-
1
-
-
84859735479
-
Homeostatic regulation of protein intake: in search of a mechanism
-
Morrison C.D., et al. Homeostatic regulation of protein intake: in search of a mechanism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302:R917-R928.
-
(2012)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.302
, pp. R917-R928
-
-
Morrison, C.D.1
-
2
-
-
84864032774
-
Neural and metabolic regulation of macronutrient intake and selection
-
Berthoud H.R., et al. Neural and metabolic regulation of macronutrient intake and selection. Proc. Nutr. Soc. 2012, 71:390-400.
-
(2012)
Proc. Nutr. Soc.
, vol.71
, pp. 390-400
-
-
Berthoud, H.R.1
-
3
-
-
84877134365
-
Control of protein and energy intake - brain mechanisms
-
Davidenko O., et al. Control of protein and energy intake - brain mechanisms. Eur. J. Clin. Nutr. 2013, 67:455-461.
-
(2013)
Eur. J. Clin. Nutr.
, vol.67
, pp. 455-461
-
-
Davidenko, O.1
-
4
-
-
84890917913
-
Protein diets, body weight loss and weight maintenance
-
Martens E.A., et al. Protein diets, body weight loss and weight maintenance. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17:75-79.
-
(2014)
Curr. Opin. Clin. Nutr. Metab. Care
, vol.17
, pp. 75-79
-
-
Martens, E.A.1
-
5
-
-
84894271535
-
Protein leverage and energy intake
-
Gosby A.K., et al. Protein leverage and energy intake. Obes. Rev. 2014, 15:183-191.
-
(2014)
Obes. Rev.
, vol.15
, pp. 183-191
-
-
Gosby, A.K.1
-
6
-
-
84871919301
-
Detection of amino acid deprivation in the central nervous system
-
Anthony T.G., et al. Detection of amino acid deprivation in the central nervous system. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16:96-101.
-
(2013)
Curr. Opin. Clin. Nutr. Metab. Care
, vol.16
, pp. 96-101
-
-
Anthony, T.G.1
-
7
-
-
67749135553
-
Dietary protein, weight loss, and weight maintenance
-
Westerterp-Plantenga M.S., et al. Dietary protein, weight loss, and weight maintenance. Annu. Rev. Nutr. 2009, 29:21-41.
-
(2009)
Annu. Rev. Nutr.
, vol.29
, pp. 21-41
-
-
Westerterp-Plantenga, M.S.1
-
8
-
-
84869824828
-
Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials
-
Wycherley T.P., et al. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012, 96:1281-1298.
-
(2012)
Am. J. Clin. Nutr.
, vol.96
, pp. 1281-1298
-
-
Wycherley, T.P.1
-
9
-
-
84876963237
-
Normal protein intake is required for body weight loss and weight maintenance, and elevated protein intake for additional preservation of resting energy expenditure and fat free mass
-
Soenen S., et al. Normal protein intake is required for body weight loss and weight maintenance, and elevated protein intake for additional preservation of resting energy expenditure and fat free mass. J. Nutr. 2013, 143:591-596.
-
(2013)
J. Nutr.
, vol.143
, pp. 591-596
-
-
Soenen, S.1
-
10
-
-
4644287818
-
A long-term high-protein diet markedly reduces adipose tissue without major side effects in Wistar male rats
-
Lacroix M., et al. A long-term high-protein diet markedly reduces adipose tissue without major side effects in Wistar male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287:R934-R942.
-
(2004)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.287
, pp. R934-R942
-
-
Lacroix, M.1
-
11
-
-
0037310026
-
A high-protein diet enhances satiety without conditioned taste aversion in the rat
-
Bensaid A., et al. A high-protein diet enhances satiety without conditioned taste aversion in the rat. Physiol. Behav. 2003, 78:311-320.
-
(2003)
Physiol. Behav.
, vol.78
, pp. 311-320
-
-
Bensaid, A.1
-
12
-
-
0035186657
-
Metabolic evidence for adaptation to a high protein diet in rats
-
Jean C., et al. Metabolic evidence for adaptation to a high protein diet in rats. J. Nutr. 2001, 131:91-98.
-
(2001)
J. Nutr.
, vol.131
, pp. 91-98
-
-
Jean, C.1
-
13
-
-
0021950369
-
Adaptation of rats to diets containing different levels of protein: effects on food intake, plasma and brain amino acid concentrations and brain neurotransmitter metabolism
-
Peters J.C., et al. Adaptation of rats to diets containing different levels of protein: effects on food intake, plasma and brain amino acid concentrations and brain neurotransmitter metabolism. J. Nutr. 1985, 115:382-398.
-
(1985)
J. Nutr.
, vol.115
, pp. 382-398
-
-
Peters, J.C.1
-
14
-
-
84907015381
-
FGF21 is an endocrine signal of protein restriction
-
Laeger T., et al. FGF21 is an endocrine signal of protein restriction. J. Clin. Invest. 2014, 124:3913-3922.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 3913-3922
-
-
Laeger, T.1
-
15
-
-
34547121196
-
Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism
-
Morrison C.D., et al. Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism. Am. J. Physiol. Endocrinol. Metab. 2007, 293:E165-E171.
-
(2007)
Am. J. Physiol. Endocrinol. Metab.
, vol.293
, pp. E165-E171
-
-
Morrison, C.D.1
-
16
-
-
0034029023
-
Effects of age on the feeding response to moderately low dietary protein in rats
-
White B.D., et al. Effects of age on the feeding response to moderately low dietary protein in rats. Physiol. Behav. 2000, 68:673-681.
-
(2000)
Physiol. Behav.
, vol.68
, pp. 673-681
-
-
White, B.D.1
-
17
-
-
0034001498
-
Food intake, energy balance and serum leptin concentrations in rats fed low-protein diets
-
Du F., et al. Food intake, energy balance and serum leptin concentrations in rats fed low-protein diets. J. Nutr. 2000, 130:514-521.
-
(2000)
J. Nutr.
, vol.130
, pp. 514-521
-
-
Du, F.1
-
18
-
-
84455172911
-
Protein status elicits compensatory changes in food intake and food preferences
-
Griffioen-Roose S., et al. Protein status elicits compensatory changes in food intake and food preferences. Am. J. Clin. Nutr. 2012, 95:32-38.
-
(2012)
Am. J. Clin. Nutr.
, vol.95
, pp. 32-38
-
-
Griffioen-Roose, S.1
-
19
-
-
80053994168
-
Testing protein leverage in lean humans: a randomised controlled experimental study
-
Gosby A.K., et al. Testing protein leverage in lean humans: a randomised controlled experimental study. PLoS ONE 2011, 6:e25929.
-
(2011)
PLoS ONE
, vol.6
, pp. e25929
-
-
Gosby, A.K.1
-
20
-
-
84903516835
-
Human protein status modulates brain reward responses to food cues
-
Griffioen-Roose S., et al. Human protein status modulates brain reward responses to food cues. Am. J. Clin. Nutr. 2014, 100:113-122.
-
(2014)
Am. J. Clin. Nutr.
, vol.100
, pp. 113-122
-
-
Griffioen-Roose, S.1
-
21
-
-
84901675890
-
Protein leverage effects of beef protein on energy intake in humans
-
Martens E.A., et al. Protein leverage effects of beef protein on energy intake in humans. Am. J. Clin. Nutr. 2014, 99:1397-1406.
-
(2014)
Am. J. Clin. Nutr.
, vol.99
, pp. 1397-1406
-
-
Martens, E.A.1
-
22
-
-
40149094621
-
Protein-leverage in mice: the geometry of macronutrient balancing and consequences for fat deposition
-
Sorensen A., et al. Protein-leverage in mice: the geometry of macronutrient balancing and consequences for fat deposition. Obesity 2008, 16:566-571.
-
(2008)
Obesity
, vol.16
, pp. 566-571
-
-
Sorensen, A.1
-
23
-
-
0031171302
-
Geometric analysis of macronutrient selection in the rat
-
Simpson S.J., et al. Geometric analysis of macronutrient selection in the rat. Appetite 1997, 28:201-213.
-
(1997)
Appetite
, vol.28
, pp. 201-213
-
-
Simpson, S.J.1
-
24
-
-
0028822152
-
Rats treated with somatotropin select diets higher in protein
-
Roberts T.J., et al. Rats treated with somatotropin select diets higher in protein. J. Nutr. 1995, 125:2669-2678.
-
(1995)
J. Nutr.
, vol.125
, pp. 2669-2678
-
-
Roberts, T.J.1
-
25
-
-
0035047069
-
Effect of lysine on afferent activity of the hepatic branch of the vagus nerve in normal and L-lysine-deficient rats
-
Torii K., et al. Effect of lysine on afferent activity of the hepatic branch of the vagus nerve in normal and L-lysine-deficient rats. Physiol. Behav. 2001, 72:685-690.
-
(2001)
Physiol. Behav.
, vol.72
, pp. 685-690
-
-
Torii, K.1
-
26
-
-
8244223171
-
Small changes in essential amino acid concentrations alter diet selection in amino acid-deficient rats
-
Hrupka B.J., et al. Small changes in essential amino acid concentrations alter diet selection in amino acid-deficient rats. J. Nutr. 1997, 127:777-784.
-
(1997)
J. Nutr.
, vol.127
, pp. 777-784
-
-
Hrupka, B.J.1
-
27
-
-
84891516963
-
Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats
-
Hasek B.E., et al. Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats. Diabetes 2013, 62:3362-3372.
-
(2013)
Diabetes
, vol.62
, pp. 3362-3372
-
-
Hasek, B.E.1
-
28
-
-
84925253746
-
Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21
-
Lees E.K., et al. Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21. Aging Cell 2014, 13:817-827.
-
(2014)
Aging Cell
, vol.13
, pp. 817-827
-
-
Lees, E.K.1
-
29
-
-
84908610776
-
Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice
-
Stone K.P., et al. Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice. Diabetes 2014, 63:3721-3733.
-
(2014)
Diabetes
, vol.63
, pp. 3721-3733
-
-
Stone, K.P.1
-
30
-
-
84891693313
-
Remodeling of lipid metabolism by dietary restriction of essential amino acids
-
Anthony T.G., et al. Remodeling of lipid metabolism by dietary restriction of essential amino acids. Diabetes 2013, 62:2635-2644.
-
(2013)
Diabetes
, vol.62
, pp. 2635-2644
-
-
Anthony, T.G.1
-
31
-
-
20144387009
-
The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores
-
Maurin A.C., et al. The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab. 2005, 1:273-277.
-
(2005)
Cell Metab.
, vol.1
, pp. 273-277
-
-
Maurin, A.C.1
-
32
-
-
20144374658
-
Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex
-
Hao S., et al. Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 2005, 307:1776-1778.
-
(2005)
Science
, vol.307
, pp. 1776-1778
-
-
Hao, S.1
-
33
-
-
0041742309
-
The rapid anorectic response to a threonine imbalanced diet is decreased by injection of threonine into the anterior piriform cortex of rats
-
Russell M.C., et al. The rapid anorectic response to a threonine imbalanced diet is decreased by injection of threonine into the anterior piriform cortex of rats. Nutr. Neurosci. 2003, 6:247-251.
-
(2003)
Nutr. Neurosci.
, vol.6
, pp. 247-251
-
-
Russell, M.C.1
-
34
-
-
84866783355
-
The transcription factor network associated with the amino acid response in mammalian cells
-
Kilberg M.S., et al. The transcription factor network associated with the amino acid response in mammalian cells. Adv. Nutr. 2012, 3:295-306.
-
(2012)
Adv. Nutr.
, vol.3
, pp. 295-306
-
-
Kilberg, M.S.1
-
35
-
-
32544446451
-
Coping with stress: eIF2 kinases and translational control
-
Wek R.C., et al. Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 2006, 34:7-11.
-
(2006)
Biochem. Soc. Trans.
, vol.34
, pp. 7-11
-
-
Wek, R.C.1
-
36
-
-
0036771638
-
The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice
-
Zhang P., et al. The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol. Cell. Biol. 2002, 22:6681-6688.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 6681-6688
-
-
Zhang, P.1
-
37
-
-
33846602706
-
The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid
-
Guo F., et al. The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab. 2007, 5:103-114.
-
(2007)
Cell Metab.
, vol.5
, pp. 103-114
-
-
Guo, F.1
-
38
-
-
84858311217
-
Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation
-
De Sousa-Coelho A.L., et al. Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem. J. 2012, 443:165-171.
-
(2012)
Biochem. J.
, vol.443
, pp. 165-171
-
-
De Sousa-Coelho, A.L.1
-
39
-
-
72249111299
-
MTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat
-
Chotechuang N., et al. mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat. Am. J. Physiol. Endocrinol. Metab. 2009, 297:E1313-E1323.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.297
, pp. E1313-E1323
-
-
Chotechuang, N.1
-
40
-
-
84866607486
-
S6K1 in the central nervous system regulates energy expenditure via MC4R/CRH pathways in response to deprivation of an essential amino acid
-
Xia T., et al. S6K1 in the central nervous system regulates energy expenditure via MC4R/CRH pathways in response to deprivation of an essential amino acid. Diabetes 2012, 61:2461-2471.
-
(2012)
Diabetes
, vol.61
, pp. 2461-2471
-
-
Xia, T.1
-
41
-
-
84920663890
-
CREB/TRH pathway in the central nervous system regulates energy expenditure in response to deprivation of an essential amino acid
-
Xia T., et al. CREB/TRH pathway in the central nervous system regulates energy expenditure in response to deprivation of an essential amino acid. Int. J. Obes. (Lond.) 2015, 39:105-113.
-
(2015)
Int. J. Obes. (Lond.)
, vol.39
, pp. 105-113
-
-
Xia, T.1
-
42
-
-
84873276759
-
Central leucine sensing in the control of energy homeostasis
-
Schwartz G.J. Central leucine sensing in the control of energy homeostasis. Endocrinol. Metab. Clin. North Am. 2013, 42:81-87.
-
(2013)
Endocrinol. Metab. Clin. North Am.
, vol.42
, pp. 81-87
-
-
Schwartz, G.J.1
-
43
-
-
33646582664
-
Hypothalamic mTOR signaling regulates food intake
-
Cota D., et al. Hypothalamic mTOR signaling regulates food intake. Science 2006, 312:927-930.
-
(2006)
Science
, vol.312
, pp. 927-930
-
-
Cota, D.1
-
44
-
-
67649962153
-
Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit
-
Blouet C., et al. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J. Neurosci. 2009, 29:8302-8311.
-
(2009)
J. Neurosci.
, vol.29
, pp. 8302-8311
-
-
Blouet, C.1
-
45
-
-
40949150324
-
A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss
-
Ropelle E.R., et al. A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes 2008, 57:594-605.
-
(2008)
Diabetes
, vol.57
, pp. 594-605
-
-
Ropelle, E.R.1
-
46
-
-
84871405563
-
Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding
-
Blouet C., et al. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding. Cell Metab. 2012, 16:579-587.
-
(2012)
Cell Metab.
, vol.16
, pp. 579-587
-
-
Blouet, C.1
-
47
-
-
84905230920
-
Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein
-
Laeger T., et al. Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307:R310-R320.
-
(2014)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.307
, pp. R310-R320
-
-
Laeger, T.1
-
48
-
-
63449111894
-
A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance
-
Newgard C.B., et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9:311-326.
-
(2009)
Cell Metab.
, vol.9
, pp. 311-326
-
-
Newgard, C.B.1
-
49
-
-
64049117998
-
Leucine supplementation of drinking water does not alter susceptibility to diet-induced obesity in mice
-
Nairizi A., et al. Leucine supplementation of drinking water does not alter susceptibility to diet-induced obesity in mice. J. Nutr. 2009, 139:715-719.
-
(2009)
J. Nutr.
, vol.139
, pp. 715-719
-
-
Nairizi, A.1
-
50
-
-
84873263780
-
Effect of central and peripheral leucine on energy metabolism in the Djungarian hamster (Phodopus sungorus)
-
Koch C.E., et al. Effect of central and peripheral leucine on energy metabolism in the Djungarian hamster (Phodopus sungorus). J. Comp. Physiol. B 2013, 183:261-268.
-
(2013)
J. Comp. Physiol. B
, vol.183
, pp. 261-268
-
-
Koch, C.E.1
-
51
-
-
84892513597
-
Oral leucine supplementation is sensed by the brain but neither reduces food intake nor induces an anorectic pattern of gene expression in the hypothalamus
-
Zampieri T.T., et al. Oral leucine supplementation is sensed by the brain but neither reduces food intake nor induces an anorectic pattern of gene expression in the hypothalamus. PLoS ONE 2013, 8:e84094.
-
(2013)
PLoS ONE
, vol.8
, pp. e84094
-
-
Zampieri, T.T.1
-
52
-
-
84887545370
-
Specific amino acids inhibit food intake via the area postrema or vagal afferents
-
Jordi J., et al. Specific amino acids inhibit food intake via the area postrema or vagal afferents. J. Physiol. 2013, 591:5611-5621.
-
(2013)
J. Physiol.
, vol.591
, pp. 5611-5621
-
-
Jordi, J.1
-
53
-
-
79953153378
-
Metabolic and genomic response to dietary isocaloric protein restriction in the rat
-
Kalhan S.C., et al. Metabolic and genomic response to dietary isocaloric protein restriction in the rat. J. Biol. Chem. 2011, 286:5266-5277.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 5266-5277
-
-
Kalhan, S.C.1
-
54
-
-
0025021056
-
Dietary branched-chain amino acids and protein selection by rats
-
Anderson S.A., et al. Dietary branched-chain amino acids and protein selection by rats. J. Nutr. 1990, 120:52-63.
-
(1990)
J. Nutr.
, vol.120
, pp. 52-63
-
-
Anderson, S.A.1
-
55
-
-
84863647636
-
Peripheral and central mechanisms involved in the control of food intake by dietary amino acids and proteins
-
Fromentin G., et al. Peripheral and central mechanisms involved in the control of food intake by dietary amino acids and proteins. Nutr. Res. Rev. 2012, 25:29-39.
-
(2012)
Nutr. Res. Rev.
, vol.25
, pp. 29-39
-
-
Fromentin, G.1
-
56
-
-
70349567026
-
Protein, amino acids, vagus nerve signaling, and the brain
-
Tome D., et al. Protein, amino acids, vagus nerve signaling, and the brain. Am. J. Clin. Nutr. 2009, 90:838S-843S.
-
(2009)
Am. J. Clin. Nutr.
, vol.90
, pp. 838S-843S
-
-
Tome, D.1
-
57
-
-
77957317102
-
Three-dimensional macronutrient-associated Fos expression patterns in the mouse brainstem
-
Schwarz J., et al. Three-dimensional macronutrient-associated Fos expression patterns in the mouse brainstem. PLoS ONE 2010, 5:e8974.
-
(2010)
PLoS ONE
, vol.5
, pp. e8974
-
-
Schwarz, J.1
-
58
-
-
84876926534
-
Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety
-
Belza A., et al. Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety. Am. J. Clin. Nutr. 2013, 97:980-989.
-
(2013)
Am. J. Clin. Nutr.
, vol.97
, pp. 980-989
-
-
Belza, A.1
-
59
-
-
84875863110
-
Beneficial effects of a higher-protein breakfast on the appetitive, hormonal, and neural signals controlling energy intake regulation in overweight/obese, 'breakfast-skipping,' late-adolescent girls
-
Leidy H.J., et al. Beneficial effects of a higher-protein breakfast on the appetitive, hormonal, and neural signals controlling energy intake regulation in overweight/obese, 'breakfast-skipping,' late-adolescent girls. Am. J. Clin. Nutr. 2013, 97:677-688.
-
(2013)
Am. J. Clin. Nutr.
, vol.97
, pp. 677-688
-
-
Leidy, H.J.1
-
60
-
-
33644861132
-
Effect of a high-protein breakfast on the postprandial ghrelin response
-
Blom W.A., et al. Effect of a high-protein breakfast on the postprandial ghrelin response. Am. J. Clin. Nutr. 2006, 83:211-220.
-
(2006)
Am. J. Clin. Nutr.
, vol.83
, pp. 211-220
-
-
Blom, W.A.1
-
61
-
-
33748128913
-
Critical role for peptide YY in protein-mediated satiation and body-weight regulation
-
Batterham R.L., et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 2006, 4:223-233.
-
(2006)
Cell Metab.
, vol.4
, pp. 223-233
-
-
Batterham, R.L.1
-
62
-
-
84880935872
-
Nutrient control of hunger by extrinsic gastrointestinal neurons
-
Mithieux G. Nutrient control of hunger by extrinsic gastrointestinal neurons. Trends Endocrinol. Metab. 2013, 24:378-384.
-
(2013)
Trends Endocrinol. Metab.
, vol.24
, pp. 378-384
-
-
Mithieux, G.1
-
63
-
-
30444460011
-
Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein
-
Mithieux G., et al. Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab. 2005, 2:321-329.
-
(2005)
Cell Metab.
, vol.2
, pp. 321-329
-
-
Mithieux, G.1
-
64
-
-
80053445180
-
Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis
-
Penhoat A., et al. Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis. Physiol. Behav. 2011, 105:89-93.
-
(2011)
Physiol. Behav.
, vol.105
, pp. 89-93
-
-
Penhoat, A.1
-
65
-
-
84863510503
-
Effects of fat, protein, and carbohydrate and protein load on appetite, plasma cholecystokinin, peptide YY, and ghrelin, and energy intake in lean and obese men
-
Brennan I.M., et al. Effects of fat, protein, and carbohydrate and protein load on appetite, plasma cholecystokinin, peptide YY, and ghrelin, and energy intake in lean and obese men. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303:G129-G140.
-
(2012)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.303
, pp. G129-G140
-
-
Brennan, I.M.1
-
66
-
-
0024466172
-
Unlearned specific appetite for protein
-
Deutsch J.A., et al. Unlearned specific appetite for protein. Physiol. Behav. 1989, 46:619-624.
-
(1989)
Physiol. Behav.
, vol.46
, pp. 619-624
-
-
Deutsch, J.A.1
-
67
-
-
0034210523
-
Protein selection, food intake, and body composition in response to the amount of dietary protein
-
White B.D., et al. Protein selection, food intake, and body composition in response to the amount of dietary protein. Physiol. Behav. 2000, 69:383-389.
-
(2000)
Physiol. Behav.
, vol.69
, pp. 383-389
-
-
White, B.D.1
-
68
-
-
84864283300
-
Muscles, exercise and obesity: skeletal muscle as a secretory organ
-
Pedersen B.K., et al. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 8:457-465.
-
(2012)
Nat. Rev. Endocrinol.
, vol.8
, pp. 457-465
-
-
Pedersen, B.K.1
-
69
-
-
84901822752
-
A systems biology analysis of the unique and overlapping transcriptional responses to caloric restriction and dietary methionine restriction in rats
-
Ghosh S., et al. A systems biology analysis of the unique and overlapping transcriptional responses to caloric restriction and dietary methionine restriction in rats. FASEB J. 2014, 28:2577-2590.
-
(2014)
FASEB J.
, vol.28
, pp. 2577-2590
-
-
Ghosh, S.1
-
70
-
-
67649823642
-
FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response
-
Potthoff M.J., et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:10853-10858.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 10853-10858
-
-
Potthoff, M.J.1
-
71
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
-
Badman M.K., et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007, 5:426-437.
-
(2007)
Cell Metab.
, vol.5
, pp. 426-437
-
-
Badman, M.K.1
-
72
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
-
Inagaki T., et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007, 5:415-425.
-
(2007)
Cell Metab.
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
-
73
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
Kharitonenkov A., et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 2005, 115:1627-1635.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 1627-1635
-
-
Kharitonenkov, A.1
-
74
-
-
61649127208
-
Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice
-
Xu J., et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 2009, 58:250-259.
-
(2009)
Diabetes
, vol.58
, pp. 250-259
-
-
Xu, J.1
-
75
-
-
84863012022
-
FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis
-
Fisher F.M., et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012, 26:271-281.
-
(2012)
Genes Dev.
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
-
76
-
-
84881508008
-
The starvation hormone, fibroblast growth factor-21, extends lifespan in mice
-
Zhang Y., et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife 2012, 1:e00065.
-
(2012)
Elife
, vol.1
, pp. e00065
-
-
Zhang, Y.1
-
77
-
-
79960726293
-
Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo
-
Fisher F.M., et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 2011, 152:2996-3004.
-
(2011)
Endocrinology
, vol.152
, pp. 2996-3004
-
-
Fisher, F.M.1
-
78
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
Coskun T., et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008, 149:6018-6027.
-
(2008)
Endocrinology
, vol.149
, pp. 6018-6027
-
-
Coskun, T.1
-
79
-
-
84865741904
-
BetaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism
-
Ding X., et al. betaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab. 2012, 16:387-393.
-
(2012)
Cell Metab.
, vol.16
, pp. 387-393
-
-
Ding, X.1
-
80
-
-
84905679771
-
The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue
-
Adams A.C., et al. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol. Metab. 2012, 2:31-37.
-
(2012)
Mol. Metab.
, vol.2
, pp. 31-37
-
-
Adams, A.C.1
-
81
-
-
77954277205
-
Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats
-
Sarruf D.A., et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 2010, 59:1817-1824.
-
(2010)
Diabetes
, vol.59
, pp. 1817-1824
-
-
Sarruf, D.A.1
-
82
-
-
84883778996
-
FGF21 regulates metabolism and circadian behavior by acting on the nervous system
-
Bookout A.L., et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 2013, 19:1147-1152.
-
(2013)
Nat. Med.
, vol.19
, pp. 1147-1152
-
-
Bookout, A.L.1
-
83
-
-
84908018672
-
FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss
-
Owen B.M., et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014, 20:670-677.
-
(2014)
Cell Metab.
, vol.20
, pp. 670-677
-
-
Owen, B.M.1
-
84
-
-
84874664386
-
Fibroblast growth factor 21 is induced by endoplasmic reticulum stress
-
Schaap F.G., et al. Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochimie 2013, 95:692-699.
-
(2013)
Biochimie
, vol.95
, pp. 692-699
-
-
Schaap, F.G.1
-
85
-
-
84885383560
-
Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation
-
Kim K.H., et al. Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation. Biochem. Biophys. Res. Commun. 2013, 440:76-81.
-
(2013)
Biochem. Biophys. Res. Commun.
, vol.440
, pp. 76-81
-
-
Kim, K.H.1
-
86
-
-
84899516860
-
Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine
-
Keipert S., et al. Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. Am. J. Physiol. Endocrinol. Metab. 2014, 306:E469-E482.
-
(2014)
Am. J. Physiol. Endocrinol. Metab.
, vol.306
, pp. E469-E482
-
-
Keipert, S.1
-
87
-
-
84922918736
-
GCN2 is required to increase fibroblast growth factor 21 and maintain hepatic triglyceride homeostasis during asparaginase treatment
-
Wilson G.J., et al. GCN2 is required to increase fibroblast growth factor 21 and maintain hepatic triglyceride homeostasis during asparaginase treatment. Am. J. Physiol. Endocrinol. Metab. 2015, 308:E283-E293.
-
(2015)
Am. J. Physiol. Endocrinol. Metab.
, vol.308
, pp. E283-E293
-
-
Wilson, G.J.1
-
88
-
-
85027936258
-
Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21
-
Muller T.D., et al. Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21. J. Pept. Sci. 2012, 18:383-393.
-
(2012)
J. Pept. Sci.
, vol.18
, pp. 383-393
-
-
Muller, T.D.1
-
89
-
-
84911917697
-
Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding
-
Markan K.R., et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 2014, 63:4057-4063.
-
(2014)
Diabetes
, vol.63
, pp. 4057-4063
-
-
Markan, K.R.1
-
90
-
-
84893849860
-
Interplay between FGF21 and insulin action in the liver regulates metabolism
-
Emanuelli B., et al. Interplay between FGF21 and insulin action in the liver regulates metabolism. J. Clin. Invest. 2014, 124:515-527.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 515-527
-
-
Emanuelli, B.1
-
91
-
-
84895765028
-
The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice
-
Solon-Biet S.M., et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014, 19:418-430.
-
(2014)
Cell Metab.
, vol.19
, pp. 418-430
-
-
Solon-Biet, S.M.1
-
92
-
-
84895727751
-
Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population
-
Levine M.E., et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014, 19:407-417.
-
(2014)
Cell Metab.
, vol.19
, pp. 407-417
-
-
Levine, M.E.1
|