메뉴 건너뛰기




Volumn 26, Issue 5, 2015, Pages 256-262

Protein-dependent regulation of feeding and metabolism

Author keywords

Amino acids; Dietary protein; FGF21; GCN2; Leucine; Macronutrient

Indexed keywords

ESSENTIAL AMINO ACID; FIBROBLAST GROWTH FACTOR 21; PROTEIN; AMINO ACID; PROTEIN INTAKE;

EID: 84928698713     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2015.02.008     Document Type: Review
Times cited : (80)

References (92)
  • 1
    • 84859735479 scopus 로고    scopus 로고
    • Homeostatic regulation of protein intake: in search of a mechanism
    • Morrison C.D., et al. Homeostatic regulation of protein intake: in search of a mechanism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302:R917-R928.
    • (2012) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.302 , pp. R917-R928
    • Morrison, C.D.1
  • 2
    • 84864032774 scopus 로고    scopus 로고
    • Neural and metabolic regulation of macronutrient intake and selection
    • Berthoud H.R., et al. Neural and metabolic regulation of macronutrient intake and selection. Proc. Nutr. Soc. 2012, 71:390-400.
    • (2012) Proc. Nutr. Soc. , vol.71 , pp. 390-400
    • Berthoud, H.R.1
  • 3
    • 84877134365 scopus 로고    scopus 로고
    • Control of protein and energy intake - brain mechanisms
    • Davidenko O., et al. Control of protein and energy intake - brain mechanisms. Eur. J. Clin. Nutr. 2013, 67:455-461.
    • (2013) Eur. J. Clin. Nutr. , vol.67 , pp. 455-461
    • Davidenko, O.1
  • 4
    • 84890917913 scopus 로고    scopus 로고
    • Protein diets, body weight loss and weight maintenance
    • Martens E.A., et al. Protein diets, body weight loss and weight maintenance. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17:75-79.
    • (2014) Curr. Opin. Clin. Nutr. Metab. Care , vol.17 , pp. 75-79
    • Martens, E.A.1
  • 5
    • 84894271535 scopus 로고    scopus 로고
    • Protein leverage and energy intake
    • Gosby A.K., et al. Protein leverage and energy intake. Obes. Rev. 2014, 15:183-191.
    • (2014) Obes. Rev. , vol.15 , pp. 183-191
    • Gosby, A.K.1
  • 6
    • 84871919301 scopus 로고    scopus 로고
    • Detection of amino acid deprivation in the central nervous system
    • Anthony T.G., et al. Detection of amino acid deprivation in the central nervous system. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16:96-101.
    • (2013) Curr. Opin. Clin. Nutr. Metab. Care , vol.16 , pp. 96-101
    • Anthony, T.G.1
  • 7
    • 67749135553 scopus 로고    scopus 로고
    • Dietary protein, weight loss, and weight maintenance
    • Westerterp-Plantenga M.S., et al. Dietary protein, weight loss, and weight maintenance. Annu. Rev. Nutr. 2009, 29:21-41.
    • (2009) Annu. Rev. Nutr. , vol.29 , pp. 21-41
    • Westerterp-Plantenga, M.S.1
  • 8
    • 84869824828 scopus 로고    scopus 로고
    • Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials
    • Wycherley T.P., et al. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012, 96:1281-1298.
    • (2012) Am. J. Clin. Nutr. , vol.96 , pp. 1281-1298
    • Wycherley, T.P.1
  • 9
    • 84876963237 scopus 로고    scopus 로고
    • Normal protein intake is required for body weight loss and weight maintenance, and elevated protein intake for additional preservation of resting energy expenditure and fat free mass
    • Soenen S., et al. Normal protein intake is required for body weight loss and weight maintenance, and elevated protein intake for additional preservation of resting energy expenditure and fat free mass. J. Nutr. 2013, 143:591-596.
    • (2013) J. Nutr. , vol.143 , pp. 591-596
    • Soenen, S.1
  • 10
    • 4644287818 scopus 로고    scopus 로고
    • A long-term high-protein diet markedly reduces adipose tissue without major side effects in Wistar male rats
    • Lacroix M., et al. A long-term high-protein diet markedly reduces adipose tissue without major side effects in Wistar male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287:R934-R942.
    • (2004) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.287 , pp. R934-R942
    • Lacroix, M.1
  • 11
    • 0037310026 scopus 로고    scopus 로고
    • A high-protein diet enhances satiety without conditioned taste aversion in the rat
    • Bensaid A., et al. A high-protein diet enhances satiety without conditioned taste aversion in the rat. Physiol. Behav. 2003, 78:311-320.
    • (2003) Physiol. Behav. , vol.78 , pp. 311-320
    • Bensaid, A.1
  • 12
    • 0035186657 scopus 로고    scopus 로고
    • Metabolic evidence for adaptation to a high protein diet in rats
    • Jean C., et al. Metabolic evidence for adaptation to a high protein diet in rats. J. Nutr. 2001, 131:91-98.
    • (2001) J. Nutr. , vol.131 , pp. 91-98
    • Jean, C.1
  • 13
    • 0021950369 scopus 로고
    • Adaptation of rats to diets containing different levels of protein: effects on food intake, plasma and brain amino acid concentrations and brain neurotransmitter metabolism
    • Peters J.C., et al. Adaptation of rats to diets containing different levels of protein: effects on food intake, plasma and brain amino acid concentrations and brain neurotransmitter metabolism. J. Nutr. 1985, 115:382-398.
    • (1985) J. Nutr. , vol.115 , pp. 382-398
    • Peters, J.C.1
  • 14
    • 84907015381 scopus 로고    scopus 로고
    • FGF21 is an endocrine signal of protein restriction
    • Laeger T., et al. FGF21 is an endocrine signal of protein restriction. J. Clin. Invest. 2014, 124:3913-3922.
    • (2014) J. Clin. Invest. , vol.124 , pp. 3913-3922
    • Laeger, T.1
  • 15
    • 34547121196 scopus 로고    scopus 로고
    • Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism
    • Morrison C.D., et al. Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism. Am. J. Physiol. Endocrinol. Metab. 2007, 293:E165-E171.
    • (2007) Am. J. Physiol. Endocrinol. Metab. , vol.293 , pp. E165-E171
    • Morrison, C.D.1
  • 16
    • 0034029023 scopus 로고    scopus 로고
    • Effects of age on the feeding response to moderately low dietary protein in rats
    • White B.D., et al. Effects of age on the feeding response to moderately low dietary protein in rats. Physiol. Behav. 2000, 68:673-681.
    • (2000) Physiol. Behav. , vol.68 , pp. 673-681
    • White, B.D.1
  • 17
    • 0034001498 scopus 로고    scopus 로고
    • Food intake, energy balance and serum leptin concentrations in rats fed low-protein diets
    • Du F., et al. Food intake, energy balance and serum leptin concentrations in rats fed low-protein diets. J. Nutr. 2000, 130:514-521.
    • (2000) J. Nutr. , vol.130 , pp. 514-521
    • Du, F.1
  • 18
    • 84455172911 scopus 로고    scopus 로고
    • Protein status elicits compensatory changes in food intake and food preferences
    • Griffioen-Roose S., et al. Protein status elicits compensatory changes in food intake and food preferences. Am. J. Clin. Nutr. 2012, 95:32-38.
    • (2012) Am. J. Clin. Nutr. , vol.95 , pp. 32-38
    • Griffioen-Roose, S.1
  • 19
    • 80053994168 scopus 로고    scopus 로고
    • Testing protein leverage in lean humans: a randomised controlled experimental study
    • Gosby A.K., et al. Testing protein leverage in lean humans: a randomised controlled experimental study. PLoS ONE 2011, 6:e25929.
    • (2011) PLoS ONE , vol.6 , pp. e25929
    • Gosby, A.K.1
  • 20
    • 84903516835 scopus 로고    scopus 로고
    • Human protein status modulates brain reward responses to food cues
    • Griffioen-Roose S., et al. Human protein status modulates brain reward responses to food cues. Am. J. Clin. Nutr. 2014, 100:113-122.
    • (2014) Am. J. Clin. Nutr. , vol.100 , pp. 113-122
    • Griffioen-Roose, S.1
  • 21
    • 84901675890 scopus 로고    scopus 로고
    • Protein leverage effects of beef protein on energy intake in humans
    • Martens E.A., et al. Protein leverage effects of beef protein on energy intake in humans. Am. J. Clin. Nutr. 2014, 99:1397-1406.
    • (2014) Am. J. Clin. Nutr. , vol.99 , pp. 1397-1406
    • Martens, E.A.1
  • 22
    • 40149094621 scopus 로고    scopus 로고
    • Protein-leverage in mice: the geometry of macronutrient balancing and consequences for fat deposition
    • Sorensen A., et al. Protein-leverage in mice: the geometry of macronutrient balancing and consequences for fat deposition. Obesity 2008, 16:566-571.
    • (2008) Obesity , vol.16 , pp. 566-571
    • Sorensen, A.1
  • 23
    • 0031171302 scopus 로고    scopus 로고
    • Geometric analysis of macronutrient selection in the rat
    • Simpson S.J., et al. Geometric analysis of macronutrient selection in the rat. Appetite 1997, 28:201-213.
    • (1997) Appetite , vol.28 , pp. 201-213
    • Simpson, S.J.1
  • 24
    • 0028822152 scopus 로고
    • Rats treated with somatotropin select diets higher in protein
    • Roberts T.J., et al. Rats treated with somatotropin select diets higher in protein. J. Nutr. 1995, 125:2669-2678.
    • (1995) J. Nutr. , vol.125 , pp. 2669-2678
    • Roberts, T.J.1
  • 25
    • 0035047069 scopus 로고    scopus 로고
    • Effect of lysine on afferent activity of the hepatic branch of the vagus nerve in normal and L-lysine-deficient rats
    • Torii K., et al. Effect of lysine on afferent activity of the hepatic branch of the vagus nerve in normal and L-lysine-deficient rats. Physiol. Behav. 2001, 72:685-690.
    • (2001) Physiol. Behav. , vol.72 , pp. 685-690
    • Torii, K.1
  • 26
    • 8244223171 scopus 로고    scopus 로고
    • Small changes in essential amino acid concentrations alter diet selection in amino acid-deficient rats
    • Hrupka B.J., et al. Small changes in essential amino acid concentrations alter diet selection in amino acid-deficient rats. J. Nutr. 1997, 127:777-784.
    • (1997) J. Nutr. , vol.127 , pp. 777-784
    • Hrupka, B.J.1
  • 27
    • 84891516963 scopus 로고    scopus 로고
    • Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats
    • Hasek B.E., et al. Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats. Diabetes 2013, 62:3362-3372.
    • (2013) Diabetes , vol.62 , pp. 3362-3372
    • Hasek, B.E.1
  • 28
    • 84925253746 scopus 로고    scopus 로고
    • Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21
    • Lees E.K., et al. Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21. Aging Cell 2014, 13:817-827.
    • (2014) Aging Cell , vol.13 , pp. 817-827
    • Lees, E.K.1
  • 29
    • 84908610776 scopus 로고    scopus 로고
    • Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice
    • Stone K.P., et al. Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice. Diabetes 2014, 63:3721-3733.
    • (2014) Diabetes , vol.63 , pp. 3721-3733
    • Stone, K.P.1
  • 30
    • 84891693313 scopus 로고    scopus 로고
    • Remodeling of lipid metabolism by dietary restriction of essential amino acids
    • Anthony T.G., et al. Remodeling of lipid metabolism by dietary restriction of essential amino acids. Diabetes 2013, 62:2635-2644.
    • (2013) Diabetes , vol.62 , pp. 2635-2644
    • Anthony, T.G.1
  • 31
    • 20144387009 scopus 로고    scopus 로고
    • The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores
    • Maurin A.C., et al. The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab. 2005, 1:273-277.
    • (2005) Cell Metab. , vol.1 , pp. 273-277
    • Maurin, A.C.1
  • 32
    • 20144374658 scopus 로고    scopus 로고
    • Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex
    • Hao S., et al. Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 2005, 307:1776-1778.
    • (2005) Science , vol.307 , pp. 1776-1778
    • Hao, S.1
  • 33
    • 0041742309 scopus 로고    scopus 로고
    • The rapid anorectic response to a threonine imbalanced diet is decreased by injection of threonine into the anterior piriform cortex of rats
    • Russell M.C., et al. The rapid anorectic response to a threonine imbalanced diet is decreased by injection of threonine into the anterior piriform cortex of rats. Nutr. Neurosci. 2003, 6:247-251.
    • (2003) Nutr. Neurosci. , vol.6 , pp. 247-251
    • Russell, M.C.1
  • 34
    • 84866783355 scopus 로고    scopus 로고
    • The transcription factor network associated with the amino acid response in mammalian cells
    • Kilberg M.S., et al. The transcription factor network associated with the amino acid response in mammalian cells. Adv. Nutr. 2012, 3:295-306.
    • (2012) Adv. Nutr. , vol.3 , pp. 295-306
    • Kilberg, M.S.1
  • 35
    • 32544446451 scopus 로고    scopus 로고
    • Coping with stress: eIF2 kinases and translational control
    • Wek R.C., et al. Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 2006, 34:7-11.
    • (2006) Biochem. Soc. Trans. , vol.34 , pp. 7-11
    • Wek, R.C.1
  • 36
    • 0036771638 scopus 로고    scopus 로고
    • The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice
    • Zhang P., et al. The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol. Cell. Biol. 2002, 22:6681-6688.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 6681-6688
    • Zhang, P.1
  • 37
    • 33846602706 scopus 로고    scopus 로고
    • The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid
    • Guo F., et al. The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab. 2007, 5:103-114.
    • (2007) Cell Metab. , vol.5 , pp. 103-114
    • Guo, F.1
  • 38
    • 84858311217 scopus 로고    scopus 로고
    • Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation
    • De Sousa-Coelho A.L., et al. Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem. J. 2012, 443:165-171.
    • (2012) Biochem. J. , vol.443 , pp. 165-171
    • De Sousa-Coelho, A.L.1
  • 39
    • 72249111299 scopus 로고    scopus 로고
    • MTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat
    • Chotechuang N., et al. mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat. Am. J. Physiol. Endocrinol. Metab. 2009, 297:E1313-E1323.
    • (2009) Am. J. Physiol. Endocrinol. Metab. , vol.297 , pp. E1313-E1323
    • Chotechuang, N.1
  • 40
    • 84866607486 scopus 로고    scopus 로고
    • S6K1 in the central nervous system regulates energy expenditure via MC4R/CRH pathways in response to deprivation of an essential amino acid
    • Xia T., et al. S6K1 in the central nervous system regulates energy expenditure via MC4R/CRH pathways in response to deprivation of an essential amino acid. Diabetes 2012, 61:2461-2471.
    • (2012) Diabetes , vol.61 , pp. 2461-2471
    • Xia, T.1
  • 41
    • 84920663890 scopus 로고    scopus 로고
    • CREB/TRH pathway in the central nervous system regulates energy expenditure in response to deprivation of an essential amino acid
    • Xia T., et al. CREB/TRH pathway in the central nervous system regulates energy expenditure in response to deprivation of an essential amino acid. Int. J. Obes. (Lond.) 2015, 39:105-113.
    • (2015) Int. J. Obes. (Lond.) , vol.39 , pp. 105-113
    • Xia, T.1
  • 42
    • 84873276759 scopus 로고    scopus 로고
    • Central leucine sensing in the control of energy homeostasis
    • Schwartz G.J. Central leucine sensing in the control of energy homeostasis. Endocrinol. Metab. Clin. North Am. 2013, 42:81-87.
    • (2013) Endocrinol. Metab. Clin. North Am. , vol.42 , pp. 81-87
    • Schwartz, G.J.1
  • 43
    • 33646582664 scopus 로고    scopus 로고
    • Hypothalamic mTOR signaling regulates food intake
    • Cota D., et al. Hypothalamic mTOR signaling regulates food intake. Science 2006, 312:927-930.
    • (2006) Science , vol.312 , pp. 927-930
    • Cota, D.1
  • 44
    • 67649962153 scopus 로고    scopus 로고
    • Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit
    • Blouet C., et al. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J. Neurosci. 2009, 29:8302-8311.
    • (2009) J. Neurosci. , vol.29 , pp. 8302-8311
    • Blouet, C.1
  • 45
    • 40949150324 scopus 로고    scopus 로고
    • A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss
    • Ropelle E.R., et al. A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes 2008, 57:594-605.
    • (2008) Diabetes , vol.57 , pp. 594-605
    • Ropelle, E.R.1
  • 46
    • 84871405563 scopus 로고    scopus 로고
    • Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding
    • Blouet C., et al. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding. Cell Metab. 2012, 16:579-587.
    • (2012) Cell Metab. , vol.16 , pp. 579-587
    • Blouet, C.1
  • 47
    • 84905230920 scopus 로고    scopus 로고
    • Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein
    • Laeger T., et al. Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307:R310-R320.
    • (2014) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.307 , pp. R310-R320
    • Laeger, T.1
  • 48
    • 63449111894 scopus 로고    scopus 로고
    • A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance
    • Newgard C.B., et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9:311-326.
    • (2009) Cell Metab. , vol.9 , pp. 311-326
    • Newgard, C.B.1
  • 49
    • 64049117998 scopus 로고    scopus 로고
    • Leucine supplementation of drinking water does not alter susceptibility to diet-induced obesity in mice
    • Nairizi A., et al. Leucine supplementation of drinking water does not alter susceptibility to diet-induced obesity in mice. J. Nutr. 2009, 139:715-719.
    • (2009) J. Nutr. , vol.139 , pp. 715-719
    • Nairizi, A.1
  • 50
    • 84873263780 scopus 로고    scopus 로고
    • Effect of central and peripheral leucine on energy metabolism in the Djungarian hamster (Phodopus sungorus)
    • Koch C.E., et al. Effect of central and peripheral leucine on energy metabolism in the Djungarian hamster (Phodopus sungorus). J. Comp. Physiol. B 2013, 183:261-268.
    • (2013) J. Comp. Physiol. B , vol.183 , pp. 261-268
    • Koch, C.E.1
  • 51
    • 84892513597 scopus 로고    scopus 로고
    • Oral leucine supplementation is sensed by the brain but neither reduces food intake nor induces an anorectic pattern of gene expression in the hypothalamus
    • Zampieri T.T., et al. Oral leucine supplementation is sensed by the brain but neither reduces food intake nor induces an anorectic pattern of gene expression in the hypothalamus. PLoS ONE 2013, 8:e84094.
    • (2013) PLoS ONE , vol.8 , pp. e84094
    • Zampieri, T.T.1
  • 52
    • 84887545370 scopus 로고    scopus 로고
    • Specific amino acids inhibit food intake via the area postrema or vagal afferents
    • Jordi J., et al. Specific amino acids inhibit food intake via the area postrema or vagal afferents. J. Physiol. 2013, 591:5611-5621.
    • (2013) J. Physiol. , vol.591 , pp. 5611-5621
    • Jordi, J.1
  • 53
    • 79953153378 scopus 로고    scopus 로고
    • Metabolic and genomic response to dietary isocaloric protein restriction in the rat
    • Kalhan S.C., et al. Metabolic and genomic response to dietary isocaloric protein restriction in the rat. J. Biol. Chem. 2011, 286:5266-5277.
    • (2011) J. Biol. Chem. , vol.286 , pp. 5266-5277
    • Kalhan, S.C.1
  • 54
    • 0025021056 scopus 로고
    • Dietary branched-chain amino acids and protein selection by rats
    • Anderson S.A., et al. Dietary branched-chain amino acids and protein selection by rats. J. Nutr. 1990, 120:52-63.
    • (1990) J. Nutr. , vol.120 , pp. 52-63
    • Anderson, S.A.1
  • 55
    • 84863647636 scopus 로고    scopus 로고
    • Peripheral and central mechanisms involved in the control of food intake by dietary amino acids and proteins
    • Fromentin G., et al. Peripheral and central mechanisms involved in the control of food intake by dietary amino acids and proteins. Nutr. Res. Rev. 2012, 25:29-39.
    • (2012) Nutr. Res. Rev. , vol.25 , pp. 29-39
    • Fromentin, G.1
  • 56
    • 70349567026 scopus 로고    scopus 로고
    • Protein, amino acids, vagus nerve signaling, and the brain
    • Tome D., et al. Protein, amino acids, vagus nerve signaling, and the brain. Am. J. Clin. Nutr. 2009, 90:838S-843S.
    • (2009) Am. J. Clin. Nutr. , vol.90 , pp. 838S-843S
    • Tome, D.1
  • 57
    • 77957317102 scopus 로고    scopus 로고
    • Three-dimensional macronutrient-associated Fos expression patterns in the mouse brainstem
    • Schwarz J., et al. Three-dimensional macronutrient-associated Fos expression patterns in the mouse brainstem. PLoS ONE 2010, 5:e8974.
    • (2010) PLoS ONE , vol.5 , pp. e8974
    • Schwarz, J.1
  • 58
    • 84876926534 scopus 로고    scopus 로고
    • Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety
    • Belza A., et al. Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety. Am. J. Clin. Nutr. 2013, 97:980-989.
    • (2013) Am. J. Clin. Nutr. , vol.97 , pp. 980-989
    • Belza, A.1
  • 59
    • 84875863110 scopus 로고    scopus 로고
    • Beneficial effects of a higher-protein breakfast on the appetitive, hormonal, and neural signals controlling energy intake regulation in overweight/obese, 'breakfast-skipping,' late-adolescent girls
    • Leidy H.J., et al. Beneficial effects of a higher-protein breakfast on the appetitive, hormonal, and neural signals controlling energy intake regulation in overweight/obese, 'breakfast-skipping,' late-adolescent girls. Am. J. Clin. Nutr. 2013, 97:677-688.
    • (2013) Am. J. Clin. Nutr. , vol.97 , pp. 677-688
    • Leidy, H.J.1
  • 60
    • 33644861132 scopus 로고    scopus 로고
    • Effect of a high-protein breakfast on the postprandial ghrelin response
    • Blom W.A., et al. Effect of a high-protein breakfast on the postprandial ghrelin response. Am. J. Clin. Nutr. 2006, 83:211-220.
    • (2006) Am. J. Clin. Nutr. , vol.83 , pp. 211-220
    • Blom, W.A.1
  • 61
    • 33748128913 scopus 로고    scopus 로고
    • Critical role for peptide YY in protein-mediated satiation and body-weight regulation
    • Batterham R.L., et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 2006, 4:223-233.
    • (2006) Cell Metab. , vol.4 , pp. 223-233
    • Batterham, R.L.1
  • 62
    • 84880935872 scopus 로고    scopus 로고
    • Nutrient control of hunger by extrinsic gastrointestinal neurons
    • Mithieux G. Nutrient control of hunger by extrinsic gastrointestinal neurons. Trends Endocrinol. Metab. 2013, 24:378-384.
    • (2013) Trends Endocrinol. Metab. , vol.24 , pp. 378-384
    • Mithieux, G.1
  • 63
    • 30444460011 scopus 로고    scopus 로고
    • Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein
    • Mithieux G., et al. Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab. 2005, 2:321-329.
    • (2005) Cell Metab. , vol.2 , pp. 321-329
    • Mithieux, G.1
  • 64
    • 80053445180 scopus 로고    scopus 로고
    • Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis
    • Penhoat A., et al. Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis. Physiol. Behav. 2011, 105:89-93.
    • (2011) Physiol. Behav. , vol.105 , pp. 89-93
    • Penhoat, A.1
  • 65
    • 84863510503 scopus 로고    scopus 로고
    • Effects of fat, protein, and carbohydrate and protein load on appetite, plasma cholecystokinin, peptide YY, and ghrelin, and energy intake in lean and obese men
    • Brennan I.M., et al. Effects of fat, protein, and carbohydrate and protein load on appetite, plasma cholecystokinin, peptide YY, and ghrelin, and energy intake in lean and obese men. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303:G129-G140.
    • (2012) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.303 , pp. G129-G140
    • Brennan, I.M.1
  • 66
    • 0024466172 scopus 로고
    • Unlearned specific appetite for protein
    • Deutsch J.A., et al. Unlearned specific appetite for protein. Physiol. Behav. 1989, 46:619-624.
    • (1989) Physiol. Behav. , vol.46 , pp. 619-624
    • Deutsch, J.A.1
  • 67
    • 0034210523 scopus 로고    scopus 로고
    • Protein selection, food intake, and body composition in response to the amount of dietary protein
    • White B.D., et al. Protein selection, food intake, and body composition in response to the amount of dietary protein. Physiol. Behav. 2000, 69:383-389.
    • (2000) Physiol. Behav. , vol.69 , pp. 383-389
    • White, B.D.1
  • 68
    • 84864283300 scopus 로고    scopus 로고
    • Muscles, exercise and obesity: skeletal muscle as a secretory organ
    • Pedersen B.K., et al. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 8:457-465.
    • (2012) Nat. Rev. Endocrinol. , vol.8 , pp. 457-465
    • Pedersen, B.K.1
  • 69
    • 84901822752 scopus 로고    scopus 로고
    • A systems biology analysis of the unique and overlapping transcriptional responses to caloric restriction and dietary methionine restriction in rats
    • Ghosh S., et al. A systems biology analysis of the unique and overlapping transcriptional responses to caloric restriction and dietary methionine restriction in rats. FASEB J. 2014, 28:2577-2590.
    • (2014) FASEB J. , vol.28 , pp. 2577-2590
    • Ghosh, S.1
  • 70
    • 67649823642 scopus 로고    scopus 로고
    • FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response
    • Potthoff M.J., et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:10853-10858.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 10853-10858
    • Potthoff, M.J.1
  • 71
    • 34249711964 scopus 로고    scopus 로고
    • Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
    • Badman M.K., et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007, 5:426-437.
    • (2007) Cell Metab. , vol.5 , pp. 426-437
    • Badman, M.K.1
  • 72
    • 34249686631 scopus 로고    scopus 로고
    • Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
    • Inagaki T., et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007, 5:415-425.
    • (2007) Cell Metab. , vol.5 , pp. 415-425
    • Inagaki, T.1
  • 73
    • 20444435873 scopus 로고    scopus 로고
    • FGF-21 as a novel metabolic regulator
    • Kharitonenkov A., et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 2005, 115:1627-1635.
    • (2005) J. Clin. Invest. , vol.115 , pp. 1627-1635
    • Kharitonenkov, A.1
  • 74
    • 61649127208 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice
    • Xu J., et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 2009, 58:250-259.
    • (2009) Diabetes , vol.58 , pp. 250-259
    • Xu, J.1
  • 75
    • 84863012022 scopus 로고    scopus 로고
    • FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis
    • Fisher F.M., et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012, 26:271-281.
    • (2012) Genes Dev. , vol.26 , pp. 271-281
    • Fisher, F.M.1
  • 76
    • 84881508008 scopus 로고    scopus 로고
    • The starvation hormone, fibroblast growth factor-21, extends lifespan in mice
    • Zhang Y., et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife 2012, 1:e00065.
    • (2012) Elife , vol.1 , pp. e00065
    • Zhang, Y.1
  • 77
    • 79960726293 scopus 로고    scopus 로고
    • Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo
    • Fisher F.M., et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 2011, 152:2996-3004.
    • (2011) Endocrinology , vol.152 , pp. 2996-3004
    • Fisher, F.M.1
  • 78
    • 57349098220 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 corrects obesity in mice
    • Coskun T., et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008, 149:6018-6027.
    • (2008) Endocrinology , vol.149 , pp. 6018-6027
    • Coskun, T.1
  • 79
    • 84865741904 scopus 로고    scopus 로고
    • BetaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism
    • Ding X., et al. betaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab. 2012, 16:387-393.
    • (2012) Cell Metab. , vol.16 , pp. 387-393
    • Ding, X.1
  • 80
    • 84905679771 scopus 로고    scopus 로고
    • The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue
    • Adams A.C., et al. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol. Metab. 2012, 2:31-37.
    • (2012) Mol. Metab. , vol.2 , pp. 31-37
    • Adams, A.C.1
  • 81
    • 77954277205 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats
    • Sarruf D.A., et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 2010, 59:1817-1824.
    • (2010) Diabetes , vol.59 , pp. 1817-1824
    • Sarruf, D.A.1
  • 82
    • 84883778996 scopus 로고    scopus 로고
    • FGF21 regulates metabolism and circadian behavior by acting on the nervous system
    • Bookout A.L., et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 2013, 19:1147-1152.
    • (2013) Nat. Med. , vol.19 , pp. 1147-1152
    • Bookout, A.L.1
  • 83
    • 84908018672 scopus 로고    scopus 로고
    • FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss
    • Owen B.M., et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014, 20:670-677.
    • (2014) Cell Metab. , vol.20 , pp. 670-677
    • Owen, B.M.1
  • 84
    • 84874664386 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 is induced by endoplasmic reticulum stress
    • Schaap F.G., et al. Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochimie 2013, 95:692-699.
    • (2013) Biochimie , vol.95 , pp. 692-699
    • Schaap, F.G.1
  • 85
    • 84885383560 scopus 로고    scopus 로고
    • Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation
    • Kim K.H., et al. Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation. Biochem. Biophys. Res. Commun. 2013, 440:76-81.
    • (2013) Biochem. Biophys. Res. Commun. , vol.440 , pp. 76-81
    • Kim, K.H.1
  • 86
    • 84899516860 scopus 로고    scopus 로고
    • Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine
    • Keipert S., et al. Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. Am. J. Physiol. Endocrinol. Metab. 2014, 306:E469-E482.
    • (2014) Am. J. Physiol. Endocrinol. Metab. , vol.306 , pp. E469-E482
    • Keipert, S.1
  • 87
    • 84922918736 scopus 로고    scopus 로고
    • GCN2 is required to increase fibroblast growth factor 21 and maintain hepatic triglyceride homeostasis during asparaginase treatment
    • Wilson G.J., et al. GCN2 is required to increase fibroblast growth factor 21 and maintain hepatic triglyceride homeostasis during asparaginase treatment. Am. J. Physiol. Endocrinol. Metab. 2015, 308:E283-E293.
    • (2015) Am. J. Physiol. Endocrinol. Metab. , vol.308 , pp. E283-E293
    • Wilson, G.J.1
  • 88
    • 85027936258 scopus 로고    scopus 로고
    • Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21
    • Muller T.D., et al. Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21. J. Pept. Sci. 2012, 18:383-393.
    • (2012) J. Pept. Sci. , vol.18 , pp. 383-393
    • Muller, T.D.1
  • 89
    • 84911917697 scopus 로고    scopus 로고
    • Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding
    • Markan K.R., et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 2014, 63:4057-4063.
    • (2014) Diabetes , vol.63 , pp. 4057-4063
    • Markan, K.R.1
  • 90
    • 84893849860 scopus 로고    scopus 로고
    • Interplay between FGF21 and insulin action in the liver regulates metabolism
    • Emanuelli B., et al. Interplay between FGF21 and insulin action in the liver regulates metabolism. J. Clin. Invest. 2014, 124:515-527.
    • (2014) J. Clin. Invest. , vol.124 , pp. 515-527
    • Emanuelli, B.1
  • 91
    • 84895765028 scopus 로고    scopus 로고
    • The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice
    • Solon-Biet S.M., et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014, 19:418-430.
    • (2014) Cell Metab. , vol.19 , pp. 418-430
    • Solon-Biet, S.M.1
  • 92
    • 84895727751 scopus 로고    scopus 로고
    • Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population
    • Levine M.E., et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014, 19:407-417.
    • (2014) Cell Metab. , vol.19 , pp. 407-417
    • Levine, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.