-
1
-
-
0036511213
-
ACRP30–adiponectin: An adipokine regulatingglucose and lipid metabolism
-
Berg, A. H., Combs, T. P. & Scherer, P. E. ACRP30–adiponectin: an adipokine regulating glucose and lipid metabolism. Trends. Endocrinol. Metab. 13, 84–89 (2002).
-
(2002)
Trends. Endocrinol. Metab
, vol.13
, pp. 84-89
-
-
Berg, A.H.1
Combs, T.P.2
Scherer, P.E.3
-
2
-
-
18844432308
-
Adiponectin and adiponectin receptors
-
Kadowaki, T. & Yamauchi, T. Adiponectin and adiponectin receptors. Endocr. Rev. 26, 439–451 (2005).
-
(2005)
Endocr. Rev
, vol.26
, pp. 439-451
-
-
Kadowaki, T.1
Yamauchi, T.2
-
3
-
-
0037066603
-
ACRP30, a new hormone controlling fat andglucose metabolism
-
Tsao, T. S., Lodish, H. F. & Fruebis, J. ACRP30, a new hormone controlling fat and glucose metabolism. Eur. J.Pharmacol. 440, 213–221 (2002).
-
(2002)
Eur. J.Pharmacol.
, vol.440
, pp. 213-221
-
-
Tsao, T.S.1
Lodish, H.F.2
Fruebis, J.3
-
4
-
-
0037494960
-
Cloning of adiponectin receptors that mediate antidiabetic metaboliceffects
-
Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003).
-
(2003)
Nature
, vol.423
, pp. 762-769
-
-
Yamauchi, T.1
-
5
-
-
0037135523
-
Disruption of adiponectin causes insulin resistance and neointimalformation
-
Kubota, N. et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 277, 25863–25866 (2002).
-
(2002)
J. Biol. Chem
, vol.277
, pp. 25863-25866
-
-
Kubota, N.1
-
6
-
-
0036063777
-
Diet-induced insulin resistance in mice lacking adiponectin–ACRP30
-
Maeda, N. et al. Diet-induced insulin resistance in mice lacking adiponectin–ACRP30. Nature Med. 8, 731–737 (2002).
-
(2002)
Nature Med
, vol.8
, pp. 731-737
-
-
Maeda, N.1
-
7
-
-
17944365228
-
The fat-derived hormone adiponectin reverses insulin resistanceassociated with both lipoatrophy and obesity
-
Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Med. 7, 941–946 (2001).
-
(2001)
Nature Med
, vol.7
, pp. 941-946
-
-
Yamauchi, T.1
-
8
-
-
17544382289
-
AdipoQ is a novel adipose-specific gene dysregulatedin obesity
-
Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol.Chem. 271, 10697–10703 (1996).
-
(1996)
J. Biol.Chem.
, vol.271
, pp. 10697-10703
-
-
Hu, E.1
Liang, P.2
Spiegelman, B.M.3
-
9
-
-
0034999667
-
Hypoadiponectinemia in obesity and type 2 diabetes: Close associationwith insulin resistance and hyperinsulinemia
-
Weyer, C. et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930–1935 (2001).
-
(2001)
J. Clin. Endocrinol. Metab
, vol.86
, pp. 1930-1935
-
-
Weyer, C.1
-
10
-
-
0034577326
-
Decreased expression of apM1 in omental and subcutaneousadipose tissue of humans with type 2 diabetes
-
Statnick, M. A. et al. Decreased expression of apM1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes. Int. J. Exp. Diabetes Res. 1, 81–88 (2000).
-
(2000)
Int. J. Exp. Diabetes Res
, vol.1
, pp. 81-88
-
-
Statnick, M.A.1
-
11
-
-
0034096988
-
Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc
-
Hotta, K. et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595–1599 (2000).
-
(2000)
Biol
, vol.20
, pp. 1595-1599
-
-
Hotta, K.1
-
12
-
-
0034671642
-
A novel ability of Smad3 to regulate proteasomal degradation of a Casfamily member HEF1
-
Liu, X. et al. A novel ability of Smad3 to regulate proteasomal degradation of a Cas family member HEF1. EMBO J. 19, 6759–6769 (2000).
-
(2000)
EMBO J
, vol.19
, pp. 6759-6769
-
-
Liu, X.1
-
13
-
-
0033517348
-
Identification of a chromosome 3p14.3–21.1 gene, APPL, encodingan adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2
-
Mitsuuchi, Y. et al. Identification of a chromosome 3p14.3–21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2. Oncogene 18, 4891–4898 (1999).
-
(1999)
Oncogene
, vol.18
, pp. 4891-4898
-
-
Mitsuuchi, Y.1
-
14
-
-
0037135578
-
Mediation of the DCC apoptotic signal by DIP13α
-
Liu, J. et al. Mediation of the DCC apoptotic signal by DIP13α. J. Biol. Chem. 277, 26281–26285 (2002).
-
(2002)
J. Biol. Chem
, vol.277
, pp. 26281-26285
-
-
Liu, J.1
-
15
-
-
2942601056
-
Human follicle-stimulating hormone (FSH) receptor interactswith the adaptor protein APPL1 in HEK 293 cells: Potential involvement of the PI3Kpathway in FSH signaling
-
Nechamen, C. A. et al. Human follicle-stimulating hormone (FSH) receptor interacts with the adaptor protein APPL1 in HEK 293 cells: potential involvement of the PI3K pathway in FSH signaling. Biol. Reprod. 71, 629–636 (2004).
-
(2004)
Biol. Reprod
, vol.71
, pp. 629-636
-
-
Nechamen, C.A.1
-
16
-
-
0037059013
-
Enhanced muscle fat oxidation and glucose transport by ACRP30globular domain: Acetyl-CoA carboxylase inhibition and AMP-activated protein kinaseactivation
-
Tomas, E. et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl Acad. Sci. USA 99, 16309–16313 (2002).
-
(2002)
Proc. Natl Acad. Sci. USA
, vol.99
, pp. 16309-16313
-
-
Tomas, E.1
-
17
-
-
0036851817
-
Adiponectin stimulates glucose utilization and fatty-acid oxidationby activating AMP-activated protein kinase
-
Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Med. 8, 1288–1295 (2002).
-
(2002)
Nature Med
, vol.8
, pp. 1288-1295
-
-
Yamauchi, T.1
-
18
-
-
12944302597
-
Globular adiponectin increases GLUT4 translocation and glucoseuptake but reduces glycogen synthesis in rat skeletal muscle cells
-
Ceddia, R. B. et al. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 48, 132–139 (2005).
-
(2005)
Diabetologia
, vol.48
, pp. 132-139
-
-
Ceddia, R.B.1
-
19
-
-
1642417606
-
APPL proteins link Rab5 to nuclear signal transduction via anendosomal compartment
-
Miaczynska, M. et al. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116, 445–456 (2004).
-
(2004)
Cell
, vol.116
, pp. 445-456
-
-
Miaczynska, M.1
-
20
-
-
0035818483
-
Insulin can regulate GLUT4 internalization
-
Huang, J., Imamura, T. & Olefsky, J. M. Insulin can regulate GLUT4 internalization by signaling to Rab5 and the motor protein dynein. Proc. Natl Acad. Sci. USA 98, 13084–13089 (2001).
-
(2001)
Proc. Natl Acad. Sci. USA
, vol.98
, pp. 13084-13089
-
-
Huang, J.1
Imamura, T.2
Olefsky, J.M.3
-
21
-
-
0034769142
-
Regulation of epidermal growth factor receptor endocytosis bywortmannin through activation of Rab5 rather than inhibition of phosphatidylinositol3-kinase
-
Chen, X. & Wang, Z. Regulation of epidermal growth factor receptor endocytosis by wortmannin through activation of Rab5 rather than inhibition of phosphatidylinositol 3-kinase. EMBO Rep. 2, 842–849 (2001).
-
(2001)
EMBO Rep
, vol.2
, pp. 842-849
-
-
Chen, X.1
Wang, Z.2
-
22
-
-
0034624990
-
Phosphorylation of PKN by PDK1 mediates insulin signals to the actincytoskeleton
-
Dong, L. Q. et al. Phosphorylation of PKN by PDK1 mediates insulin signals to the actin cytoskeleton. Proc. Natl Acad. Sci. USA 97, 5089–5094 (2000).
-
(2000)
Proc. Natl Acad. Sci. USA
, vol.97
, pp. 5089-5094
-
-
Dong, L.Q.1
-
23
-
-
0032504257
-
Evidence that IRS-2 phosphorylation is required for insulin actionin hepatocytes
-
Rother, K. I. et al. Evidence that IRS-2 phosphorylation is required for insulin action in hepatocytes. J. Biol. Chem. 273, 17491–17497 (1998).
-
(1998)
J. Biol. Chem
, vol.273
, pp. 17491-17497
-
-
Rother, K.I.1
-
24
-
-
0842291431
-
Negative regulation of insulin-stimulated MAP kinase signaling byGrb10. Mol
-
Langlais, P. et al. Negative regulation of insulin-stimulated MAP kinase signaling by Grb10. Mol. Endocrinol. 18, 350–358 (2004).
-
(2004)
Endocrinol
, vol.18
, pp. 350-358
-
-
Langlais, P.1
-
25
-
-
3142668924
-
A family of Acrp30–adiponectinstructural and functional paralogs
-
Wong, G. W., Wang, J., Hug, C., Tsao, T. S. & Lodish, H. F. A family of Acrp30–adiponectin structural and functional paralogs. Proc. Natl Acad. Sci. USA 101, 10302–10307 (2004).
-
(2004)
Sci. USA
, vol.101
, pp. 10302-10307
-
-
Wong, G.W.1
Wang, J.2
Hug, C.3
Tsao, T.S.4
Lodish, H.F.5
-
26
-
-
0035504158
-
GLUT4 translocation precedes the stimulation of glucose uptake byinsulin in muscle cells: Potential activation of GLUT4 via p38 mitogen-activated proteinkinase
-
Somwar, R. et al. GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochem. J. 359, 639–649 (2001).
-
(2001)
Biochem. J
, vol.359
, pp. 639-649
-
-
Somwar, R.1
-
27
-
-
3242891271
-
ConPred II: A consensus prediction method for obtaining transmembranetopology models with high reliability
-
Arai, M. et al. ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res. 32, W390–W393 (2004).
-
(2004)
Nucleic Acids Res
, vol.32
, pp. W390-W393
-
-
Arai, M.1
|