메뉴 건너뛰기




Volumn 8, Issue 5, 2006, Pages 516-523

APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function

Author keywords

[No Author keywords available]

Indexed keywords

ADIPONECTIN; ADIPOR1 PROTEIN, HUMAN; ADIPOR1 PROTEIN, MOUSE; APPL1 PROTEIN, MOUSE; CARRIER PROTEIN; CELL SURFACE RECEPTOR; DIP13ALPHA PROTEIN, HUMAN; GLUCOSE; INSULIN; RAB PROTEIN; SIGNAL TRANSDUCING ADAPTOR PROTEIN;

EID: 33744972277     PISSN: 14657392     EISSN: 14764679     Source Type: Journal    
DOI: 10.1038/ncb1404     Document Type: Article
Times cited : (584)

References (27)
  • 1
    • 0036511213 scopus 로고    scopus 로고
    • ACRP30–adiponectin: An adipokine regulatingglucose and lipid metabolism
    • Berg, A. H., Combs, T. P. & Scherer, P. E. ACRP30–adiponectin: an adipokine regulating glucose and lipid metabolism. Trends. Endocrinol. Metab. 13, 84–89 (2002).
    • (2002) Trends. Endocrinol. Metab , vol.13 , pp. 84-89
    • Berg, A.H.1    Combs, T.P.2    Scherer, P.E.3
  • 2
    • 18844432308 scopus 로고    scopus 로고
    • Adiponectin and adiponectin receptors
    • Kadowaki, T. & Yamauchi, T. Adiponectin and adiponectin receptors. Endocr. Rev. 26, 439–451 (2005).
    • (2005) Endocr. Rev , vol.26 , pp. 439-451
    • Kadowaki, T.1    Yamauchi, T.2
  • 3
    • 0037066603 scopus 로고    scopus 로고
    • ACRP30, a new hormone controlling fat andglucose metabolism
    • Tsao, T. S., Lodish, H. F. & Fruebis, J. ACRP30, a new hormone controlling fat and glucose metabolism. Eur. J.Pharmacol. 440, 213–221 (2002).
    • (2002) Eur. J.Pharmacol. , vol.440 , pp. 213-221
    • Tsao, T.S.1    Lodish, H.F.2    Fruebis, J.3
  • 4
    • 0037494960 scopus 로고    scopus 로고
    • Cloning of adiponectin receptors that mediate antidiabetic metaboliceffects
    • Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003).
    • (2003) Nature , vol.423 , pp. 762-769
    • Yamauchi, T.1
  • 5
    • 0037135523 scopus 로고    scopus 로고
    • Disruption of adiponectin causes insulin resistance and neointimalformation
    • Kubota, N. et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 277, 25863–25866 (2002).
    • (2002) J. Biol. Chem , vol.277 , pp. 25863-25866
    • Kubota, N.1
  • 6
    • 0036063777 scopus 로고    scopus 로고
    • Diet-induced insulin resistance in mice lacking adiponectin–ACRP30
    • Maeda, N. et al. Diet-induced insulin resistance in mice lacking adiponectin–ACRP30. Nature Med. 8, 731–737 (2002).
    • (2002) Nature Med , vol.8 , pp. 731-737
    • Maeda, N.1
  • 7
    • 17944365228 scopus 로고    scopus 로고
    • The fat-derived hormone adiponectin reverses insulin resistanceassociated with both lipoatrophy and obesity
    • Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Med. 7, 941–946 (2001).
    • (2001) Nature Med , vol.7 , pp. 941-946
    • Yamauchi, T.1
  • 8
    • 17544382289 scopus 로고    scopus 로고
    • AdipoQ is a novel adipose-specific gene dysregulatedin obesity
    • Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol.Chem. 271, 10697–10703 (1996).
    • (1996) J. Biol.Chem. , vol.271 , pp. 10697-10703
    • Hu, E.1    Liang, P.2    Spiegelman, B.M.3
  • 9
    • 0034999667 scopus 로고    scopus 로고
    • Hypoadiponectinemia in obesity and type 2 diabetes: Close associationwith insulin resistance and hyperinsulinemia
    • Weyer, C. et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930–1935 (2001).
    • (2001) J. Clin. Endocrinol. Metab , vol.86 , pp. 1930-1935
    • Weyer, C.1
  • 10
    • 0034577326 scopus 로고    scopus 로고
    • Decreased expression of apM1 in omental and subcutaneousadipose tissue of humans with type 2 diabetes
    • Statnick, M. A. et al. Decreased expression of apM1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes. Int. J. Exp. Diabetes Res. 1, 81–88 (2000).
    • (2000) Int. J. Exp. Diabetes Res , vol.1 , pp. 81-88
    • Statnick, M.A.1
  • 11
    • 0034096988 scopus 로고    scopus 로고
    • Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc
    • Hotta, K. et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595–1599 (2000).
    • (2000) Biol , vol.20 , pp. 1595-1599
    • Hotta, K.1
  • 12
    • 0034671642 scopus 로고    scopus 로고
    • A novel ability of Smad3 to regulate proteasomal degradation of a Casfamily member HEF1
    • Liu, X. et al. A novel ability of Smad3 to regulate proteasomal degradation of a Cas family member HEF1. EMBO J. 19, 6759–6769 (2000).
    • (2000) EMBO J , vol.19 , pp. 6759-6769
    • Liu, X.1
  • 13
    • 0033517348 scopus 로고    scopus 로고
    • Identification of a chromosome 3p14.3–21.1 gene, APPL, encodingan adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2
    • Mitsuuchi, Y. et al. Identification of a chromosome 3p14.3–21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2. Oncogene 18, 4891–4898 (1999).
    • (1999) Oncogene , vol.18 , pp. 4891-4898
    • Mitsuuchi, Y.1
  • 14
    • 0037135578 scopus 로고    scopus 로고
    • Mediation of the DCC apoptotic signal by DIP13α
    • Liu, J. et al. Mediation of the DCC apoptotic signal by DIP13α. J. Biol. Chem. 277, 26281–26285 (2002).
    • (2002) J. Biol. Chem , vol.277 , pp. 26281-26285
    • Liu, J.1
  • 15
    • 2942601056 scopus 로고    scopus 로고
    • Human follicle-stimulating hormone (FSH) receptor interactswith the adaptor protein APPL1 in HEK 293 cells: Potential involvement of the PI3Kpathway in FSH signaling
    • Nechamen, C. A. et al. Human follicle-stimulating hormone (FSH) receptor interacts with the adaptor protein APPL1 in HEK 293 cells: potential involvement of the PI3K pathway in FSH signaling. Biol. Reprod. 71, 629–636 (2004).
    • (2004) Biol. Reprod , vol.71 , pp. 629-636
    • Nechamen, C.A.1
  • 16
    • 0037059013 scopus 로고    scopus 로고
    • Enhanced muscle fat oxidation and glucose transport by ACRP30globular domain: Acetyl-CoA carboxylase inhibition and AMP-activated protein kinaseactivation
    • Tomas, E. et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl Acad. Sci. USA 99, 16309–16313 (2002).
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 16309-16313
    • Tomas, E.1
  • 17
    • 0036851817 scopus 로고    scopus 로고
    • Adiponectin stimulates glucose utilization and fatty-acid oxidationby activating AMP-activated protein kinase
    • Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Med. 8, 1288–1295 (2002).
    • (2002) Nature Med , vol.8 , pp. 1288-1295
    • Yamauchi, T.1
  • 18
    • 12944302597 scopus 로고    scopus 로고
    • Globular adiponectin increases GLUT4 translocation and glucoseuptake but reduces glycogen synthesis in rat skeletal muscle cells
    • Ceddia, R. B. et al. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 48, 132–139 (2005).
    • (2005) Diabetologia , vol.48 , pp. 132-139
    • Ceddia, R.B.1
  • 19
    • 1642417606 scopus 로고    scopus 로고
    • APPL proteins link Rab5 to nuclear signal transduction via anendosomal compartment
    • Miaczynska, M. et al. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116, 445–456 (2004).
    • (2004) Cell , vol.116 , pp. 445-456
    • Miaczynska, M.1
  • 20
    • 0035818483 scopus 로고    scopus 로고
    • Insulin can regulate GLUT4 internalization
    • Huang, J., Imamura, T. & Olefsky, J. M. Insulin can regulate GLUT4 internalization by signaling to Rab5 and the motor protein dynein. Proc. Natl Acad. Sci. USA 98, 13084–13089 (2001).
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 13084-13089
    • Huang, J.1    Imamura, T.2    Olefsky, J.M.3
  • 21
    • 0034769142 scopus 로고    scopus 로고
    • Regulation of epidermal growth factor receptor endocytosis bywortmannin through activation of Rab5 rather than inhibition of phosphatidylinositol3-kinase
    • Chen, X. & Wang, Z. Regulation of epidermal growth factor receptor endocytosis by wortmannin through activation of Rab5 rather than inhibition of phosphatidylinositol 3-kinase. EMBO Rep. 2, 842–849 (2001).
    • (2001) EMBO Rep , vol.2 , pp. 842-849
    • Chen, X.1    Wang, Z.2
  • 22
    • 0034624990 scopus 로고    scopus 로고
    • Phosphorylation of PKN by PDK1 mediates insulin signals to the actincytoskeleton
    • Dong, L. Q. et al. Phosphorylation of PKN by PDK1 mediates insulin signals to the actin cytoskeleton. Proc. Natl Acad. Sci. USA 97, 5089–5094 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 5089-5094
    • Dong, L.Q.1
  • 23
    • 0032504257 scopus 로고    scopus 로고
    • Evidence that IRS-2 phosphorylation is required for insulin actionin hepatocytes
    • Rother, K. I. et al. Evidence that IRS-2 phosphorylation is required for insulin action in hepatocytes. J. Biol. Chem. 273, 17491–17497 (1998).
    • (1998) J. Biol. Chem , vol.273 , pp. 17491-17497
    • Rother, K.I.1
  • 24
    • 0842291431 scopus 로고    scopus 로고
    • Negative regulation of insulin-stimulated MAP kinase signaling byGrb10. Mol
    • Langlais, P. et al. Negative regulation of insulin-stimulated MAP kinase signaling by Grb10. Mol. Endocrinol. 18, 350–358 (2004).
    • (2004) Endocrinol , vol.18 , pp. 350-358
    • Langlais, P.1
  • 25
    • 3142668924 scopus 로고    scopus 로고
    • A family of Acrp30–adiponectinstructural and functional paralogs
    • Wong, G. W., Wang, J., Hug, C., Tsao, T. S. & Lodish, H. F. A family of Acrp30–adiponectin structural and functional paralogs. Proc. Natl Acad. Sci. USA 101, 10302–10307 (2004).
    • (2004) Sci. USA , vol.101 , pp. 10302-10307
    • Wong, G.W.1    Wang, J.2    Hug, C.3    Tsao, T.S.4    Lodish, H.F.5
  • 26
    • 0035504158 scopus 로고    scopus 로고
    • GLUT4 translocation precedes the stimulation of glucose uptake byinsulin in muscle cells: Potential activation of GLUT4 via p38 mitogen-activated proteinkinase
    • Somwar, R. et al. GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochem. J. 359, 639–649 (2001).
    • (2001) Biochem. J , vol.359 , pp. 639-649
    • Somwar, R.1
  • 27
    • 3242891271 scopus 로고    scopus 로고
    • ConPred II: A consensus prediction method for obtaining transmembranetopology models with high reliability
    • Arai, M. et al. ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res. 32, W390–W393 (2004).
    • (2004) Nucleic Acids Res , vol.32 , pp. W390-W393
    • Arai, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.