메뉴 건너뛰기




Volumn 88, Issue 1-2, 2012, Pages 47-68

Multilabel classification with meta-ievel features in a iearning-to-rank framework

Author keywords

Learning to rank; Multilabel classification

Indexed keywords

BENCHMARK DATASETS; CONTROLLED EXPERIMENT; DATA SETS; EFFECTIVE LEARNING; EVALUATION METRICS; FEATURE SPACE; LEARNING TO RANK; LEVEL OF ABSTRACTION; LOGISTIC REGRESSIONS; LOW-LEVEL FEATURES; MULTI-LABEL; RETRIEVAL ALGORITHMS; STATE-OF-THE-ART METHODS;

EID: 84865211737     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-011-5270-7     Document Type: Review
Times cited : (62)

References (40)
  • 1
    • 0032201716 scopus 로고    scopus 로고
    • An optimal algorithm for approximate nearest neighbor searching fixed dimensions
    • Arya, S., Mount, D., Netanyahu, N., Silverman, R., & Wu, A. (1998). An optimal algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the ACM, 45(6), 891-923.
    • (1998) Journal of the ACM , vol.45 , Issue.6 , pp. 891-923
    • Arya, S.1    Mount, D.2    Netanyahu, N.3    Silverman, R.4    Wu, A.5
  • 2
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
    • Boutell, M., Luo, J., Shen, X., & Brown, C. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757-1771. (Pubitemid 38804465)
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 6
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • doi:10.1007/s10994-009-5127-5
    • Cheng, W., & Hüllermeier, E. (2009). Combining instance-based learning and logistic regression for multilabel classification. Machine Learning, 76(2-3), 211-225. doi:10.1007/s10994-009-5127-5, http://www. springerlink.com/content/m20342966250233x/.
    • (2009) Machine Learning , vol.76 , Issue.2-3 , pp. 211-225
    • Cheng, W.1    Hüllermeier, E.2
  • 8
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 30
    • Demšar, J.1
  • 10
    • 2542631648 scopus 로고    scopus 로고
    • Kernel methods for multi-labelled classification and categorical regression problems
    • Cambridge: MIT Press
    • Elisseeff, A., &Weston, J. (2001). Kernel methods for multi-labelled classification and categorical regression problems. In Advances in neural information processing systems (Vol. 14, pp. 681-687). Cambridge: MIT Press.
    • (2001) Advances in neural information processing systems , vol.14
    • Elisseeff, A.1    Weston, J.2
  • 13
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • Garcia, S., & Herrera, F. (2008). An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. Journal of Machine Learning Research, 9, 2677-2694.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2677-2694
    • Garcia, S.1    Herrera, F.2
  • 22
    • 77954568972 scopus 로고    scopus 로고
    • LETOR: A benchmark collection for research on learning to rank for information retrieval
    • Qin, T., Liu, T., Xu, J., & Li, H. (2010) LETOR: A benchmark collection for research on learning to rank for information retrieval. Information Retrieval, 1-29.
    • (2010) Information Retrieval , pp. 1-29
    • Qin, T.1    Liu, T.2    Xu, J.3    Li, H.4
  • 23
    • 84976703615 scopus 로고
    • Nearest neighbor queries
    • New York: ACM
    • Roussopoulos, N., Kelley, S., & Vincent, F. (1995). Nearest neighbor queries. In ACMsigmod record (Vol. 24, pp. 71-79). New York: ACM.
    • (1995) ACMsigmod Record , vol.24 , pp. 71-79
    • Roussopoulos, N.1    Kelley, S.2    Vincent, F.3
  • 24
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • DOI 10.1023/A:1007614523901
    • Schapire, R., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3), 297-336. (Pubitemid 32210620)
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 25
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • Schapire, R., & Singer, Y. (2000). BoosTexter: A boosting-based system for text categorization. Machine Learning, 39(2), 135-168. (Pubitemid 30594821)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 31
    • 1442296022 scopus 로고    scopus 로고
    • NIST Special Publication SP
    • Voorhees, E. (2003) Overview of TREC 2002. NIST special publication SP (pp. 1-16).
    • (2003) Overview of TREC 2002 , pp. 1-16
    • Voorhees, E.1
  • 33
    • 84984720462 scopus 로고
    • Expert network: Effective and efficient learning from human decisions in text categorization and retrieval
    • New York: Springer
    • Yang, Y. (1994). Expert network: Effective and efficient learning from human decisions in text categorization and retrieval. In ACM SIGIR conference on research and development in information retrieval (pp. 13-22). New York: Springer.
    • (1994) ACM SIGIR Conference on Research and Development in Information Retrieval , pp. 13-22
    • Yang, Y.1
  • 34
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • Yang, Y. (1999). An evaluation of statistical approaches to text categorization. Information Retrieval, 1(1), 69-90.
    • (1999) Information Retrieval , vol.1 , Issue.1 , pp. 69-90
    • Yang, Y.1
  • 35
    • 0034785186 scopus 로고    scopus 로고
    • A study on thresholding strategies for text categorization
    • Yang, Y. (2001). A study of thresholding strategies for text categorization. In Proceedings of the 24th annual international ACM SIGIR conference on research and development in information retrieval (pp. 137-145). New York: ACM. (Pubitemid 32951066)
    • (2001) SIGIR Forum (ACM Special Interest Group on Information Retrieval) , pp. 137-145
    • Yang, Y.1
  • 37
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • Citeseer
    • Yang, Y., & Pedersen, J. (1997) A comparative study on feature selection in text categorization. In International conference in machine learning (pp. 412-420). Citeseer.
    • (1997) International Conference in Machine Learning , pp. 412-420
    • Yang, Y.1    Pedersen, J.2
  • 38
    • 0027188633 scopus 로고
    • Data structures and algorithms for nearest neighbor search in general metric spaces
    • Yianilos, P. (1993). Data structures and algorithms for nearest neighbor search in general metric spaces. In Proceedings of the fourth annual ACM-SIAM symposium on discrete algorithms (pp. 311-321). Philadelphia: Society for Industrial and Applied Mathematics. (Pubitemid 23612715)
    • (1993) Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms , pp. 311-321
    • Yianilos Peter, N.1
  • 40
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • DOI 10.1016/j.patcog.2006.12.019, PII S0031320307000027
    • Zhang, M., & Zhou, Z. (2007). ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7), 2038-2048. (Pubitemid 46497248)
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.