115
, pp. 273-283
-
-
Castaldi, A.1
Zaglia, T.2
Di Mauro, V.3
-
27
-
-
34547579291
-
MicroRNAs in the human heart: A clue to fetal gene reprogramming in heart failure
-
Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation. 2007;116:258-267. doi: 10.1161/CIRCULATIONAHA.107.687947.
-
(2007)
Circulation.
, vol.116
, pp. 258-267
-
-
Thum, T.1
Galuppo, P.2
Wolf, C.3
Fiedler, J.4
Kneitz, S.5
Van Laake, L.W.6
Doevendans, P.A.7
Mummery, C.L.8
Borlak, J.9
Haverich, A.10
Gross, C.11
Engelhardt, S.12
Ertl, G.13
Bauersachs, J.14
-
28
-
-
84867009927
-
The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy
-
Ucar A, Gupta SK, Fiedler J, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun. 2012;3:1078. doi: 10.1038/ncomms2090.
-
(2012)
Nat Commun.
, vol.3
, pp. 1078
-
-
Ucar, A.1
Gupta, S.K.2
Fiedler, J.3
-
29
-
-
84892924162
-
Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: Analysis of recurrent cardiovascular events and mortality
-
Zsebo K, Yaroshinsky A, Rudy JJ, Wagner K, Greenberg B, Jessup M, Hajjar RJ. Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ Res. 2014;114:101-108. doi: 10.1161/CIRCRESAHA.113.302421.
-
(2014)
Circ Res
, vol.114
, pp. 101-108
-
-
Zsebo, K.1
Yaroshinsky, A.2
Rudy, J.J.3
Wagner, K.4
Greenberg, B.5
Jessup, M.6
Hajjar, R.J.7
-
30
-
-
84860623522
-
SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway
-
Kumarswamy R, Lyon AR, Volkmann I, Mills AM, Bretthauer J, Pahuja A, Geers-Knörr C, Kraft T, Hajjar RJ, Macleod KT, Harding SE, Thum T. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur Heart J. 2012;33:1067-1075. doi: 10.1093/eurheartj/ehs043.
-
(2012)
Eur Heart J
, vol.33
, pp. 1067-1075
-
-
Kumarswamy, R.1
Lyon, A.R.2
Volkmann, I.3
Mills, A.M.4
Bretthauer, J.5
Pahuja, A.6
Geers-Knörr, C.7
Kraft, T.8
Hajjar, R.J.9
Macleod, K.T.10
Harding, S.E.11
Thum, T.12
-
31
-
-
84859720170
-
2+ overload and cell death
-
2+ overload and cell death. J Clin Invest. 2012;122:1222-1232. doi: 10.1172/JCI59327.
-
(2012)
J Clin Invest.
, vol.122
, pp. 1222-1232
-
-
Aurora, A.B.1
Mahmoud, A.I.2
Luo, X.3
Johnson, B.A.4
Van Rooij, E.5
Matsuzaki, S.6
Humphries, K.M.7
Hill, J.A.8
Bassel-Duby, R.9
Sadek, H.A.10
Olson, E.N.11
-
32
-
-
84887251900
-
Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure
-
Dirkx E, Gladka MM, Philippen LE, et al. Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat Cell Biol. 2013;15:1282-1293. doi: 10.1038/ncb2866.
-
(2013)
Nat Cell Biol.
, vol.15
, pp. 1282-1293
-
-
Dirkx, E.1
Gladka, M.M.2
Philippen, L.E.3
-
33
-
-
84899482237
-
Inhibition of miR-25 improves cardiac contractility in the failing heart
-
Wahlquist C, Jeong D, Rojas-Muñoz A, Kho C, Lee A, Mitsuyama S, van Mil A, Park WJ, Sluijter JP, Doevendans PA, Hajjar RJ, Mercola M. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature. 2014;508:531-535. doi: 10.1038/nature13073.
-
(2014)
Nature.
, vol.508
, pp. 531-535
-
-
Wahlquist, C.1
Jeong, D.2
Rojas-Muñoz, A.3
Kho, C.4
Lee, A.5
Mitsuyama, S.6
Van Mil, A.7
Park, W.J.8
Sluijter, J.P.9
Doevendans, P.A.10
Hajjar, R.J.11
Mercola, M.12
-
34
-
-
84894473134
-
MicroRNA regulation and cardiac calcium signaling: Role in cardiac disease and therapeutic potential
-
Harada M, Luo X, Murohara T, Yang B, Dobrev D, Nattel S. MicroRNA regulation and cardiac calcium signaling: role in cardiac disease and therapeutic potential. Circ Res. 2014;114:689-705. doi: 10.1161/CIRCRESAHA.114.301798.
-
(2014)
Circ Res.
, vol.114
, pp. 689-705
-
-
Harada, M.1
Luo, X.2
Murohara, T.3
Yang, B.4
Dobrev, D.5
Nattel, S.6
-
35
-
-
59849128881
-
miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling
-
following 178.
-
Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P, Maessen JG, Heymans S, Pinto YM, Creemers EE. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009;104:170-178, 6p following 178. doi: 10.1161/CIRCRESAHA.108.182535.
-
(2009)
Circ Res.
, vol.104
-
-
Duisters, R.F.1
Tijsen, A.J.2
Schroen, B.3
Leenders, J.J.4
Lentink, V.5
Van Der Made, I.6
Herias, V.7
Van Leeuwen, R.E.8
Schellings, M.W.9
Barenbrug, P.10
Maessen, J.G.11
Heymans, S.12
Pinto, Y.M.13
Creemers, E.E.14
-
36
-
-
57749168828
-
MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
-
Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980-984. doi: 10.1038/nature07511.
-
(2008)
Nature.
, vol.456
, pp. 980-984
-
-
Thum, T.1
Gross, C.2
Fiedler, J.3
-
37
-
-
84866558680
-
A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis
-
Liang H, Zhang C, Ban T, Liu Y, Mei L, Piao X, Zhao D, Lu Y, Chu W, Yang B. A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis. Int J Biochem Cell Biol. 2012;44:2152-2160. doi: 10.1016/j.biocel.2012.08.019.
-
(2012)
Int J Biochem Cell Biol.
, vol.44
, pp. 2152-2160
-
-
Liang, H.1
Zhang, C.2
Ban, T.3
Liu, Y.4
Mei, L.5
Piao, X.6
Zhao, D.7
Lu, Y.8
Chu, W.9
Yang, B.10
-
38
-
-
62349141343
-
MicroRNA expression in response to murine myocardial infarction: MiR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue
-
Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 2009;82:21-29. doi: 10.1093/cvr/cvp015.
-
(2009)
Cardiovasc Res.
, vol.82
, pp. 21-29
-
-
Roy, S.1
Khanna, S.2
Hussain, S.R.3
Biswas, S.4
Azad, A.5
Rink, C.6
Gnyawali, S.7
Shilo, S.8
Nuovo, G.J.9
Sen, C.K.10
-
39
-
-
78049432896
-
Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice
-
Patrick DM, Montgomery RL, Qi X, Obad S, Kauppinen S, Hill JA, van Rooij E, Olson EN. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest. 2010;120:3912-3916. doi: 10.1172/JCI43604.
-
(2010)
J Clin Invest.
, vol.120
, pp. 3912-3916
-
-
Patrick, D.M.1
Montgomery, R.L.2
Qi, X.3
Obad, S.4
Kauppinen, S.5
Hill, J.A.6
Van Rooij, E.7
Olson, E.N.8
-
40
-
-
79551511531
-
Comparison of different miR-21 inhibitor chemistries in a cardiac disease model
-
author reply 462-463
-
Thum T, Chau N, Bhat B, Gupta SK, Linsley PS, Bauersachs J, Engelhardt S. Comparison of different miR-21 inhibitor chemistries in a cardiac disease model. J Clin Invest. 2011;121:461-462; author reply 462-463. doi: 10.1172/JCI45938.
-
(2011)
J Clin Invest.
, vol.121
, pp. 461-462
-
-
Thum, T.1
Chau, N.2
Bhat, B.3
Gupta, S.K.4
Linsley, P.S.5
Bauersachs, J.6
Engelhardt, S.7
-
41
-
-
77955373730
-
miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis
-
Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, Abraham E. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207:1589-1597. doi: 10.1084/jem.20100035.
-
(2010)
J Exp Med.
, vol.207
, pp. 1589-1597
-
-
Liu, G.1
Friggeri, A.2
Yang, Y.3
Milosevic, J.4
Ding, Q.5
Thannickal, V.J.6
Kaminski, N.7
Abraham, E.8
-
42
-
-
84863116324
-
MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways
-
Chau BN, Xin C, Hartner J, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012;4:121ra18. doi: 10.1126/scitranslmed.3003205.
-
(2012)
Sci Transl Med.
, vol.4
, pp. 121ra18
-
-
Chau, B.N.1
Xin, C.2
Hartner, J.3
-
43
-
-
51349141401
-
Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
-
van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105:13027-13032. doi: 10.1073/pnas.0805038105.
-
(2008)
Proc Natl Acad Sci U S A.
, vol.105
, pp. 13027-13032
-
-
Van Rooij, E.1
Sutherland, L.B.2
Thatcher, J.E.3
DiMaio, J.M.4
Naseem, R.H.5
Marshall, W.S.6
Hill, J.A.7
Olson, E.N.8
-
44
-
-
84895521111
-
Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy
-
Roncarati R, Viviani Anselmi C, Losi MA, et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2014;63:920-927. doi: 10.1016/j.jacc.2013.09.041.
-
(2014)
J Am Coll Cardiol.
, vol.63
, pp. 920-927
-
-
Roncarati, R.1
Viviani Anselmi, C.2
Losi, Ma.3
-
45
-
-
84926151941
-
MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure
-
In press
-
Watson CJ, Gupta SK, O'Connell E, Thum S, Glezeva N, Fendrich J, Gallagher J, Ledwidge M, McDonald K, Thum T. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail, 2015. In press.
-
(2015)
Eur J Heart Fail
-
-
Watson, C.J.1
Gupta, S.K.2
O'Connell, E.3
Thum, S.4
Glezeva, N.5
Fendrich, J.6
Gallagher, J.7
Ledwidge, M.8
McDonald, K.9
Thum, T.10
-
46
-
-
84872934514
-
MicroRNAs in myocardial infarction
-
Fiedler J, Thum T. MicroRNAs in myocardial infarction. Arterioscler Thromb Vasc Biol. 2013;33:201-205. doi: 10.1161/ATVBAHA.112.300137.
-
(2013)
Arterioscler Thromb Vasc Biol.
, vol.33
, pp. 201-205
-
-
Fiedler, J.1
Thum, T.2
-
47
-
-
34247554263
-
Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells
-
Suárez Y, Fernández-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100:1164-1173. doi: 10.1161/01.RES.0000265065.26744.17.
-
(2007)
Circ Res.
, vol.100
, pp. 1164-1173
-
-
Suárez, Y.1
Fernández-Hernando, C.2
Pober, J.S.3
Sessa, W.C.4
-
48
-
-
34447632218
-
Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis
-
Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007;101:59-68. doi: 10.1161/CIRCRESAHA.107.153916.
-
(2007)
Circ Res.
, vol.101
, pp. 59-68
-
-
Kuehbacher, A.1
Urbich, C.2
Zeiher, A.M.3
Dimmeler, S.4
-
49
-
-
48549106378
-
The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis
-
Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15:261-271. doi: 10.1016/j.devcel.2008.07.002.
-
(2008)
Dev Cell.
, vol.15
, pp. 261-271
-
-
Wang, S.1
Aurora, A.B.2
Johnson, B.A.3
Qi, X.4
McAnally, J.5
Hill, J.A.6
Richardson, J.A.7
Bassel-Duby, R.8
Olson, E.N.9
-
50
-
-
84887075238
-
Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles
-
Jansen F, Yang X, Hoelscher M, Cattelan A, Schmitz T, Proebsting S, Wenzel D, Vosen S, Franklin BS, Fleischmann BK, Nickenig G, Werner N. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation. 2013;128:2026-2038. doi: 10.1161/CIRCULATIONAHA.113.001720.
-
(2013)
Circulation.
, vol.128
, pp. 2026-2038
-
-
Jansen, F.1
Yang, X.2
Hoelscher, M.3
Cattelan, A.4
Schmitz, T.5
Proebsting, S.6
Wenzel, D.7
Vosen, S.8
Franklin, B.S.9
Fleischmann, B.K.10
Nickenig, G.11
Werner, N.12
-
51
-
-
67649998366
-
MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice
-
Bonauer A, Carmona G, Iwasaki M, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009;324:1710-1713. doi: 10.1126/science.1174381.
-
(2009)
Science.
, vol.324
, pp. 1710-1713
-
-
Bonauer, A.1
Carmona, G.2
Iwasaki, M.3
-
52
-
-
80051802344
-
MicroRNA-24 regulates vascularity after myocardial infarction
-
Fiedler J, Jazbutyte V, Kirchmaier BC, et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation. 2011;124:720-730. doi: 10.1161/CIRCULATIONAHA.111.039008.
-
(2011)
Circulation.
, vol.124
, pp. 720-730
-
-
Fiedler, J.1
Jazbutyte, V.2
Kirchmaier, B.C.3
-
53
-
-
84923871190
-
MicroRNA-24 antagonism prevents renal ischemia reperfusion injury
-
Lorenzen JM, Kaucsar T, Schauerte C, et al. MicroRNA-24 antagonism prevents renal ischemia reperfusion injury. J Am Soc Nephrol. 2014;25:2717-2729. doi: 10.1681/ASN.2013121329.
-
(2014)
J Am Soc Nephrol.
, vol.25
, pp. 2717-2729
-
-
Lorenzen, J.M.1
Kaucsar, T.2
Schauerte, C.3
-
54
-
-
84907324806
-
Functional microRNA library screening identifies the hypoxamir miR-24 as a potent regulator of smooth muscle cell proliferation and vascularization
-
Fiedler J, Stöhr A, Gupta SK, Hartmann D, Holzmann A, Just A, Hansen A, Hilfiker-Kleiner D, Eschenhagen T, Thum T. Functional microRNA library screening identifies the hypoxamir miR-24 as a potent regulator of smooth muscle cell proliferation and vascularization. Antioxid Redox Signal. 2014;21:1167-1176. doi: 10.1089/ars.2013.5418.
-
(2014)
Antioxid Redox Signal.
, vol.21
, pp. 1167-1176
-
-
Fiedler, J.1
Stöhr, A.2
Gupta, S.K.3
Hartmann, D.4
Holzmann, A.5
Just, A.6
Hansen, A.7
Hilfiker-Kleiner, D.8
Eschenhagen, T.9
Thum, T.10
-
55
-
-
33947237562
-
The chemical nature of heart failure
-
Herrmann G, Decherd JGM. The chemical nature of heart failure. Ann Intern Med. 1939;12:1233-1244.
-
(1939)
Ann Intern Med.
, vol.12
, pp. 1233-1244
-
-
Herrmann, G.1
Decherd, J.G.M.2
-
56
-
-
33947239659
-
The failing heart - an engine out of fuel
-
Neubauer S. The failing heart - an engine out of fuel. N Engl J Med. 2007;356:1140-1151. doi: 10.1056/NEJMra063052.
-
(2007)
N Engl J Med.
, vol.356
, pp. 1140-1151
-
-
Neubauer, S.1
-
57
-
-
84883466769
-
The hypoxia-inducible microRNA cluster miR-199a∼214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation
-
el Azzouzi H, Leptidis S, Dirkx E, et al. The hypoxia-inducible microRNA cluster miR-199a∼214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation. Cell Metab. 2013;18:341-354. doi: 10.1016/j.cmet.2013.08.009.
-
(2013)
Cell Metab.
, vol.18
, pp. 341-354
-
-
El Azzouzi, H.1
Leptidis, S.2
Dirkx, E.3
-
58
-
-
84866546187
-
Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378∗
-
Carrer M, Liu N, Grueter CE, Williams AH, Frisard MI, Hulver MW, Bassel-Duby R, Olson EN. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378∗. Proc Natl Acad Sci U S A. 2012;109:15330-15335. doi: 10.1073/pnas.1207605109.
-
(2012)
Proc Natl Acad Sci U S A.
, vol.109
, pp. 15330-15335
-
-
Carrer, M.1
Liu, N.2
Grueter, C.E.3
Williams, A.H.4
Frisard, M.I.5
Hulver, M.W.6
Bassel-Duby, R.7
Olson, E.N.8
-
59
-
-
84860340270
-
A cardiac microRNA governs systemic energy homeostasis by regulation of MED13
-
Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi X, Gautron L, Elmquist JK, Bassel-Duby R, Olson EN. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell. 2012;149:671-683. doi: 10.1016/j.cell.2012.03.029.
-
(2012)
Cell.
, vol.149
, pp. 671-683
-
-
Grueter, C.E.1
Van Rooij, E.2
Johnson, B.A.3
DeLeon, S.M.4
Sutherland, L.B.5
Qi, X.6
Gautron, L.7
Elmquist, J.K.8
Bassel-Duby, R.9
Olson, E.N.10
-
60
-
-
84903719295
-
Heart- and muscle-derived signaling system dependent on MED13 and Wingless controls obesity in Drosophila
-
Lee JH, Bassel-Duby R, Olson EN. Heart- and muscle-derived signaling system dependent on MED13 and Wingless controls obesity in Drosophila. Proc Natl Acad Sci U S A. 2014;111:9491-9496. doi: 10.1073/pnas.1409427111.
-
(2014)
Proc Natl Acad Sci U S a
, vol.111
, pp. 9491-9496
-
-
Lee, J.H.1
Bassel-Duby, R.2
Olson, E.N.3
-
61
-
-
84875200257
-
Long noncoding RNAs: Cellular address codes in development and disease
-
Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152:1298-1307. doi: 10.1016/j.cell.2013.02.012.
-
(2013)
Cell.
, vol.152
, pp. 1298-1307
-
-
Batista, P.J.1
Chang, H.Y.2
-
62
-
-
84901611036
-
Mass-spectrometry-based draft of the human proteome
-
Wilhelm M, Schlegl J, Hahne H, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509:582-587. doi: 10.1038/nature13319.
-
(2014)
Nature.
, vol.509
, pp. 582-587
-
-
Wilhelm, M.1
Schlegl, J.2
Hahne, H.3
-
63
-
-
84890571878
-
Long noncoding RNA: A new player of heart failure?
-
Papait R, Kunderfranco P, Stirparo GG, Latronico MV, Condorelli G. Long noncoding RNA: a new player of heart failure? J Cardiovasc Transl Res. 2013;6:876-883. doi: 10.1007/s12265-013-9488-6.
-
(2013)
J Cardiovasc Transl Res.
, vol.6
, pp. 876-883
-
-
Papait, R.1
Kunderfranco, P.2
Stirparo, G.G.3
Latronico, M.V.4
Condorelli, G.5
-
64
-
-
80052975908
-
Engineering biological systems with synthetic RNA molecules
-
Liang JC, Bloom RJ, Smolke CD. Engineering biological systems with synthetic RNA molecules. Mol Cell. 2011;43:915-926. doi: 10.1016/j.molcel.2011.08.023.
-
(2011)
Mol Cell.
, vol.43
, pp. 915-926
-
-
Liang, J.C.1
Bloom, R.J.2
Smolke, C.D.3
-
65
-
-
84875183056
-
Structure and function of long noncoding RNAs in epigenetic regulation
-
Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20:300-307. doi: 10.1038/nsmb.2480.
-
(2013)
Nat Struct Mol Biol.
, vol.20
, pp. 300-307
-
-
Mercer, T.R.1
Mattick, J.S.2
-
66
-
-
84857066786
-
Modular regulatory principles of large non-coding RNAs
-
Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482:339-346. doi: 10.1038/nature10887.
-
(2012)
Nature.
, vol.482
, pp. 339-346
-
-
Guttman, M.1
Rinn, J.L.2
-
67
-
-
77956306662
-
Genome-wide measurement of RNA secondary structure in yeast
-
Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, Chang HY, Segal E. Genome-wide measurement of RNA secondary structure in yeast. Nature. 2010;467:103-107. doi: 10.1038/nature09322.
-
(2010)
Nature.
, vol.467
, pp. 103-107
-
-
Kertesz, M.1
Wan, Y.2
Mazor, E.3
Rinn, J.L.4
Nutter, R.C.5
Chang, H.Y.6
Segal, E.7
-
68
-
-
67650921949
-
Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression
-
Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106:11667-11672. doi: 10.1073/pnas.0904715106.
-
(2009)
Proc Natl Acad Sci U S A.
, vol.106
, pp. 11667-11672
-
-
Khalil, A.M.1
Guttman, M.2
Huarte, M.3
Garber, M.4
Raj, A.5
Rivea Morales, D.6
Thomas, K.7
Presser, A.8
Bernstein, B.E.9
Van Oudenaarden, A.10
Regev, A.11
Lander, E.S.12
Rinn, J.L.13
-
69
-
-
80052972698
-
The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin
-
Bertani S, Sauer S, Bolotin E, Sauer F. The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell. 2011;43:1040-1046. doi: 10.1016/j.molcel.2011.08.019.
-
(2011)
Mol Cell.
, vol.43
, pp. 1040-1046
-
-
Bertani, S.1
Sauer, S.2
Bolotin, E.3
Sauer, F.4
-
70
-
-
77957243921
-
Long noncoding RNAs with enhancer-like function in human cells
-
Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143:46-58. doi: 10.1016/j.cell.2010.09.001.
-
(2010)
Cell.
, vol.143
, pp. 46-58
-
-
Ørom, U.A.1
Derrien, T.2
Beringer, M.3
Gumireddy, K.4
Gardini, A.5
Bussotti, G.6
Lai, F.7
Zytnicki, M.8
Notredame, C.9
Huang, Q.10
Guigo, R.11
Shiekhattar, R.12
-
71
-
-
84869088820
-
Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat
-
Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C, Forrest AR, Carninci P, Biffo S, Stupka E, Gustincich S. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature. 2012;491:454-457. doi: 10.1038/nature11508.
-
(2012)
Nature.
, vol.491
, pp. 454-457
-
-
Carrieri, C.1
Cimatti, L.2
Biagioli, M.3
Beugnet, A.4
Zucchelli, S.5
Fedele, S.6
Pesce, E.7
Ferrer, I.8
Collavin, L.9
Santoro, C.10
Forrest, A.R.11
Carninci, P.12
Biffo, S.13
Stupka, E.14
Gustincich, S.15
-
72
-
-
84865379361
-
LincRNA-p21 suppresses target mRNA translation
-
Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, Huarte M, Zhan M, Becker KG, Gorospe M. LincRNA-p21 suppresses target mRNA translation. Mol Cell. 2012;47:648-655. doi: 10.1016/j.molcel.2012.06.027.
-
(2012)
Mol Cell.
, vol.47
, pp. 648-655
-
-
Yoon, J.H.1
Abdelmohsen, K.2
Srikantan, S.3
Yang, X.4
Martindale, J.L.5
De Huarte M, S.6
Zhan, M.7
Becker, K.G.8
Gorospe, M.9
-
73
-
-
79961170994
-
A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language?
-
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353-358. doi: 10.1016/j.cell.2011.07.014.
-
(2011)
Cell.
, vol.146
, pp. 353-358
-
-
Salmena, L.1
Poliseno, L.2
Tay, Y.3
Kats, L.4
Pandolfi, P.P.5
-
74
-
-
79959355182
-
Epigenetics of imprinted long non-coding RNAs
-
Mohammad F, Mondal T, Kanduri C. Epigenetics of imprinted long non-coding RNAs. Epigenetics. 2009;4:277-286.
-
(2009)
Epigenetics.
, vol.4
, pp. 277-286
-
-
Mohammad, F.1
Mondal, T.2
Kanduri, C.3
-
75
-
-
77956927823
-
The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation
-
Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39:925-938. doi: 10.1016/j.molcel.2010.08.011.
-
(2010)
Mol Cell.
, vol.39
, pp. 925-938
-
-
Tripathi, V.1
Ellis, J.D.2
Shen, Z.3
Song, D.Y.4
Pan, Q.5
Watt, A.T.6
Freier, S.M.7
Bennett, C.F.8
Sharma, A.9
Bubulya, P.A.10
Blencowe, B.J.11
Prasanth, S.G.12
Prasanth, K.V.13
-
76
-
-
84890659939
-
Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination
-
Yoon JH, Abdelmohsen K, Kim J, Yang X, Martindale JL, Tominaga-Yamanaka K, White EJ, Orjalo AV, Rinn JL, Kreft SG, Wilson GM, Gorospe M. Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun. 2013;4:2939. doi: 10.1038/ncomms3939.
-
(2013)
Nat Commun.
, vol.4
, pp. 2939
-
-
Yoon, J.H.1
Abdelmohsen, K.2
Kim, J.3
Yang, X.4
Martindale, J.L.5
Tominaga-Yamanaka, K.6
White, E.J.7
Orjalo, A.V.8
Rinn, J.L.9
Kreft, S.G.10
Wilson, G.M.11
Gorospe, M.12
-
77
-
-
38849191137
-
Physiological assembly and activity of human telomerase complexes
-
Collins K. Physiological assembly and activity of human telomerase complexes. Mech Ageing Dev. 2008;129:91-98. doi: 10.1016/j.mad.2007.10.008.
-
(2008)
Mech Ageing Dev.
, vol.129
, pp. 91-98
-
-
Collins, K.1
-
78
-
-
80052978224
-
Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses
-
Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25:1915-1927. doi: 10.1101/gad.17446611.
-
(2011)
Genes Dev.
, vol.25
, pp. 1915-1927
-
-
Cabili, M.N.1
Trapnell, C.2
Goff, L.3
Koziol, M.4
Tazon-Vega, B.5
Regev, A.6
Rinn, J.L.7
-
79
-
-
84857836107
-
Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis
-
Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L, Sandelin A, Rinn JL, Regev A, Schier AF. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 2012;22:577-591. doi: 10.1101/gr.133009.111.
-
(2012)
Genome Res.
, vol.22
, pp. 577-591
-
-
Pauli, A.1
Valen, E.2
Lin, M.F.3
Garber, M.4
Vastenhouw, N.L.5
Levin, J.Z.6
Fan, L.7
Sandelin, A.8
Rinn, J.L.9
Regev, A.10
Schier, A.F.11
-
80
-
-
84877928424
-
Cytotopic localization by long noncoding RNAs
-
Batista PJ, Chang HY. Cytotopic localization by long noncoding RNAs. Curr Opin Cell Biol. 2013;25:195-199. doi: 10.1016/j.ceb.2012.12.001.
-
(2013)
Curr Opin Cell Biol.
, vol.25
, pp. 195-199
-
-
Batista, P.J.1
Chang, H.Y.2
-
81
-
-
35548931609
-
X inactivation Xplained
-
Wutz A, Gribnau J. X inactivation Xplained. Curr Opin Genet Dev. 2007;17:387-393. doi: 10.1016/j.gde.2007.08.001.
-
(2007)
Curr Opin Genet Dev.
, vol.17
, pp. 387-393
-
-
Wutz, A.1
Gribnau, J.2
-
82
-
-
79957537160
-
The central role of RNA in human development and cognition
-
Mattick JS. The central role of RNA in human development and cognition. FEBS Lett. 2011;585:1600-1616. doi: 10.1016/j.febslet.2011.05.001.
-
(2011)
FEBS Lett.
, vol.585
, pp. 1600-1616
-
-
Mattick, J.S.1
-
83
-
-
79953858658
-
No-nonsense functions for long noncoding RNAs
-
Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011;145:178-181. doi: 10.1016/j.cell.2011.03.014.
-
(2011)
Cell.
, vol.145
, pp. 178-181
-
-
Nagano, T.1
Fraser, P.2
-
84
-
-
84868683051
-
Regulation of mammalian cell differentiation by long non-coding RNAs
-
Hu W, Alvarez-Dominguez JR, Lodish HF. Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep. 2012;13:971-983. doi: 10.1038/embor.2012.145.
-
(2012)
EMBO Rep.
, vol.13
, pp. 971-983
-
-
Hu, W.1
Alvarez-Dominguez, J.R.2
Lodish, H.F.3
-
85
-
-
80054715378
-
A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA
-
Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147:358-369. doi: 10.1016/j.cell.2011.09.028.
-
(2011)
Cell.
, vol.147
, pp. 358-369
-
-
Cesana, M.1
Cacchiarelli, D.2
Legnini, I.3
Santini, T.4
Sthandier, O.5
Chinappi, M.6
Tramontano, A.7
Bozzoni, I.8
-
86
-
-
55349100420
-
Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos
-
Terranova R, Yokobayashi S, Stadler MB, Otte AP, van Lohuizen M, Orkin SH, Peters AH. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell. 2008;15:668-679. doi: 10.1016/j.devcel.2008.08.015.
-
(2008)
Dev Cell.
, vol.15
, pp. 668-679
-
-
Terranova, R.1
Yokobayashi, S.2
Stadler, M.B.3
Otte, A.P.4
Van Lohuizen, M.5
Orkin, S.H.6
Peters, A.H.7
-
87
-
-
54049138948
-
Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation
-
Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell. 2008;32:232-246. doi: 10.1016/j.molcel.2008.08.022.
-
(2008)
Mol Cell.
, vol.32
, pp. 232-246
-
-
Pandey, R.R.1
Mondal, T.2
Mohammad, F.3
Enroth, S.4
Redrup, L.5
Komorowski, J.6
Nagano, T.7
Mancini-Dinardo, D.8
Kanduri, C.9
-
88
-
-
79953748673
-
A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression
-
Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472:120-124. doi: 10.1038/nature09819.
-
(2011)
Nature.
, vol.472
, pp. 120-124
-
-
Wang, K.C.1
Yang, Y.W.2
Liu, B.3
Sanyal, A.4
Corces-Zimmerman, R.5
Chen, Y.6
Lajoie, B.R.7
Protacio, A.8
Flynn, R.A.9
Gupta, R.A.10
Wysocka, J.11
Lei, M.12
Dekker, J.13
Helms, J.A.14
Chang, H.Y.15
-
89
-
-
33847185603
-
A screen for nuclear transcripts identifies two linked non-coding RNAs associated with SC35 splicing domains
-
Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A. A screen for nuclear transcripts identifies two linked non-coding RNAs associated with SC35 splicing domains. BMC Genomics. 2007;8:39. doi: 10.1186/1471-2164-8-39.
-
(2007)
BMC Genomics.
, vol.8
, pp. 39
-
-
Hutchinson, J.N.1
Ensminger, A.W.2
Clemson, C.M.3
Lynch, C.R.4
Lawrence, J.B.5
Chess, A.6
-
90
-
-
79951580425
-
Control of RNA processing by a large non-coding RNA over-expressed in carcinomas
-
Lin R, Roychowdhury-Saha M, Black C, Watt AT, Marcusson EG, Freier SM, Edgington TS. Control of RNA processing by a large non-coding RNA over-expressed in carcinomas. FEBS Lett. 2011;585:671-676. doi: 10.1016/j.febslet.2011.01.030.
-
(2011)
FEBS Lett.
, vol.585
, pp. 671-676
-
-
Lin, R.1
Roychowdhury-Saha, M.2
Black, C.3
Watt, A.T.4
Marcusson, E.G.5
Freier, S.M.6
Edgington, T.S.7
-
91
-
-
84891800602
-
NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies
-
Hirose T, Virnicchi G, Tanigawa A, Naganuma T, Li R, Kimura H, Yokoi T, Nakagawa S, Bénard M, Fox AH, Pierron G. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell. 2014;25:169-183. doi: 10.1091/mbc.E13-09-0558.
-
(2014)
Mol Biol Cell.
, vol.25
, pp. 169-183
-
-
Hirose, T.1
Virnicchi, G.2
Tanigawa, A.3
Naganuma, T.4
Li, R.5
Kimura, H.6
Yokoi, T.7
Nakagawa, S.8
Bénard, M.9
Fox, A.H.10
Pierron, G.11
-
92
-
-
69949132008
-
Paraspeckles: Nuclear bodies built on long noncoding RNA
-
Bond CS, Fox AH. Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol. 2009;186:637-644. doi: 10.1083/jcb.200906113.
-
(2009)
J Cell Biol.
, vol.186
, pp. 637-644
-
-
Bond, C.S.1
Fox, A.H.2
-
93
-
-
0035861875
-
Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation
-
Heard E, Rougeulle C, Arnaud D, Avner P, Allis CD, Spector DL. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell. 2001;107:727-738.
-
(2001)
Cell.
, vol.107
, pp. 727-738
-
-
Heard, E.1
Rougeulle, C.2
Arnaud, D.3
Avner, P.4
Allis, C.D.5
Spector, D.L.6
-
94
-
-
0034713080
-
Genomic imprinting. Silence across the border
-
Reik W, Murrell A. Genomic imprinting. Silence across the border. Nature. 2000;405:408-409. doi: 10.1038/35013178.
-
(2000)
Nature.
, vol.405
, pp. 408-409
-
-
Reik, W.1
Murrell, A.2
-
95
-
-
34250160256
-
RNA maps reveal new RNA classes and a possible function for pervasive transcription
-
Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316:1484-1488. doi: 10.1126/science.1138341.
-
(2007)
Science.
, vol.316
, pp. 1484-1488
-
-
Kapranov, P.1
Cheng, J.2
Dike, S.3
-
96
-
-
80052536392
-
RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders
-
Lin M, Pedrosa E, Shah A, Hrabovsky A, Maqbool S, Zheng D, Lachman HM. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS One. 2011;6:e23356. doi: 10.1371/journal.pone.0023356.
-
(2011)
PLoS One.
, vol.6
, pp. e23356
-
-
Lin, M.1
Pedrosa, E.2
Shah, A.3
Hrabovsky, A.4
Maqbool, S.5
Zheng, D.6
Lachman, H.M.7
-
97
-
-
84875590101
-
Long noncoding RNAs: Past, present, and future
-
Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193:651-669. doi: 10.1534/genetics.112.146704.
-
(2013)
Genetics.
, vol.193
, pp. 651-669
-
-
Kung, J.T.1
Colognori, D.2
Lee, J.T.3
-
98
-
-
80054047605
-
The coupling of X-chromosome inactivation to pluripotency
-
Deuve JL, Avner P. The coupling of X-chromosome inactivation to pluripotency. Annu Rev Cell Dev Biol. 2011;27:611-629. doi: 10.1146/annurev-cellbio-092910-154020.
-
(2011)
Annu Rev Cell Dev Biol.
, vol.27
, pp. 611-629
-
-
Deuve, J.L.1
Avner, P.2
-
99
-
-
80052869283
-
lincRNAs act in the circuitry controlling pluripotency and differentiation
-
Guttman M, Donaghey J, Carey BW, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477:295-300. doi: 10.1038/nature10398.
-
(2011)
Nature.
, vol.477
, pp. 295-300
-
-
Guttman, M.1
Donaghey, J.2
Carey, B.W.3
-
100
-
-
84906314395
-
Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs
-
Matkovich SJ, Edwards JR, Grossenheider TC, de Guzman Strong C, Dorn GW II. Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci U S A. 2014;111:12264-12269. doi: 10.1073/pnas.1410622111.
-
(2014)
Proc Natl Acad Sci U S A.
, vol.111
, pp. 12264-12269
-
-
Matkovich, S.J.1
Edwards, J.R.2
Grossenheider, T.C.3
De Guzman Strong, C.4
Dorn, G.W.5
-
101
-
-
84873829893
-
The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse
-
Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A, Macura K, Bläss G, Kellis M, Werber M, Herrmann BG. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24:206-214. doi: 10.1016/j.devcel.2012.12.012.
-
(2013)
Dev Cell.
, vol.24
, pp. 206-214
-
-
Grote, P.1
Wittler, L.2
Hendrix, D.3
Koch, F.4
Währisch, S.5
Beisaw, A.6
Macura, K.7
Bläss, G.8
Kellis, M.9
Werber, M.10
Herrmann, B.G.11
-
102
-
-
84873300214
-
Braveheart, a long non-coding RNA required for cardiovascular lineage commitment
-
Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA. Braveheart, a long non-coding RNA required for cardiovascular lineage commitment. Cell. 2013;152:570-583. doi: 10.1016/j.cell.2013.01.003.
-
(2013)
Cell.
, vol.152
, pp. 570-583
-
-
Klattenhoff, C.A.1
Scheuermann, J.C.2
Surface, L.E.3
Bradley, R.K.4
Fields, P.A.5
Steinhauser, M.L.6
Ding, H.7
Butty, V.L.8
Torrey, L.9
Haas, S.10
Abo, R.11
Tabebordbar, M.12
Lee, R.T.13
Burge, C.B.14
Boyer, L.A.15
-
103
-
-
84895552736
-
Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support
-
Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, Ewald GA, Mann DL, Nerbonne JM. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation. 2014;129:1009-1021. doi: 10.1161/CIRCULATIONAHA.113.003863.
-
(2014)
Circulation.
, vol.129
, pp. 1009-1021
-
-
Yang, K.C.1
Yamada, K.A.2
Patel, A.Y.3
Topkara, V.K.4
George, I.5
Cheema, F.H.6
Ewald, G.A.7
Mann, D.L.8
Nerbonne, J.M.9
-
104
-
-
84899912204
-
The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489
-
Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res. 2014;114:1377-1388. doi: 10.1161/CIRCRESAHA.114.302476.
-
(2014)
Circ Res.
, vol.114
, pp. 1377-1388
-
-
Wang, K.1
Liu, F.2
Zhou, L.Y.3
Long, B.4
Yuan, S.M.5
Wang, Y.6
Liu, C.Y.7
Sun, T.8
Zhang, X.J.9
Li, P.F.10
-
105
-
-
33751277900
-
Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction
-
Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Saito S, Nakamura Y, Tanaka T. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. 2006;51:1087-1099. doi: 10.1007/s10038-006-0070-9.
-
(2006)
J Hum Genet.
, vol.51
, pp. 1087-1099
-
-
Ishii, N.1
Ozaki, K.2
Sato, H.3
Mizuno, H.4
Saito, S.5
Takahashi, A.6
Miyamoto, Y.7
Ikegawa, S.8
Kamatani, N.9
Hori, M.10
Saito, S.11
Nakamura, Y.12
Tanaka, T.13
-
106
-
-
84856083581
-
Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts
-
Lee JH, Gao C, Peng G, Greer C, Ren S, Wang Y, Xiao X. Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts. Circ Res. 2011;109:1332-1341. doi: 10.1161/CIRCRESAHA.111.249433.
-
(2011)
Circ Res.
, vol.109
, pp. 1332-1341
-
-
Lee, J.H.1
Gao, C.2
Peng, G.3
Greer, C.4
Ren, S.5
Wang, Y.6
Xiao, X.7
-
107
-
-
34249996115
-
A common allele on chromosome 9 associated with coronary heart disease
-
McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR, Boerwinkle E, Hobbs HH, Cohen JC. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488-1491. doi: 10.1126/science.1142447.
-
(2007)
Science.
, vol.316
, pp. 1488-1491
-
-
McPherson, R.1
Pertsemlidis, A.2
Kavaslar, N.3
Stewart, A.4
Roberts, R.5
Cox, D.R.6
Hinds, D.A.7
Pennacchio, L.A.8
Tybjaerg-Hansen, A.9
Folsom, A.R.10
Boerwinkle, E.11
Hobbs, H.H.12
Cohen, J.C.13
-
108
-
-
77953096072
-
Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a
-
Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010;38:662-674. doi: 10.1016/j.molcel.2010.03.021.
-
(2010)
Mol Cell.
, vol.38
, pp. 662-674
-
-
Yap, K.L.1
Li, S.2
Muñoz-Cabello, A.M.3
Raguz, S.4
Zeng, L.5
Mujtaba, S.6
Gil, J.7
Walsh, M.J.8
Zhou, M.M.9
-
109
-
-
84866927722
-
The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart
-
Korostowski L, Sedlak N, Engel N. The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart. PLoS Genet. 2012;8:e1002956. doi: 10.1371/journal.pgen.1002956.
-
(2012)
PLoS Genet.
, vol.8
, pp. e1002956
-
-
Korostowski, L.1
Sedlak, N.2
Engel, N.3
-
110
-
-
84899993786
-
Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth
-
Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S, Boon RA, Dimmeler S. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res. 2014;114:1389-1397. doi: 10.1161/CIRCRESAHA.114.303265.
-
(2014)
Circ Res.
, vol.114
, pp. 1389-1397
-
-
Michalik, K.M.1
You, X.2
Manavski, Y.3
Doddaballapur, A.4
Zörnig, M.5
Braun, T.6
John, D.7
Ponomareva, Y.8
Chen, W.9
Uchida, S.10
Boon, R.A.11
Dimmeler, S.12
-
111
-
-
84908020927
-
A long noncoding RNA protects the heart from pathological hypertrophy
-
Han P, Li W, Lin CH, et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 2014;514:102-106. doi: 10.1038/nature13596.
-
(2014)
Nature.
, vol.514
, pp. 102-106
-
-
Han, P.1
Li, W.2
Lin, Ch.3
-
112
-
-
77954222814
-
Chromatin regulation by Brg1 underlies heart muscle development and disease
-
Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature. 2010;466:62-67. doi: 10.1038/nature09130.
-
(2010)
Nature.
, vol.466
, pp. 62-67
-
-
Hang, C.T.1
Yang, J.2
Han, P.3
Cheng, H.L.4
Shang, C.5
Ashley, E.6
Zhou, B.7
Chang, C.P.8
-
113
-
-
84908418805
-
CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation
-
Wang K, Long B, Zhou L-Y, Liu F, Zhou Q-Y, Liu C-Y, Fan Y-Y, Li P-F. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun. 2014;5:3596.
-
(2014)
Nat Commun.
, vol.5
, pp. 3596
-
-
Wang, K.1
Long, B.2
Zhou, L.-Y.3
Liu, F.4
Zhou, Q.-Y.5
Liu, C.-Y.6
Fan, Y.-Y.7
Li, P.-F.8
-
114
-
-
84893666749
-
Microvesicles as cell-cell messengers in cardiovascular diseases
-
Loyer X, Vion AC, Tedgui A, Boulanger CM. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res. 2014;114:345-353. doi: 10.1161/CIRCRESAHA.113.300858.
-
(2014)
Circ Res.
, vol.114
, pp. 345-353
-
-
Loyer, X.1
Vion, A.C.2
Tedgui, A.3
Boulanger, C.M.4
-
115
-
-
84895444013
-
Exosomes and cardiac repair after myocardial infarction
-
Sahoo S, Losordo DW. Exosomes and cardiac repair after myocardial infarction. Circ Res. 2014;114:333-344. doi: 10.1161/CIRCRESAHA.114.300639.
-
(2014)
Circ Res.
, vol.114
, pp. 333-344
-
-
Sahoo, S.1
Losordo, D.W.2
-
116
-
-
84899121027
-
Regulatory RNAs and paracrine networks in the heart
-
Viereck J, Bang C, Foinquinos A, Thum T. Regulatory RNAs and paracrine networks in the heart. Cardiovasc Res. 2014;102:290-301. doi: 10.1093/cvr/cvu039.
-
(2014)
Cardiovasc Res.
, vol.102
, pp. 290-301
-
-
Viereck, J.1
Bang, C.2
Foinquinos, A.3
Thum, T.4
-
117
-
-
79953136097
-
Rab27a and Rab27b control different steps of the exosome secretion pathway
-
Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19-30; sup pp 1-13. doi: 10.1038/ncb2000.
-
(2010)
Nat Cell Biol.
, vol.12
-
-
Ostrowski, M.1
Carmo, N.B.2
Krumeich, S.3
-
118
-
-
38149044992
-
Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells
-
Fader CM, Sánchez D, Furlán M, Colombo MI. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic. 2008;9:230-250. doi: 10.1111/j.1600-0854.2007.00677.x.
-
(2008)
Traffic.
, vol.9
, pp. 230-250
-
-
Fader, C.M.1
Sánchez, D.2
Furlán, M.3
Colombo, M.I.4
-
119
-
-
69949117622
-
Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity
-
Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009;11:1143-1149. doi: 10.1038/ncb1929.
-
(2009)
Nat Cell Biol.
, vol.11
, pp. 1143-1149
-
-
Gibbings, D.J.1
Ciaudo, C.2
Erhardt, M.3
Voinnet, O.4
-
120
-
-
78649366866
-
Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease
-
Gupta SK, Bang C, Thum T. Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ Cardiovasc Genet. 2010;3:484-488. doi: 10.1161/CIRCGENETICS.110.958363.
-
(2010)
Circ Cardiovasc Genet.
, vol.3
, pp. 484-488
-
-
Gupta, S.K.1
Bang, C.2
Thum, T.3
-
121
-
-
84900844231
-
Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure
-
Kumarswamy R, Bauters C, Volkmann I, Maury F, Fetisch J, Holzmann A, Lemesle G, de Groote P, Pinet F, Thum T. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res. 2014;114:1569-1575. doi: 10.1161/CIRCRESAHA.114.303915.
-
(2014)
Circ Res.
, vol.114
, pp. 1569-1575
-
-
Kumarswamy, R.1
Bauters, C.2
Volkmann, I.3
Maury, F.4
Fetisch, J.5
Holzmann, A.6
Lemesle, G.7
De Groote, P.8
Pinet, F.9
Thum, T.10
-
122
-
-
84865482681
-
Exosomes: New players in cell-cell communication
-
Bang C, Thum T. Exosomes: new players in cell-cell communication. Int J Biochem Cell Biol. 2012;44:2060-2064. doi: 10.1016/j.biocel.2012.08.007.
-
(2012)
Int J Biochem Cell Biol.
, vol.44
, pp. 2060-2064
-
-
Bang, C.1
Thum, T.2
-
123
-
-
77449127999
-
Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection
-
Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Köppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2:ra81. doi: 10.1126/scisignal.2000610.
-
(2009)
Sci Signal.
, vol.2
, pp. ra81
-
-
Zernecke, A.1
Bidzhekov, K.2
Noels, H.3
Shagdarsuren, E.4
Gan, L.5
Denecke, B.6
Hristov, M.7
Köppel, T.8
Jahantigh, M.N.9
Lutgens, E.10
Wang, S.11
Olson, E.N.12
Schober, A.13
Weber, C.14
-
124
-
-
84898419690
-
MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1
-
Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H, Hristov M, Wang S, Kiessling F, Olson EN, Weber C. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med. 2014;20:368-376. doi: 10.1038/nm.3487.
-
(2014)
Nat Med.
, vol.20
, pp. 368-376
-
-
Schober, A.1
Nazari-Jahantigh, M.2
Wei, Y.3
Bidzhekov, K.4
Gremse, F.5
Grommes, J.6
Megens, R.T.7
Heyll, K.8
Noels, H.9
Hristov, M.10
Wang, S.11
Kiessling, F.12
Olson, E.N.13
Weber, C.14
-
125
-
-
84857708170
-
Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs
-
Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14:249-256. doi: 10.1038/ncb2441.
-
(2012)
Nat Cell Biol.
, vol.14
, pp. 249-256
-
-
Hergenreider, E.1
Heydt, S.2
Tréguer, K.3
Boettger, T.4
Horrevoets, A.J.5
Zeiher, A.M.6
Scheffer, M.P.7
Frangakis, A.S.8
Yin, X.9
Mayr, M.10
Braun, T.11
Urbich, C.12
Boon, R.A.13
Dimmeler, S.14
-
126
-
-
84872866537
-
MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia
-
Spinetti G, Fortunato O, Caporali A, Shantikumar S, Marchetti M, Meloni M, Descamps B, Floris I, Sangalli E, Vono R, Faglia E, Specchia C, Pintus G, Madeddu P, Emanueli C. MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ Res. 2013;112:335-346. doi: 10.1161/CIRCRESAHA.111.300418.
-
(2013)
Circ Res.
, vol.112
, pp. 335-346
-
-
Spinetti, G.1
Fortunato, O.2
Caporali, A.3
Shantikumar, S.4
Marchetti, M.5
Meloni, M.6
Descamps, B.7
Floris, I.8
Sangalli, E.9
Vono, R.10
Faglia, E.11
Specchia, C.12
Pintus, G.13
Madeddu, P.14
Emanueli, C.15
-
127
-
-
84907337461
-
Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction
-
Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res. 2014;103:530-541. doi: 10.1093/cvr/cvu167.
-
(2014)
Cardiovasc Res.
, vol.103
, pp. 530-541
-
-
Barile, L.1
Lionetti, V.2
Cervio, E.3
Matteucci, M.4
Gherghiceanu, M.5
Popescu, L.M.6
Torre, T.7
Siclari, F.8
Moccetti, T.9
Vassalli, G.10
-
128
-
-
84883426378
-
Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles
-
Yu B, Gong M, Wang Y, Millard RW, Pasha Z, Yang Y, Ashraf M, Xu M. Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS One. 2013;8:e73304. doi: 10.1371/journal.pone.0073304.
-
(2013)
PLoS One.
, vol.8
, pp. e73304
-
-
Yu, B.1
Gong, M.2
Wang, Y.3
Millard, R.W.4
Pasha, Z.5
Yang, Y.6
Ashraf, M.7
Xu, M.8
-
129
-
-
84873596150
-
Macrophage microvesicles induce macrophage differentiation and miR-223 transfer
-
Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, Batte K, Shah P, Wisler J, Eubank TD, Tridandapani S, Paulaitis ME, Piper MG, Marsh CB. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 2013;121:984-995. doi: 10.1182/blood-2011-08-374793.
-
(2013)
Blood.
, vol.121
, pp. 984-995
-
-
Ismail, N.1
Wang, Y.2
Dakhlallah, D.3
Moldovan, L.4
Agarwal, K.5
Batte, K.6
Shah, P.7
Wisler, J.8
Eubank, T.D.9
Tridandapani, S.10
Paulaitis, M.E.11
Piper, M.G.12
Marsh, C.B.13
-
130
-
-
84896894879
-
HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells
-
Tabet F, Vickers KC, Cuesta Torres LF, Wiese CB, Shoucri BM, Lambert G, Catherinet C, Prado-Lourenco L, Levin MG, Thacker S, Sethupathy P, Barter PJ, Remaley AT, Rye KA. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat Commun. 2014;5:3292. doi: 10.1038/ncomms4292.
-
(2014)
Nat Commun.
, vol.5
, pp. 3292
-
-
Tabet, F.1
Vickers, K.C.2
Cuesta Torres, L.F.3
Wiese, C.B.4
Shoucri, B.M.5
Lambert, G.6
Catherinet, C.7
Prado-Lourenco, L.8
Levin, M.G.9
Thacker, S.10
Sethupathy, P.11
Barter, P.J.12
Remaley, A.T.13
Rye, K.A.14
-
131
-
-
84899619022
-
Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure
-
Li D, Chen G, Yang J, Fan X, Gong Y, Xu G, Cui Q, Geng B. Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure. PLoS One. 2013;8:e77938. doi: 10.1371/journal.pone.0077938.
-
(2013)
PLoS One.
, vol.8
, pp. e77938
-
-
Li, D.1
Chen, G.2
Yang, J.3
Fan, X.4
Gong, Y.5
Xu, G.6
Cui, Q.7
Geng, B.8
-
132
-
-
84910147922
-
Long noncoding RNAs in patients with acute myocardial infarction
-
Vausort M, Wagner DR, Devaux Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ Res. 2014;115:668-677. doi: 10.1161/CIRCRESAHA.115.303836.
-
(2014)
Circ Res.
, vol.115
, pp. 668-677
-
-
Vausort, M.1
Wagner, D.R.2
Devaux, Y.3
-
133
-
-
84871442001
-
Functional screening identifies miRNAs inducing cardiac regeneration
-
Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M. Functional screening identifies miRNAs inducing cardiac regeneration. Nature. 2012;492:376-381. doi: 10.1038/nature11739.
-
(2012)
Nature.
, vol.492
, pp. 376-381
-
-
Eulalio, A.1
Mano, M.2
Dal Ferro, M.3
Zentilin, L.4
Sinagra, G.5
Zacchigna, S.6
Giacca, M.7
-
134
-
-
28444469246
-
Silencing of microRNAs in vivo with 'antagomirs'
-
Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005;438:685-689. doi: 10.1038/nature04303.
-
(2005)
Nature.
, vol.438
, pp. 685-689
-
-
Krützfeldt, J.1
Rajewsky, N.2
Braich, R.3
Rajeev, K.G.4
Tuschl, T.5
Manoharan, M.6
Stoffel, M.7
-
135
-
-
84984765629
-
Strategies to determine the biological function of microRNAs
-
Krützfeldt J, Poy MN, Stoffel M. Strategies to determine the biological function of microRNAs. Nat Genet. 2006;38 Suppl:S14-S19. doi: 10.1038/ng1799.
-
(2006)
Nat Genet.
, vol.38
, pp. S14-S19
-
-
Krützfeldt, J.1
Poy, M.N.2
Stoffel, M.3
-
136
-
-
84892938721
-
Vascular microRNAs: From disease mechanisms to therapeutic targets
-
Stellos K, Dimmeler S. Vascular microRNAs: from disease mechanisms to therapeutic targets. Circ Res. 2014;114:3-4. doi: 10.1161/CIRCRESAHA.113.302762.
-
(2014)
Circ Res.
, vol.114
, pp. 3-4
-
-
Stellos, K.1
Dimmeler, S.2
-
137
-
-
84868475728
-
MicroRNA therapeutics for cardiovascular disease: Opportunities and obstacles
-
van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012;11:860-872. doi: 10.1038/nrd3864.
-
(2012)
Nat Rev Drug Discov.
, vol.11
, pp. 860-872
-
-
Van Rooij, E.1
Olson, E.N.2
-
138
-
-
84877258007
-
Treatment of HCV infection by targeting microRNA
-
Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368:1685-1694. doi: 10.1056/NEJMoa1209026.
-
(2013)
N Engl J Med.
, vol.368
, pp. 1685-1694
-
-
Janssen, H.L.1
Reesink, H.W.2
Lawitz, E.J.3
Zeuzem, S.4
Rodriguez-Torres, M.5
Patel, K.6
Van Der Meer, A.J.7
Patick, A.K.8
Chen, A.9
Zhou, Y.10
Persson, R.11
King, B.D.12
Kauppinen, S.13
Levin, A.A.14
Hodges, M.R.15
|