-
1
-
-
0035909125
-
Ypt/rab gtpases: Regulators of protein trafficking
-
1:STN:280:DC%2BD3Mrjt1Omtg%3D%3D11579231
-
Segev N (2001) Ypt/rab gtpases: regulators of protein trafficking. Sci STKE 2001:RE11
-
(2001)
Sci STKE
, vol.2001
, pp. 11
-
-
Segev, N.1
-
2
-
-
78751656754
-
Role of Rab GTPases in membrane traffic and cell physiology
-
1:STN:528:DC%2BC3MXisVCht74%3D21248164
-
Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91:119-149
-
(2011)
Physiol Rev
, vol.91
, pp. 119-149
-
-
Hutagalung, A.H.1
Novick, P.J.2
-
3
-
-
0027202199
-
Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins
-
1:STN:528:DyaK3sXlsFOjsbk%3D8349690
-
Ullrich O et al (1993) Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins. J Biol Chem 268:18143-18150
-
(1993)
J Biol Chem
, vol.268
, pp. 18143-18150
-
-
Ullrich, O.1
-
4
-
-
0031023505
-
Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI
-
1:STN:528:DyaK2sXisVymsbo%3D9034329
-
Dirac-Svejstrup AB, Sumizawa T, Pfeffer SR (1997) Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI. EMBO J 16:465-472
-
(1997)
EMBO J
, vol.16
, pp. 465-472
-
-
Dirac-Svejstrup, A.B.1
Sumizawa, T.2
Pfeffer, S.R.3
-
5
-
-
67649470529
-
Reconstitution of Rab- and SNARE-dependent membrane fusion by synthetic endosomes
-
1:STN:528:DC%2BD1MXmtFChsLo%3D19458617
-
Ohya T et al (2009) Reconstitution of Rab- and SNARE-dependent membrane fusion by synthetic endosomes. Nature 459:1091-1097
-
(2009)
Nature
, vol.459
, pp. 1091-1097
-
-
Ohya, T.1
-
6
-
-
33747066132
-
Rabs and their effectors: Achieving specificity in membrane traffic
-
1:STN:528:DC%2BD28XotlOgt70%3D16882731
-
Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA 103:11821-11827
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 11821-11827
-
-
Grosshans, B.L.1
Ortiz, D.2
Novick, P.3
-
7
-
-
34248227351
-
Rab cascades and tethering factors in the endomembrane system
-
1:STN:528:DC%2BD2sXlt1Chs70%3D17316615
-
Markgraf DF, Peplowska K, Ungermann C (2007) Rab cascades and tethering factors in the endomembrane system. FEBS Lett 581:2125-2130
-
(2007)
FEBS Lett
, vol.581
, pp. 2125-2130
-
-
Markgraf, D.F.1
Peplowska, K.2
Ungermann, C.3
-
8
-
-
2942674409
-
Rab GTPases and myosin motors in organelle motility
-
1:STN:528:DC%2BD2cXksVyqsr0%3D15117313
-
Seabra MC, Coudrier E (2004) Rab GTPases and myosin motors in organelle motility. Traffic 5:393-399
-
(2004)
Traffic
, vol.5
, pp. 393-399
-
-
Seabra, M.C.1
Coudrier, E.2
-
9
-
-
70149086287
-
Defining the boundaries: Rab GEFs and GAPs
-
1:STN:528:DC%2BD1MXhtFaiurfJ19706500
-
Nottingham RM, Pfeffer SR (2009) Defining the boundaries: Rab GEFs and GAPs. Proc Natl Acad Sci USA 106:14185-14186
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 14185-14186
-
-
Nottingham, R.M.1
Pfeffer, S.R.2
-
10
-
-
69249137477
-
Endocytosis and signalling: Intertwining molecular networks
-
1:STN:528:DC%2BD1MXhtVaksr3E19696798
-
Sorkin A, von Zastrow M (2009) Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 10:609-622
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 609-622
-
-
Sorkin, A.1
Von Zastrow, M.2
-
11
-
-
27744490085
-
Modeling the signaling endosome hypothesis: Why a drive to the nucleus is better than a (random) walk
-
16236165
-
Howe CL (2005) Modeling the signaling endosome hypothesis: why a drive to the nucleus is better than a (random) walk. Theor Biol Med Model 2:43
-
(2005)
Theor Biol Med Model
, vol.2
, pp. 43
-
-
Howe, C.L.1
-
12
-
-
1542328950
-
Expression of dominant negative rab5 in HeLa cells regulates endocytic trafficking distal from the plasma membrane
-
1:STN:528:DC%2BD2cXitFKnsLc%3D15023538
-
Dinneen JL, Ceresa BP (2004) Expression of dominant negative rab5 in HeLa cells regulates endocytic trafficking distal from the plasma membrane. Exp Cell Res 294:509-522
-
(2004)
Exp Cell Res
, vol.294
, pp. 509-522
-
-
Dinneen, J.L.1
Ceresa, B.P.2
-
13
-
-
71049118063
-
Rab5 isoforms differentially regulate the trafficking and degradation of epidermal growth factor receptors
-
1:STN:528:DC%2BD1MXhtlSru7zP19723633
-
Chen PI, Kong C, Su X, Stahl PD (2009) Rab5 isoforms differentially regulate the trafficking and degradation of epidermal growth factor receptors. J Biol Chem 284:30328-30338
-
(2009)
J Biol Chem
, vol.284
, pp. 30328-30338
-
-
Chen, P.I.1
Kong, C.2
Su, X.3
Stahl, P.D.4
-
14
-
-
33746160962
-
Regulation of EGFR endocytic trafficking by rab proteins
-
1:STN:528:DC%2BD28XhtF2gsb7K16763949
-
Ceresa BP (2006) Regulation of EGFR endocytic trafficking by rab proteins. Histol Histopathol 21:987-993
-
(2006)
Histol Histopathol
, vol.21
, pp. 987-993
-
-
Ceresa, B.P.1
-
15
-
-
0036500837
-
The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking
-
1:STN:528:DC%2BD38Xitl2rt7Y%3D11870209
-
Kauppi M, Simonsen A, Bremnes B (2002) The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking. J Cell Sci 115:899-911
-
(2002)
J Cell Sci
, vol.115
, pp. 899-911
-
-
Kauppi, M.1
Simonsen, A.2
Bremnes, B.3
-
16
-
-
70449724727
-
Rab22B is expressed in the CNS astroglia lineage and plays a role in epidermal growth factor receptor trafficking in A431 cells
-
1:STN:528:DC%2BD1MXhtF2qtb3O19725050
-
Ng EL, Ng JJ, Liang F, Tang BL (2009) Rab22B is expressed in the CNS astroglia lineage and plays a role in epidermal growth factor receptor trafficking in A431 cells. J Cell Physiol 221:716-728
-
(2009)
J Cell Physiol
, vol.221
, pp. 716-728
-
-
Ng, E.L.1
Ng, J.J.2
Liang, F.3
Tang, B.L.4
-
17
-
-
84899767249
-
Engagement of the small GTPase Rab31 protein and its effector, early endosome antigen 1, is important for trafficking of the ligand-bound epidermal growth factor receptor from the early to the late endosome
-
24644286
-
Chua CEL, Tang BL (2014) Engagement of the small GTPase Rab31 protein and its effector, early endosome antigen 1, is important for trafficking of the ligand-bound epidermal growth factor receptor from the early to the late endosome. J Biol Chem 289:12375-12389
-
(2014)
J Biol Chem
, vol.289
, pp. 12375-12389
-
-
Chua, C.E.L.1
Tang, B.L.2
-
18
-
-
33644869303
-
Rab7 activity affects epidermal growth factor: Epidermal growth factor receptor degradation by regulating endocytic trafficking from the late endosome
-
1:STN:528:DC%2BD28XitF2rtg%3D%3D16282324
-
Ceresa BP, Bahr SJ (2006) Rab7 activity affects epidermal growth factor: epidermal growth factor receptor degradation by regulating endocytic trafficking from the late endosome. J Biol Chem 281:1099-1106
-
(2006)
J Biol Chem
, vol.281
, pp. 1099-1106
-
-
Ceresa, B.P.1
Bahr, S.J.2
-
19
-
-
0037147129
-
Rab11-FIP2, an adaptor protein connecting cellular components involved in internalization and recycling of epidermal growth factor receptors
-
1:STN:528:DC%2BD38XpsFaltbY%3D12364336
-
Cullis DN, Philip B, Baleja JD, Feig LA (2002) Rab11-FIP2, an adaptor protein connecting cellular components involved in internalization and recycling of epidermal growth factor receptors. J Biol Chem 277:49158-49166
-
(2002)
J Biol Chem
, vol.277
, pp. 49158-49166
-
-
Cullis, D.N.1
Philip, B.2
Baleja, J.D.3
Feig, L.A.4
-
20
-
-
0036172652
-
Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. (3)
-
11788822
-
De Renzis S, Sönnichsen B, Zerial M (2002) Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. (3). Nat Cell Biol 4:124-133
-
(2002)
Nat Cell Biol
, vol.4
, pp. 124-133
-
-
De Renzis, S.1
Sönnichsen, B.2
Zerial, M.3
-
21
-
-
62749117198
-
Emerging roles for Rab family GTPases in human cancer
-
1:STN:528:DC%2BD1MXjvVSqu7c%3D19425190
-
Chia WJ, Tang BL (2009) Emerging roles for Rab family GTPases in human cancer. Biochim Biophys Acta 1795:110-116
-
(2009)
Biochim Biophys Acta
, vol.1795
, pp. 110-116
-
-
Chia, W.J.1
Tang, B.L.2
-
22
-
-
70350376874
-
Cell proliferation and epidermal growth factor signaling in non-small cell lung adenocarcinoma cell lines are dependent on Rin1. (1)
-
1:STN:528:DC%2BD1MXhtFCgs7%2FF19570984
-
Tomshine JC et al (2009) Cell proliferation and epidermal growth factor signaling in non-small cell lung adenocarcinoma cell lines are dependent on Rin1. (1). J Biol Chem 284:26331-26339
-
(2009)
J Biol Chem
, vol.284
, pp. 26331-26339
-
-
Tomshine, J.C.1
-
23
-
-
48149112465
-
Urokinase receptor splice variant uPAR-del4/5-associated gene expression in breast cancer: Identification of rab31 as an independent prognostic factor
-
1:STN:528:DC%2BD1cXptVCntLg%3D17952591
-
Kotzsch M et al (2008) Urokinase receptor splice variant uPAR-del4/5-associated gene expression in breast cancer: identification of rab31 as an independent prognostic factor. Breast Cancer Res Treat 111:229-240
-
(2008)
Breast Cancer Res Treat
, vol.111
, pp. 229-240
-
-
Kotzsch, M.1
-
24
-
-
0036787904
-
Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival
-
1:STN:528:DC%2BD38XnsFKitLc%3D12242303
-
Wang Y, Pennock S, Chen X, Wang Z (2002) Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol 22:7279-7290
-
(2002)
Mol Cell Biol
, vol.22
, pp. 7279-7290
-
-
Wang, Y.1
Pennock, S.2
Chen, X.3
Wang, Z.4
-
25
-
-
80054713625
-
Rab22 controls NGF signaling and neurite outgrowth in PC12 cells
-
1:STN:528:DC%2BC3MXhtl2ns7zK21849477
-
Wang L, Liang Z, Li G (2011) Rab22 controls NGF signaling and neurite outgrowth in PC12 cells. Mol Biol Cell 22:3853-3860
-
(2011)
Mol Biol Cell
, vol.22
, pp. 3853-3860
-
-
Wang, L.1
Liang, Z.2
Li, G.3
-
26
-
-
78651456909
-
KIF16B/Rab14 molecular motor complex is critical for early embryonic development by transporting FGF receptor
-
1:STN:528:DC%2BC3MXnsVeluw%3D%3D21238925
-
Ueno H, Huang X, Tanaka Y, Hirokawa N (2011) KIF16B/Rab14 molecular motor complex is critical for early embryonic development by transporting FGF receptor. Dev Cell 20:60-71
-
(2011)
Dev Cell
, vol.20
, pp. 60-71
-
-
Ueno, H.1
Huang, X.2
Tanaka, Y.3
Hirokawa, N.4
-
27
-
-
33744972277
-
APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function
-
1:STN:528:DC%2BD28XksVGnurY%3D16622416
-
Mao X et al (2006) APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol 8:516-523
-
(2006)
Nat Cell Biol
, vol.8
, pp. 516-523
-
-
Mao, X.1
-
28
-
-
42949092018
-
The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development
-
1:STN:528:DC%2BD1cXmt1SmtbY%3D18455989
-
Schenck A et al (2008) The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell 133:486-497
-
(2008)
Cell
, vol.133
, pp. 486-497
-
-
Schenck, A.1
-
29
-
-
77949900267
-
Appl1 is dispensable for mouse development, and loss of Appl1 has growth factor-selective effects on Akt signaling in murine embryonic fibroblasts
-
1:STN:528:DC%2BC3cXit1ais7o%3D20040596
-
Tan Y, You H, Wu C, Altomare DA, Testa JR (2010) Appl1 is dispensable for mouse development, and loss of Appl1 has growth factor-selective effects on Akt signaling in murine embryonic fibroblasts. J Biol Chem 285:6377-6389
-
(2010)
J Biol Chem
, vol.285
, pp. 6377-6389
-
-
Tan, Y.1
You, H.2
Wu, C.3
Altomare, D.A.4
Testa, J.R.5
-
30
-
-
70350088552
-
Functional characterization of the interactions between endosomal adaptor protein APPL1 and the NuRD co-repressor complex
-
1:STN:528:DC%2BD1MXht1Cmt7fI19686092
-
Banach-Orlowska M, Pilecka I, Torun A, Pyrzynska B, Miaczynska M (2009) Functional characterization of the interactions between endosomal adaptor protein APPL1 and the NuRD co-repressor complex. Biochem J 423:389-400
-
(2009)
Biochem J
, vol.423
, pp. 389-400
-
-
Banach-Orlowska, M.1
Pilecka, I.2
Torun, A.3
Pyrzynska, B.4
Miaczynska, M.5
-
31
-
-
1642417606
-
APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. (1)
-
1:STN:528:DC%2BD2cXhsFagtrc%3D15016378
-
Miaczynska M et al (2004) APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. (1). Cell 116:445-456
-
(2004)
Cell
, vol.116
, pp. 445-456
-
-
Miaczynska, M.1
-
32
-
-
4344559467
-
The glucose transporter families SGLT and GLUT: Molecular basis of normal and aberrant function
-
1:STN:528:DC%2BD2cXnslCgt7w%3D
-
Scheepers A, Joost H, Schurmann A (2004) The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J Parenter Enter Nutr 28:364-371
-
(2004)
J Parenter Enter Nutr
, vol.28
, pp. 364-371
-
-
Scheepers, A.1
Joost, H.2
Schurmann, A.3
-
33
-
-
0037267005
-
Glucose transporters (GLUT and SGLT): Expanded families of sugar transport proteins
-
1:STN:528:DC%2BD3sXhsFWmu74%3D12568659
-
Wood IS, Trayhurn P (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89:3-9
-
(2003)
Br J Nutr
, vol.89
, pp. 3-9
-
-
Wood, I.S.1
Trayhurn, P.2
-
34
-
-
0029849743
-
Structure, function, and regulation of the mammalian facilitative glucose transporter gene family
-
1:STN:528:DyaK28XksFKrurk%3D8839927
-
Olson AL, Pessin JE (1996) Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu Rev Nutr 16:235-256
-
(1996)
Annu Rev Nutr
, vol.16
, pp. 235-256
-
-
Olson, A.L.1
Pessin, J.E.2
-
35
-
-
0023692118
-
Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells
-
1:STN:528:DyaL1MXktFyksb4%3D3048704
-
Thorens B, Sarkar HK, Kaback HR, Lodish HF (1988) Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell 55:281-290
-
(1988)
Cell
, vol.55
, pp. 281-290
-
-
Thorens, B.1
Sarkar, H.K.2
Kaback, H.R.3
Lodish, H.F.4
-
36
-
-
0026501334
-
Glucose transporter expression in brain. CDNA sequence of mouse GLUT3, the brain facilitative glucose transporter isoform, and identification of sites of expression by in situ hybridization
-
1:STN:528:DyaK38XmtlSks78%3D1730609
-
Nagamatsu S et al (1992) Glucose transporter expression in brain. cDNA sequence of mouse GLUT3, the brain facilitative glucose transporter isoform, and identification of sites of expression by in situ hybridization. J Biol Chem 267:467-472
-
(1992)
J Biol Chem
, vol.267
, pp. 467-472
-
-
Nagamatsu, S.1
-
37
-
-
0024512585
-
Identification of a novel gene encoding an insulin-responsive glucose transporter protein
-
1:STN:528:DyaK3cXjtFChtg%3D%3D2649253
-
Birnbaum MJ (1989) Identification of a novel gene encoding an insulin-responsive glucose transporter protein. Cell 57:305-315
-
(1989)
Cell
, vol.57
, pp. 305-315
-
-
Birnbaum, M.J.1
-
38
-
-
0036325425
-
GLUT4 retention in adipocytes requires two intracellular insulin-regulated transport steps
-
1:STN:528:DC%2BD38XlvVCku7w%3D12134080
-
Zeigerer A et al (2002) GLUT4 retention in adipocytes requires two intracellular insulin-regulated transport steps. Mol Biol Cell 13:2421-2435
-
(2002)
Mol Biol Cell
, vol.13
, pp. 2421-2435
-
-
Zeigerer, A.1
-
39
-
-
0030669618
-
Moving GLUT4: The biogenesis and trafficking of GLUT4 storage vesicles
-
1:STN:528:DyaK2sXntVKjurs%3D9356011
-
Rea S, James DE (1997) Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes 46:1667-1677
-
(1997)
Diabetes
, vol.46
, pp. 1667-1677
-
-
Rea, S.1
James, D.E.2
-
40
-
-
33947578085
-
Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane
-
1:STN:528:DC%2BD2sXkslGmsb4%3D17403373
-
Sano H et al (2007) Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab 5:293-303
-
(2007)
Cell Metab
, vol.5
, pp. 293-303
-
-
Sano, H.1
-
41
-
-
26844573782
-
AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain
-
15971998
-
Mîinea CP et al (2005) AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem J 391:87-93
-
(2005)
Biochem J
, vol.391
, pp. 87-93
-
-
Mîinea, C.P.1
-
42
-
-
27844528870
-
Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking
-
1:STN:528:DC%2BD2MXhtF2isrfI16154996
-
Larance M (2005) Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking. J Biol Chem 280:37803-37813
-
(2005)
J Biol Chem
, vol.280
, pp. 37803-37813
-
-
Larance, M.1
-
43
-
-
0035818483
-
Insulin can regulate GLUT4 internalization by signaling to Rab5 and the motor protein dynein
-
1:STN:528:DC%2BD3MXosFygsLo%3D11687655
-
Huang J, Imamura T, Olefsky JM (2001) Insulin can regulate GLUT4 internalization by signaling to Rab5 and the motor protein dynein. Proc Natl Acad Sci 98:13084-13089
-
(2001)
Proc Natl Acad Sci
, vol.98
, pp. 13084-13089
-
-
Huang, J.1
Imamura, T.2
Olefsky, J.M.3
-
44
-
-
33845572827
-
Gapex-5, a Rab31 guanine nucleotide exchange factor that regulates Glut4 trafficking in adipocytes
-
1:STN:528:DC%2BD2sXpsV2jtg%3D%3D17189207
-
Lodhi IJ et al (2007) Gapex-5, a Rab31 guanine nucleotide exchange factor that regulates Glut4 trafficking in adipocytes. Cell Metab 5:59-72
-
(2007)
Cell Metab
, vol.5
, pp. 59-72
-
-
Lodhi, I.J.1
-
45
-
-
0038451252
-
Insulin-induced GLUT4 translocation involves protein kinase C-lambda-mediated functional coupling between Rab4 and the motor protein kinesin
-
1:STN:528:DC%2BD3sXltlelurc%3D12832475
-
Imamura T et al (2003) Insulin-induced GLUT4 translocation involves protein kinase C-lambda-mediated functional coupling between Rab4 and the motor protein kinesin. Mol Cell Biol 23:4892-4900
-
(2003)
Mol Cell Biol
, vol.23
, pp. 4892-4900
-
-
Imamura, T.1
-
46
-
-
0035895983
-
Direct interaction of Rab4 with syntaxin 4
-
1:STN:528:DC%2BD3MXhtlyjsL4%3D11063739
-
Li L (2001) Direct interaction of Rab4 with syntaxin 4. J Biol Chem 276:5265-5273
-
(2001)
J Biol Chem
, vol.276
, pp. 5265-5273
-
-
Li, L.1
-
47
-
-
0037151026
-
A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain
-
1:STN:528:DC%2BD38XltVGksrk%3D11994271
-
Kane S et al (2002) A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J Biol Chem 277:22115-22118
-
(2002)
J Biol Chem
, vol.277
, pp. 22115-22118
-
-
Kane, S.1
-
48
-
-
0037677096
-
Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation
-
1:STN:528:DC%2BD3sXjtVCmt7w%3D12637568
-
Sano H (2003) Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 278:14599-14602
-
(2003)
J Biol Chem
, vol.278
, pp. 14599-14602
-
-
Sano, H.1
-
49
-
-
70349760843
-
The molecular basis of insulin-stimulated glucose uptake: Signalling, trafficking and potential drug targets
-
1:STN:528:DC%2BD1MXht1Kku7bM19389739
-
Leney SE, Tavaré JM (2009) The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets. J Endocrinol 203:1-18
-
(2009)
J Endocrinol
, vol.203
, pp. 1-18
-
-
Leney, S.E.1
Tavaré, J.M.2
-
50
-
-
33846178185
-
Rabs 8A and 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells
-
1:STN:528:DC%2BD2sXmtValtw%3D%3D17208202
-
Ishikura S, Bilan PJ, Klip A (2007) Rabs 8A and 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells. Biochem Biophys Res Commun 353:1074-1079
-
(2007)
Biochem Biophys Res Commun
, vol.353
, pp. 1074-1079
-
-
Ishikura, S.1
Bilan, P.J.2
Klip, A.3
-
51
-
-
78650549552
-
Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells
-
1:STN:528:DC%2BC3cXhsVyjtbvJ21041651
-
Sun Y, Bilan PJ, Liu Z, Klip A (2010) Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells. Proc Natl Acad Sci 107:19909-19914
-
(2010)
Proc Natl Acad Sci
, vol.107
, pp. 19909-19914
-
-
Sun, Y.1
Bilan, P.J.2
Liu, Z.3
Klip, A.4
-
52
-
-
57049184703
-
Muscle cells engage Rab8A and myosin Vb in insulin-dependent GLUT4 translocation
-
1:STN:528:DC%2BD1cXht1ymtb7N18701652
-
Ishikura S, Klip A (2008) Muscle cells engage Rab8A and myosin Vb in insulin-dependent GLUT4 translocation. Am J Physiol Cell Physiol 295:C1016-C1025
-
(2008)
Am J Physiol Cell Physiol
, vol.295
, pp. 1016-C1025
-
-
Ishikura, S.1
Klip, A.2
-
53
-
-
84898758717
-
Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells
-
24478457
-
Sun Y, Chiu TT, Foley KP, Bilan PJ, Klip A (2014) Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells. Mol Biol Cell 25:1159-1170
-
(2014)
Mol Biol Cell
, vol.25
, pp. 1159-1170
-
-
Sun, Y.1
Chiu, T.T.2
Foley, K.P.3
Bilan, P.J.4
Klip, A.5
-
54
-
-
37249087851
-
Small G proteins in insulin action: Rab and Rho families at the crossroads of signal transduction and GLUT4 vesicle traffic
-
1:STN:528:DC%2BD1cXhsVaisrw%3D
-
Ishikura S, Koshkina A, Klip A (2008) Small G proteins in insulin action: Rab and Rho families at the crossroads of signal transduction and GLUT4 vesicle traffic. Acta Physiol (Oxf) 192:61-74
-
(2008)
Acta Physiol (Oxf)
, vol.192
, pp. 61-74
-
-
Ishikura, S.1
Koshkina, A.2
Klip, A.3
-
55
-
-
84882762459
-
Specialized sorting of GLUT4 and its recruitment to the cell surface are independently regulated by distinct Rabs
-
1:STN:528:DC%2BC3sXhtlCmu7rN23804653
-
Sadacca LA, Bruno J, Wen J, Xiong W, McGraw TE (2013) Specialized sorting of GLUT4 and its recruitment to the cell surface are independently regulated by distinct Rabs. Mol Biol Cell 24:2544-2557
-
(2013)
Mol Biol Cell
, vol.24
, pp. 2544-2557
-
-
Sadacca, L.A.1
Bruno, J.2
Wen, J.3
Xiong, W.4
McGraw, T.E.5
-
56
-
-
84878666414
-
A role for Rab14 in the endocytic trafficking of GLUT4 in 3T3-L1 adipocytes
-
1:STN:528:DC%2BC3sXhtFWjtL3E23444368
-
Reed SE et al (2013) A role for Rab14 in the endocytic trafficking of GLUT4 in 3T3-L1 adipocytes. J Cell Sci 126:1931-1941
-
(2013)
J Cell Sci
, vol.126
, pp. 1931-1941
-
-
Reed, S.E.1
-
57
-
-
84866347107
-
Rab10 and myosin-Va mediate insulin-stimulated GLUT4 storage vesicle translocation in adipocytes
-
1:STN:528:DC%2BC38Xht1Oks7vF22908308
-
Chen Y et al (2012) Rab10 and myosin-Va mediate insulin-stimulated GLUT4 storage vesicle translocation in adipocytes. J Cell Biol 198:545-560
-
(2012)
J Cell Biol
, vol.198
, pp. 545-560
-
-
Chen, Y.1
-
58
-
-
44049087531
-
Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation
-
1:STN:528:DC%2BD1cXjslyru70%3D18258599
-
Chavez JA, Roach WG, Keller SR, Lane WS, Lienhard GE (2008) Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation. J Biol Chem 283:9187-9195
-
(2008)
J Biol Chem
, vol.283
, pp. 9187-9195
-
-
Chavez, J.A.1
Roach, W.G.2
Keller, S.R.3
Lane, W.S.4
Lienhard, G.E.5
-
59
-
-
84865152468
-
The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism
-
1:STN:528:DC%2BC38XhtlSlu7jJ22693207
-
Szekeres F et al (2012) The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism. Am J Physiol Endocrinol Metab 303:E524-E533
-
(2012)
Am J Physiol Endocrinol Metab
, vol.303
, pp. 524-E533
-
-
Szekeres, F.1
-
60
-
-
71049147903
-
Insulin-stimulated phosphorylation of the Rab GTPase-activating protein TBC1D1 regulates GLUT4 translocation
-
1:STN:528:DC%2BD1MXhtlSrurfM19740738
-
Peck GR et al (2009) Insulin-stimulated phosphorylation of the Rab GTPase-activating protein TBC1D1 regulates GLUT4 translocation. J Biol Chem 284:30016-30023
-
(2009)
J Biol Chem
, vol.284
, pp. 30016-30023
-
-
Peck, G.R.1
-
61
-
-
84884692647
-
Conventional knockout of Tbc1d1 in mice impairs insulin- and AICAR-stimulated glucose uptake in skeletal muscle
-
1:STN:528:DC%2BC3sXhsFKlt7nI23892475
-
Dokas J et al (2013) Conventional knockout of Tbc1d1 in mice impairs insulin- and AICAR-stimulated glucose uptake in skeletal muscle. Endocrinology 154:3502-3514
-
(2013)
Endocrinology
, vol.154
, pp. 3502-3514
-
-
Dokas, J.1
-
62
-
-
84869195388
-
Deletion of Rab GAP AS160 modifies glucose uptake and GLUT4 translocation in primary skeletal muscles and adipocytes and impairs glucose homeostasis
-
1:STN:528:DC%2BC38XhvVKmtbzI23011063
-
Lansey MN, Walker NN, Hargett SR, Stevens JR, Keller SR (2012) Deletion of Rab GAP AS160 modifies glucose uptake and GLUT4 translocation in primary skeletal muscles and adipocytes and impairs glucose homeostasis. Am J Physiol Endocrinol Metab 303:E1273-E1286
-
(2012)
Am J Physiol Endocrinol Metab
, vol.303
, pp. 1273-E1286
-
-
Lansey, M.N.1
Walker, N.N.2
Hargett, S.R.3
Stevens, J.R.4
Keller, S.R.5
-
63
-
-
84962050593
-
Deletion of both Rab-GTPase-activating proteins TBC1D1 and TBC1D4 in mice eliminates insulin- and AICAR-stimulated glucose transport
-
25249576
-
Chadt A et al (2014) Deletion of both Rab-GTPase-activating proteins TBC1D1 and TBC1D4 in mice eliminates insulin- and AICAR-stimulated glucose transport. Diabetes. doi: 10.2337/db14-0368
-
(2014)
Diabetes
-
-
Chadt, A.1
-
64
-
-
0036851817
-
Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase
-
1:STN:528:DC%2BD38XotlWlsrg%3D12368907
-
Yamauchi T et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288-1295
-
(2002)
Nat Med
, vol.8
, pp. 1288-1295
-
-
Yamauchi, T.1
-
65
-
-
0037494960
-
Cloning of adiponectin receptors that mediate antidiabetic metabolic effects
-
1:STN:528:DC%2BD3sXksV2itL8%3D12802337
-
Yamauchi T et al (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762-769
-
(2003)
Nature
, vol.423
, pp. 762-769
-
-
Yamauchi, T.1
-
66
-
-
61849184242
-
Endocytosis of adiponectin receptor 1 through a clathrin- and Rab5-dependent pathway
-
1:STN:528:DC%2BD1MXisVOitLo%3D18982021
-
Ding Q, Wang Z, Chen Y (2009) Endocytosis of adiponectin receptor 1 through a clathrin- and Rab5-dependent pathway. Cell Res 19:317-327
-
(2009)
Cell Res
, vol.19
, pp. 317-327
-
-
Ding, Q.1
Wang, Z.2
Chen, Y.3
-
67
-
-
58249105213
-
APPL1: Role in adiponectin signaling and beyond
-
Deepa SS, Dong LQ (2008) APPL1: role in adiponectin signaling and beyond. AJP Endocrinol Metab 296:E22-E36
-
(2008)
AJP Endocrinol Metab
, vol.296
, pp. 22-E36
-
-
Deepa, S.S.1
Dong, L.Q.2
-
68
-
-
70450265225
-
Yin-Yang regulation of adiponectin signaling by APPL isoforms in muscle cells. (1)
-
1:STN:528:DC%2BD1MXhtlyjsLvO19661063
-
Wang C et al (2009) Yin-Yang regulation of adiponectin signaling by APPL isoforms in muscle cells. (1). J Biol Chem 284:31608-31615
-
(2009)
J Biol Chem
, vol.284
, pp. 31608-31615
-
-
Wang, C.1
-
69
-
-
84908657614
-
The adaptor protein APPL2 inhibits insulin-stimulated glucose uptake by interacting with TBC1D1 in skeletal muscle
-
1:STN:528:DC%2BC2cXhvVyhu7bJ24879834
-
Cheng KKY et al (2014) The adaptor protein APPL2 inhibits insulin-stimulated glucose uptake by interacting with TBC1D1 in skeletal muscle. Diabetes 63:3748-3758
-
(2014)
Diabetes
, vol.63
, pp. 3748-3758
-
-
Cheng, K.K.Y.1
-
70
-
-
84870350433
-
Membrane curvature protein exhibits interdomain flexibility and binds a small GTPase
-
1:STN:528:DC%2BC38XhslGjs7nK23055524
-
King GJ et al (2012) Membrane curvature protein exhibits interdomain flexibility and binds a small GTPase. J Biol Chem 287:40996-41006
-
(2012)
J Biol Chem
, vol.287
, pp. 40996-41006
-
-
King, G.J.1
-
71
-
-
84888367601
-
The biophysics and cell biology of lipid droplets
-
1:STN:528:DC%2BC3sXhslGntLrK24220094
-
Thiam AR, Farese RV, Walther TC (2013) The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14:775-786
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 775-786
-
-
Thiam, A.R.1
Farese, R.V.2
Walther, T.C.3
-
72
-
-
84880036446
-
Balancing the fat: Lipid droplets and human disease
-
1:STN:528:DC%2BC3sXhtVCgs7jN23740690
-
Krahmer N, Farese RV, Walther TC (2013) Balancing the fat: lipid droplets and human disease. EMBO Mol Med 5:905-915
-
(2013)
EMBO Mol Med
, vol.5
, pp. 905-915
-
-
Krahmer, N.1
Farese, R.V.2
Walther, T.C.3
-
73
-
-
84868094659
-
Cytosolic lipid inclusions formed during infection by viral and bacterial pathogens
-
1:STN:528:DC%2BC38XhsFGjur3M22982567
-
Stehr M, Elamin AA, Singh M (2012) Cytosolic lipid inclusions formed during infection by viral and bacterial pathogens. Microbes Infect 14:1227-1237
-
(2012)
Microbes Infect
, vol.14
, pp. 1227-1237
-
-
Stehr, M.1
Elamin, A.A.2
Singh, M.3
-
74
-
-
0942287191
-
Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic
-
1:STN:528:DC%2BD2cXmtlCqsg%3D%3D14597625
-
Liu P et al (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 279:3787-3792
-
(2004)
J Biol Chem
, vol.279
, pp. 3787-3792
-
-
Liu, P.1
-
75
-
-
8744267532
-
Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes
-
1:STN:528:DC%2BD2cXptFejsr8%3D15337753
-
Brasaemle DL, Dolios G, Shapiro L, Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279:46835-46842
-
(2004)
J Biol Chem
, vol.279
, pp. 46835-46842
-
-
Brasaemle, D.L.1
Dolios, G.2
Shapiro, L.3
Wang, R.4
-
76
-
-
33746959419
-
Identification and characterization of associated with lipid droplet protein 1: A novel membrane-associated protein that resides on hepatic lipid droplets
-
17004324
-
Turró S et al (2006) Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 7:1254-1269
-
(2006)
Traffic
, vol.7
, pp. 1254-1269
-
-
Turró, S.1
-
77
-
-
84923846462
-
Rab proteins implicated in lipid storage and mobilization
-
25013400
-
Kiss RS, Nilsson T (2014) Rab proteins implicated in lipid storage and mobilization. J Biomed Res 28:169-177
-
(2014)
J Biomed Res
, vol.28
, pp. 169-177
-
-
Kiss, R.S.1
Nilsson, T.2
-
79
-
-
4143084213
-
Lipids partition caveolin-1 from ER membranes into lipid droplets: Updating the model of lipid droplet biogenesis
-
1:STN:528:DC%2BD2cXjvVCls70%3D
-
Robenek MJ et al (2004) Lipids partition caveolin-1 from ER membranes into lipid droplets: updating the model of lipid droplet biogenesis. FASEB J Off Publ Fed Am Soc Exp Biology 18:866-868
-
(2004)
FASEB J off Publ Fed Am Soc Exp Biology
, vol.18
, pp. 866-868
-
-
Robenek, M.J.1
-
80
-
-
33751161853
-
Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis
-
1:STN:528:DC%2BD28Xht1GksrbJ16984971
-
Robenek H et al (2006) Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 119:4215-4224
-
(2006)
J Cell Sci
, vol.119
, pp. 4215-4224
-
-
Robenek, H.1
-
81
-
-
84864007958
-
Role for TBC1D20 and Rab1 in hepatitis C virus replication via interaction with lipid droplet-bound nonstructural protein 5A
-
1:STN:528:DC%2BC38XosFegur8%3D22491470
-
Nevo-Yassaf I et al (2012) Role for TBC1D20 and Rab1 in hepatitis C virus replication via interaction with lipid droplet-bound nonstructural protein 5A. J Virol 86:6491-6502
-
(2012)
J Virol
, vol.86
, pp. 6491-6502
-
-
Nevo-Yassaf, I.1
-
82
-
-
34249674057
-
Rab-regulated interaction of early endosomes with lipid droplets
-
1:STN:528:DC%2BD2sXmtVansL0%3D17395284
-
Liu P et al (2007) Rab-regulated interaction of early endosomes with lipid droplets. Biochim Biophys Acta 1773:784-793
-
(2007)
Biochim Biophys Acta
, vol.1773
, pp. 784-793
-
-
Liu, P.1
-
83
-
-
65549166714
-
Lipophagy: Selective catabolism designed for lipids
-
1:STN:528:DC%2BD1MXps1yms7k%3D19460339
-
Weidberg H, Shvets E, Elazar Z (2009) Lipophagy: selective catabolism designed for lipids. Dev Cell 16:628-630
-
(2009)
Dev Cell
, vol.16
, pp. 628-630
-
-
Weidberg, H.1
Shvets, E.2
Elazar, Z.3
-
84
-
-
29644442801
-
Regulated localization of Rab18 to lipid droplets: Effects of lipolytic stimulation and inhibition of lipid droplet catabolism
-
1:STN:528:DC%2BD2MXhtlajs7%2FI16207721
-
Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG (2005) Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem 280:42325-42335
-
(2005)
J Biol Chem
, vol.280
, pp. 42325-42335
-
-
Martin, S.1
Driessen, K.2
Nixon, S.J.3
Zerial, M.4
Parton, R.G.5
-
85
-
-
79960904395
-
Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity
-
1:STN:528:DC%2BC3MXhtVOrt7zJ21829560
-
Pulido MR et al (2011) Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One 6:e22931
-
(2011)
PLoS One
, vol.6
, pp. 22931
-
-
Pulido, M.R.1
-
86
-
-
35748972649
-
SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity
-
17922004
-
Boström P et al (2007) SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nat Cell Biol 9:1286-1293
-
(2007)
Nat Cell Biol
, vol.9
, pp. 1286-1293
-
-
Boström, P.1
-
87
-
-
84883350018
-
Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets
-
1:STN:528:DC%2BC3sXhsVChs7rO23935497
-
Salloum S, Wang H, Ferguson C, Parton RG, Tai AW (2013) Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS Pathog 9:e1003513
-
(2013)
PLoS Pathog
, vol.9
, pp. 1003513
-
-
Salloum, S.1
Wang, H.2
Ferguson, C.3
Parton, R.G.4
Tai, A.W.5
-
88
-
-
84903737594
-
Rab18 is required for viral assembly of hepatitis C virus through trafficking of the core protein to lipid droplets
-
24997429
-
Dansako H, Hiramoto H, Ikeda M, Wakita T, Kato N (2014) Rab18 is required for viral assembly of hepatitis C virus through trafficking of the core protein to lipid droplets. Virology 462-463:166-174
-
(2014)
Virology
, vol.462-463
, pp. 166-174
-
-
Dansako, H.1
Hiramoto, H.2
Ikeda, M.3
Wakita, T.4
Kato, N.5
-
89
-
-
84876820482
-
Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein
-
1:STN:528:DC%2BC3sXntlCruro%3D23593007
-
Vogt DA et al (2013) Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein. PLoS Pathog 9:e1003302
-
(2013)
PLoS Pathog
, vol.9
, pp. 1003302
-
-
Vogt, D.A.1
-
90
-
-
33745280280
-
TIP47 is a key effector for Rab9 localization
-
1:STN:528:DC%2BD28Xmt1aqsLk%3D16769818
-
Aivazian D, Serrano RL, Pfeffer S (2006) TIP47 is a key effector for Rab9 localization. J Cell Biol 173:917-926
-
(2006)
J Cell Biol
, vol.173
, pp. 917-926
-
-
Aivazian, D.1
Serrano, R.L.2
Pfeffer, S.3
-
91
-
-
84893776013
-
TIP47 is associated with the hepatitis C virus and its interaction with Rab9 is required for release of viral particles
-
1:STN:528:DC%2BC2cXhtlKgsbk%3D24480419
-
Ploen D et al (2013) TIP47 is associated with the hepatitis C virus and its interaction with Rab9 is required for release of viral particles. Eur J Cell Biol 92:374-382
-
(2013)
Eur J Cell Biol
, vol.92
, pp. 374-382
-
-
Ploen, D.1
-
92
-
-
84880282714
-
Hepatitis B virus X protein upregulates oncogene Rab18 to result in the dysregulation of lipogenesis and proliferation of hepatoma cells
-
1:STN:528:DC%2BC3sXhtVakt7nE23471881
-
You X et al (2013) Hepatitis B virus X protein upregulates oncogene Rab18 to result in the dysregulation of lipogenesis and proliferation of hepatoma cells. Carcinogenesis 34:1644-1652
-
(2013)
Carcinogenesis
, vol.34
, pp. 1644-1652
-
-
You, X.1
-
93
-
-
84907327727
-
Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth
-
1:STN:528:DC%2BC2cXhsFalsLfI25158853
-
Wu L et al (2014) Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. Dev Cell 30:378-393
-
(2014)
Dev Cell
, vol.30
, pp. 378-393
-
-
Wu, L.1
-
94
-
-
84860201914
-
CIDE proteins and lipid metabolism
-
1:STN:528:DC%2BC38XlslWqtbg%3D22517368
-
Xu L, Zhou L, Li P (2012) CIDE proteins and lipid metabolism. Arterioscler Thromb Vasc Biol 32:1094-1098
-
(2012)
Arterioscler Thromb Vasc Biol
, vol.32
, pp. 1094-1098
-
-
Xu, L.1
Zhou, L.2
Li, P.3
-
95
-
-
84862908504
-
Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites
-
1:STN:528:DC%2BC3MXhs1ChurvK22144693
-
Gong J et al (2011) Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol 195:953-963
-
(2011)
J Cell Biol
, vol.195
, pp. 953-963
-
-
Gong, J.1
-
96
-
-
1842583789
-
Development by self-digestion: Molecular mechanisms and biological functions of autophagy
-
1:STN:528:DC%2BD2cXjsFeqsbs%3D15068787
-
Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463-477
-
(2004)
Dev Cell
, vol.6
, pp. 463-477
-
-
Levine, B.1
Klionsky, D.J.2
-
97
-
-
33746108329
-
Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy
-
1:STN:528:DC%2BD2MXhtVyktL7O16874052
-
Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1:84-91
-
(2005)
Autophagy
, vol.1
, pp. 84-91
-
-
Tanida, I.1
Minematsu-Ikeguchi, N.2
Ueno, T.3
Kominami, E.4
-
98
-
-
84860797387
-
Regulation of selective autophagy onset by a Ypt/Rab GTPase module
-
1:STN:528:DC%2BC38XntVWksLc%3D22509044
-
Lipatova Z et al (2012) Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc Natl Acad Sci 109:6981-6986
-
(2012)
Proc Natl Acad Sci
, vol.109
, pp. 6981-6986
-
-
Lipatova, Z.1
-
99
-
-
38149044992
-
Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells
-
1:STN:528:DC%2BD1cXit1SgsbY%3D17999726
-
Fader CM, Sánchez D, Furlán M, Colombo MI (2008) Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic 9:230-250
-
(2008)
Traffic
, vol.9
, pp. 230-250
-
-
Fader, C.M.1
Sánchez, D.2
Furlán, M.3
Colombo, M.I.4
-
100
-
-
84862611041
-
TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes
-
1:STN:528:DC%2BC38XotFWgur8%3D22613832
-
Longatti A et al (2012) TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol 197:659-675
-
(2012)
J Cell Biol
, vol.197
, pp. 659-675
-
-
Longatti, A.1
-
101
-
-
0036017758
-
Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24
-
1:STN:528:DC%2BD38XltF2ltLc%3D12047555
-
Munafo DB, Colombo MI (2002) Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24. Traffic 3:472-482
-
(2002)
Traffic
, vol.3
, pp. 472-482
-
-
Munafo, D.B.1
Colombo, M.I.2
-
102
-
-
0033565655
-
Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway
-
1:STN:528:DyaK1MXkvV2isr8%3D10406794
-
Mizushima N, Noda T, Ohsumi Y (1999) Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J 18:3888-3896
-
(1999)
EMBO J
, vol.18
, pp. 3888-3896
-
-
Mizushima, N.1
Noda, T.2
Ohsumi, Y.3
-
103
-
-
50249098491
-
Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation
-
1:STN:528:DC%2BD1cXoslWitL0%3D18448665
-
Itoh T et al (2008) Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell 19:2916-2925
-
(2008)
Mol Biol Cell
, vol.19
, pp. 2916-2925
-
-
Itoh, T.1
-
104
-
-
79952422876
-
OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation
-
1:STN:528:DC%2BC3MXjsVajt7o%3D21383079
-
Itoh T, Kanno E, Uemura T, Waguri S, Fukuda M (2011) OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J Cell Biol 192:839-853
-
(2011)
J Cell Biol
, vol.192
, pp. 839-853
-
-
Itoh, T.1
Kanno, E.2
Uemura, T.3
Waguri, S.4
Fukuda, M.5
-
105
-
-
84861396483
-
Rab GTPase-activating proteins in autophagy: Regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers
-
1:STN:528:DC%2BC38XmtFGmur4%3D22354992
-
Popovic D et al (2012) Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol Cell Biol 32:1733-1744
-
(2012)
Mol Cell Biol
, vol.32
, pp. 1733-1744
-
-
Popovic, D.1
-
106
-
-
0025776523
-
Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
-
1:STN:528:DyaK3MXlsl2hsr8%3D1715094
-
Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905-909
-
(1991)
Science
, vol.253
, pp. 905-909
-
-
Heitman, J.1
Movva, N.R.2
Hall, M.N.3
-
107
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
1:STN:528:DC%2BC3MXhtlyqu7jE22053050
-
Zoncu R et al (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334:678-683
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
-
108
-
-
77950501014
-
MTOR regulation of autophagy
-
1:STN:528:DC%2BC3cXjs12nu74%3D20083114
-
Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584:1287-1295
-
(2010)
FEBS Lett
, vol.584
, pp. 1287-1295
-
-
Jung, C.H.1
Ro, S.H.2
Cao, J.3
Otto, N.M.4
Kim, D.H.5
-
109
-
-
59749090661
-
Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor1
-
1:STN:528:DC%2BD1MXotVWlsw%3D%3D19143636
-
Avruch J et al (2009) Activation of mTORC1 in two steps: rheb-GTP activation of catalytic function and increased binding of substrates to raptor1. Biochem Soc Trans 37:223-226
-
(2009)
Biochem Soc Trans
, vol.37
, pp. 223-226
-
-
Avruch, J.1
-
110
-
-
67649823420
-
Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein
-
1:STN:528:DC%2BD1MXltlenu7k%3D19299511
-
Sato T, Nakashima A, Guo L, Tamanoi F (2009) Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem 284:12783-12791
-
(2009)
J Biol Chem
, vol.284
, pp. 12783-12791
-
-
Sato, T.1
Nakashima, A.2
Guo, L.3
Tamanoi, F.4
-
111
-
-
82555166000
-
MTOR signaling in disease
-
1:STN:528:DC%2BC3MXhsFOhurnP21963299
-
Dazert E, Hall MN (2011) mTOR signaling in disease. Curr Opin Cell Biol 23:744-755
-
(2011)
Curr Opin Cell Biol
, vol.23
, pp. 744-755
-
-
Dazert, E.1
Hall, M.N.2
-
112
-
-
84859778293
-
MTOR signaling in growth control and disease
-
1:STN:528:DC%2BC38Xls1eguro%3D22500797
-
Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274-293
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
113
-
-
84860461929
-
TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO
-
1:STN:528:DC%2BC38XmsVeqs7k%3D22560223
-
Robida-Stubbs S et al (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15:713-724
-
(2012)
Cell Metab
, vol.15
, pp. 713-724
-
-
Robida-Stubbs, S.1
-
114
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
1:STN:528:DC%2BD38XlvV2htr4%3D12150925
-
Kim DH et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163-176
-
(2002)
Cell
, vol.110
, pp. 163-176
-
-
Kim, D.H.1
-
115
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
1:STN:528:DC%2BD2cXmtVamsLs%3D15268862
-
Sarbassov DD et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296-1302
-
(2004)
Curr Biol
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
-
116
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
1:STN:528:DC%2BD3sXmt1Sjtrk%3D12869586
-
Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17:1829-1834
-
(2003)
Genes Dev
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.L.4
-
117
-
-
33646111903
-
Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning
-
1:STN:528:DC%2BD28XktVCnsr4%3D16636147
-
Cai SL (2006) Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol 173:279-289
-
(2006)
J Cell Biol
, vol.173
, pp. 279-289
-
-
Cai, S.L.1
-
118
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. (1)
-
1:STN:528:DC%2BC3MXhtlyqu7jE22053050
-
Zoncu R et al (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. (1). Science 334:678-683
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
-
119
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
1:STN:528:DC%2BC3cXmtVWnsLk%3D20381137
-
Sancak Y et al (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290-303
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
-
120
-
-
23344448223
-
Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization
-
1:STN:528:DC%2BD2MXhtVejs7%2FN16055732
-
Kamada Y et al (2005) Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol 25:7239-7248
-
(2005)
Mol Cell Biol
, vol.25
, pp. 7239-7248
-
-
Kamada, Y.1
-
121
-
-
70449900928
-
TOR complex 2: A signaling pathway of its own
-
1:STN:528:DC%2BD1MXhsV2hu7vM19875293
-
Cybulski N, Hall MN (2009) TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 34:620-627
-
(2009)
Trends Biochem Sci
, vol.34
, pp. 620-627
-
-
Cybulski, N.1
Hall, M.N.2
-
122
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
1:STN:528:DC%2BD28Xkt1GmtLo%3D16603397
-
Sarbassov DD et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159-168
-
(2006)
Mol Cell
, vol.22
, pp. 159-168
-
-
Sarbassov, D.D.1
-
123
-
-
77953801358
-
Regulation of mTORC1 by the Rab and Arf GTPases
-
1:STN:528:DC%2BC3cXnsFygsr0%3D20457610
-
Li L et al (2010) Regulation of mTORC1 by the Rab and Arf GTPases. J Biol Chem 285:19705-19709
-
(2010)
J Biol Chem
, vol.285
, pp. 19705-19709
-
-
Li, L.1
-
124
-
-
84856453804
-
Regulation of TOR by small GTPases
-
22240970
-
Durán RV, Hall MN (2012) Regulation of TOR by small GTPases. EMBO Rep 13:121-128
-
(2012)
EMBO Rep
, vol.13
, pp. 121-128
-
-
Durán, R.V.1
Hall, M.N.2
-
125
-
-
84862275111
-
Rab5 proteins regulate activation and localization of target of rapamycin complex 1. (1)
-
1:STN:528:DC%2BC38Xos1Cks70%3D22547071
-
Bridges D et al (2012) Rab5 proteins regulate activation and localization of target of rapamycin complex 1. (1). J Biol Chem 287:20913-20921
-
(2012)
J Biol Chem
, vol.287
, pp. 20913-20921
-
-
Bridges, D.1
-
126
-
-
0033766649
-
Dynamics of rab5 activation in endocytosis and phagocytosis
-
1:STN:528:DC%2BD3cXnvF2htLg%3D11073100
-
Roberts RL, Barbieri MA, Ullrich J, Stahl PD (2000) Dynamics of rab5 activation in endocytosis and phagocytosis. J Leukoc Biol 68:627-632
-
(2000)
J Leukoc Biol
, vol.68
, pp. 627-632
-
-
Roberts, R.L.1
Barbieri, M.A.2
Ullrich, J.3
Stahl, P.D.4
-
127
-
-
84877582117
-
Rab12 regulates mTORC1 activity and autophagy through controlling the degradation of amino-acid transporter PAT4
-
1:STN:528:DC%2BC3sXjslKnu70%3D23478338
-
Matsui T, Fukuda M (2013) Rab12 regulates mTORC1 activity and autophagy through controlling the degradation of amino-acid transporter PAT4. EMBO Rep 14:450-457
-
(2013)
EMBO Rep
, vol.14
, pp. 450-457
-
-
Matsui, T.1
Fukuda, M.2
-
128
-
-
84904497700
-
Rab8a interacts directly with PI3Kγ to modulate TLR4-driven PI3K and mTOR signalling
-
1:STN:528:DC%2BC2MXksVersrg%3D25022365
-
Luo L et al (2014) Rab8a interacts directly with PI3Kγ to modulate TLR4-driven PI3K and mTOR signalling. Nat Commun 5:4407
-
(2014)
Nat Commun
, vol.5
, pp. 4407
-
-
Luo, L.1
-
129
-
-
78649316549
-
Rab-family GTPase regulates TOR complex 2 signaling in fission yeast
-
1:STN:528:DC%2BC3cXhsVGrtLrN21035342
-
Tatebe H, Morigasaki S, Murayama S, Zeng CT, Shiozaki K (2010) Rab-family GTPase regulates TOR complex 2 signaling in fission yeast. Curr Biol 20:1975-1982
-
(2010)
Curr Biol
, vol.20
, pp. 1975-1982
-
-
Tatebe, H.1
Morigasaki, S.2
Murayama, S.3
Zeng, C.T.4
Shiozaki, K.5
-
130
-
-
79952044837
-
Rab small GTPase emerges as a regulator of TOR complex 2
-
21625337
-
Tatebe H, Shiozaki K (2010) Rab small GTPase emerges as a regulator of TOR complex 2. Small GTPases 1:180-182
-
(2010)
Small GTPases
, vol.1
, pp. 180-182
-
-
Tatebe, H.1
Shiozaki, K.2
-
131
-
-
0027997071
-
The small GTP-binding protein rab6 functions in intra-Golgi transport
-
1:STN:528:DyaK2cXmvFGht78%3D7798313
-
Martinez O, Schmidt A (1994) The small GTP-binding protein rab6 functions in intra-Golgi transport. J Cell Biol 127:1575-1588
-
(1994)
J Cell Biol
, vol.127
, pp. 1575-1588
-
-
Martinez, O.1
Schmidt, A.2
-
132
-
-
33645797841
-
Genetic and functional interaction between Ryh1 and Ypt3: Two Rab GTPases that function in S. Pombe secretory pathway
-
1:STN:528:DC%2BD28Xjt1Sjurs%3D16483310
-
He Y et al (2006) Genetic and functional interaction between Ryh1 and Ypt3: two Rab GTPases that function in S. pombe secretory pathway. Genes Cells 11:207-221
-
(2006)
Genes Cells
, vol.11
, pp. 207-221
-
-
He, Y.1
-
133
-
-
5144229125
-
Inaugural article: Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression
-
1:STN:528:DC%2BD2cXovVert7k%3D15353587
-
Marion RM (2004) Inaugural article: Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci 101:14315-14322
-
(2004)
Proc Natl Acad Sci
, vol.101
, pp. 14315-14322
-
-
Marion, R.M.1
-
134
-
-
0142184932
-
Sfp1 plays a key role in yeast ribosome biogenesis
-
1:STN:528:DC%2BD3sXos1Gkuro%3D14555489
-
Fingerman I, Nagaraj V, Norris D, Vershon AK (2003) Sfp1 plays a key role in yeast ribosome biogenesis. Eukaryot Cell 2:1061-1068
-
(2003)
Eukaryot Cell
, vol.2
, pp. 1061-1068
-
-
Fingerman, I.1
Nagaraj, V.2
Norris, D.3
Vershon, A.K.4
-
135
-
-
62549119989
-
Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling
-
19328065
-
Lempiäinen H et al (2009) Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling. Mol Cell 33:704-716
-
(2009)
Mol Cell
, vol.33
, pp. 704-716
-
-
Lempiäinen, H.1
-
136
-
-
69249240177
-
A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis
-
1:STN:528:DC%2BD1MXhtVegurbJ19684114
-
Singh J, Tyers M (2009) A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis. Genes Dev 23:1944-1958
-
(2009)
Genes Dev
, vol.23
, pp. 1944-1958
-
-
Singh, J.1
Tyers, M.2
-
137
-
-
42449162258
-
Akt substrate TBC1D1 regulates GLUT1 expression through the mTOR pathway in 3T3-L1 adipocytes
-
1:STN:528:DC%2BD1cXksF2qt7o%3D18215134
-
Zhou QL et al (2008) Akt substrate TBC1D1 regulates GLUT1 expression through the mTOR pathway in 3T3-L1 adipocytes. Biochem J 411:647-655
-
(2008)
Biochem J
, vol.411
, pp. 647-655
-
-
Zhou, Q.L.1
|