-
2
-
-
0028557442
-
Methionine restriction increases blood glutathione and longevity in F344 rats
-
Richie JP Jr, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA. Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J 1994;8:1302-1307
-
(1994)
FASEB J
, vol.8
, pp. 1302-1307
-
-
Richie, J.P.1
Leutzinger, Y.2
Parthasarathy, S.3
Malloy, V.4
Orentreich, N.5
Zimmerman, J.A.6
-
3
-
-
23844464540
-
Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance
-
Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 2005;4:119-125
-
(2005)
Aging Cell
, vol.4
, pp. 119-125
-
-
Miller, R.A.1
Buehner, G.2
Chang, Y.3
Harper, J.M.4
Sigler, R.5
Smith-Wheelock, M.6
-
4
-
-
67649660052
-
Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age
-
Sun L, Sadighi Akha AA, Miller RA, Harper JM. Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age. J Gerontol A Biol Sci Med Sci 2009;64:711-722
-
(2009)
J Gerontol A Biol Sci Med Sci
, vol.64
, pp. 711-722
-
-
Sun, L.1
Sadighi Akha, A.A.2
Miller, R.A.3
Harper, J.M.4
-
5
-
-
84870881313
-
Methionine-restricted C57BL/6J mice are resistant to diet-induced obesity and insulin resistance but have low bone density
-
Ables GP, Perrone CE, Orentreich D, Orentreich N. Methionine-restricted C57BL/6J mice are resistant to diet-induced obesity and insulin resistance but have low bone density. PLoS ONE 2012;7:e51357
-
(2012)
PLoS ONE
, vol.7
, pp. e51357
-
-
Ables, G.P.1
Perrone, C.E.2
Orentreich, D.3
Orentreich, N.4
-
6
-
-
77956674231
-
Role of b-adrenergic receptors in the hyperphagic and hypermetabolic responses to dietary methionine restriction
-
Plaisance EP, Henagan TM, Echlin H, et al. Role of b-adrenergic receptors in the hyperphagic and hypermetabolic responses to dietary methionine restriction. Am J Physiol Regul Integr Comp Physiol 2010;299:R740-R750
-
(2010)
Am J Physiol Regul Integr Comp Physiol
, vol.299
, pp. R740-R750
-
-
Plaisance, E.P.1
Henagan, T.M.2
Echlin, H.3
-
7
-
-
77956678381
-
Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states
-
Hasek BE, Stewart LK, Henagan TM, et al. Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states. Am J Physiol Regul Integr Comp Physiol 2010;299:R728-R739
-
(2010)
Am J Physiol Regul Integr Comp Physiol
, vol.299
, pp. R728-R739
-
-
Hasek, B.E.1
Stewart, L.K.2
Henagan, T.M.3
-
8
-
-
84891516963
-
Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats
-
Hasek BE, Boudreau A, Shin J, et al. Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats. Diabetes 2013;62:3362-3372
-
(2013)
Diabetes
, vol.62
, pp. 3362-3372
-
-
Hasek, B.E.1
Boudreau, A.2
Shin, J.3
-
9
-
-
38049141111
-
Methionine restriction effects on 11-HSD1 activity and lipogenic/lipolytic balance in F344 rat adipose tissue
-
Perrone CE, Mattocks DA, Hristopoulos G, Plummer JD, Krajcik RA, Orentreich N. Methionine restriction effects on 11-HSD1 activity and lipogenic/lipolytic balance in F344 rat adipose tissue. J Lipid Res 2008;49:12-23
-
(2008)
J Lipid Res
, vol.49
, pp. 12-23
-
-
Perrone, C.E.1
Mattocks, D.A.2
Hristopoulos, G.3
Plummer, J.D.4
Krajcik, R.A.5
Orentreich, N.6
-
10
-
-
77952852503
-
Methionine restriction effects on mitochondrial biogenesis and aerobic capacity in white adipose tissue, liver, and skeletal muscle of F344 rats
-
Perrone CE, Mattocks DA, Jarvis-Morar M, Plummer JD, Orentreich N. Methionine restriction effects on mitochondrial biogenesis and aerobic capacity in white adipose tissue, liver, and skeletal muscle of F344 rats. Metabolism 2010;59:1000-1011
-
(2010)
Metabolism
, vol.59
, pp. 1000-1011
-
-
Perrone, C.E.1
Mattocks, D.A.2
Jarvis-Morar, M.3
Plummer, J.D.4
Orentreich, N.5
-
11
-
-
33746302753
-
Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction
-
Malloy VL, Krajcik RA, Bailey SJ, Hristopoulos G, Plummer JD, Orentreich N. Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction. Aging Cell 2006;5: 305-314
-
(2006)
Aging Cell
, vol.5
, pp. 305-314
-
-
Malloy, V.L.1
Krajcik, R.A.2
Bailey, S.J.3
Hristopoulos, G.4
Plummer, J.D.5
Orentreich, N.6
-
12
-
-
84901822752
-
A systems biology analysis of the unique and overlapping transcriptional responses to caloric restriction and dietary methionine restriction in rats
-
Ghosh S, Wanders D, Stone KP, Van NT, Cortez CC, Gettys TW. A systems biology analysis of the unique and overlapping transcriptional responses to caloric restriction and dietary methionine restriction in rats. FASEB J 2014;28:2577-2590
-
(2014)
FASEB J
, vol.28
, pp. 2577-2590
-
-
Ghosh, S.1
Wanders, D.2
Stone, K.P.3
Van Nt Cortez, C.C.4
Gettys, T.W.5
-
13
-
-
84883615750
-
Downstream signaling pathways in mouse adipose tissues following acute in vivo administration of fibroblast growth factor 21
-
Muise ES, Souza S, Chi A, et al. Downstream signaling pathways in mouse adipose tissues following acute in vivo administration of fibroblast growth factor 21. PLoS ONE 2013;8:e73011
-
(2013)
PLoS ONE
, vol.8
, pp. e73011
-
-
Muise, E.S.1
Souza, S.2
Chi, A.3
-
15
-
-
84877260638
-
Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice
-
Lin Z, Tian H, Lam KS, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 2013; 17:779-789
-
(2013)
Cell Metab
, vol.17
, pp. 779-789
-
-
Lin, Z.1
Tian, H.2
Lam, K.S.3
-
16
-
-
84891693313
-
Remodeling of lipid metabolism by dietary restriction of essential amino acids
-
Anthony TG, Morrison CD, Gettys TW. Remodeling of lipid metabolism by dietary restriction of essential amino acids. Diabetes 2013;62:2635-2644
-
(2013)
Diabetes
, vol.62
, pp. 2635-2644
-
-
Anthony, T.G.1
Morrison, C.D.2
Gettys, T.W.3
-
17
-
-
33644778829
-
Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse
-
Ayala JE, Bracy DP, McGuinness OP, Wasserman DH. Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. Diabetes 2006;55:390-397
-
(2006)
Diabetes
, vol.55
, pp. 390-397
-
-
Ayala, J.E.1
Bracy, D.P.2
McGuinness, O.P.3
Wasserman, D.H.4
-
18
-
-
48249100979
-
Glucose metabolism in vivo in four commonly used inbred mouse strains
-
Berglund ED, Li CY, Poffenberger G, et al. Glucose metabolism in vivo in four commonly used inbred mouse strains. Diabetes 2008;57:1790-1799
-
(2008)
Diabetes
, vol.57
, pp. 1790-1799
-
-
Berglund, E.D.1
Li, C.Y.2
Poffenberger, G.3
-
19
-
-
0035234994
-
Assays of glucose entry, glucose transporter amount, and translocation
-
Tanti JF, Cormont M, Grémeaux T, Le Marchand-Brustel Y. Assays of glucose entry, glucose transporter amount, and translocation. Methods Mol Biol 2001;155:157-165
-
(2001)
Methods Mol Biol
, vol.155
, pp. 157-165
-
-
Tanti, J.F.1
Cormont, M.2
Grémeaux, T.3
Le Marchand-Brustel, Y.4
-
20
-
-
0037388560
-
Differential mechanisms and development of leptin resistance in A/J versus C57BL/6J mice during diet-induced obesity
-
Prpic V, Watson PM, Frampton IC, Sabol MA, Jezek GE, Gettys TW. Differential mechanisms and development of leptin resistance in A/J versus C57BL/6J mice during diet-induced obesity. Endocrinology 2003;144:1155-1163
-
(2003)
Endocrinology
, vol.144
, pp. 1155-1163
-
-
Prpic, V.1
Watson, P.M.2
Frampton, I.C.3
Sabol, M.A.4
Jezek, G.E.5
Gettys, T.W.6
-
21
-
-
3142729014
-
Sulfur amino acid metabolism: Pathways for production and removal of homocysteine and cysteine
-
Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 2004;24:539-577
-
(2004)
Annu Rev Nutr
, vol.24
, pp. 539-577
-
-
Stipanuk, M.H.1
-
22
-
-
77955657057
-
Redox regulation of the tumor suppressor PTEN by glutathione
-
Kim Y, Song YB, Kim TY, et al. Redox regulation of the tumor suppressor PTEN by glutathione. FEBS Lett 2010;584:3550-3556
-
(2010)
FEBS Lett
, vol.584
, pp. 3550-3556
-
-
Kim, Y.1
Song, Y.B.2
Kim, T.Y.3
-
23
-
-
9344259718
-
Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors
-
Kwon J, Lee SR, Yang KS, et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci U S A 2004;101:16419-16424
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 16419-16424
-
-
Kwon, J.1
Lee, S.R.2
Yang, K.S.3
-
24
-
-
4444233558
-
Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B
-
Meng TC, Buckley DA, Galic S, Tiganis T, Tonks NK. Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J Biol Chem 2004;279:37716-37725
-
(2004)
J Biol Chem
, vol.279
, pp. 37716-37725
-
-
Meng, T.C.1
Buckley, D.A.2
Galic, S.3
Tiganis, T.4
Tonks, N.K.5
-
25
-
-
0037036358
-
Reversible inactivation of the tumor suppressor PTEN by H2O2
-
Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 2002;277:20336-20342
-
(2002)
J Biol Chem
, vol.277
, pp. 20336-20342
-
-
Lee, S.R.1
Yang, K.S.2
Kwon, J.3
Lee, C.4
Jeong, W.5
Rhee, S.G.6
-
26
-
-
12744279326
-
Redox paradox: Insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets
-
Goldstein BJ, Mahadev K, Wu X. Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 2005;54:311-321
-
(2005)
Diabetes
, vol.54
, pp. 311-321
-
-
Goldstein, B.J.1
Mahadev, K.2
Wu, X.3
-
27
-
-
70349512259
-
Reactive oxygen species enhance insulin sensitivity
-
Loh K, Deng H, Fukushima A, et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab 2009;10:260-272
-
(2009)
Cell Metab
, vol.10
, pp. 260-272
-
-
Loh, K.1
Deng, H.2
Fukushima, A.3
-
28
-
-
85027927963
-
Genomic and metabolic responses to methionine-restricted and methionine-restricted, cysteine-supplemented diets in Fischer 344 rat inguinal adipose tissue, liver and quadriceps muscle
-
Perrone CE, Mattocks DA, Plummer JD, et al. Genomic and metabolic responses to methionine-restricted and methionine-restricted, cysteine-supplemented diets in Fischer 344 rat inguinal adipose tissue, liver and quadriceps muscle. J Nutrigenet Nutrigenomics 2012;5:132-157
-
(2012)
J Nutrigenet Nutrigenomics
, vol.5
, pp. 132-157
-
-
Perrone, C.E.1
Mattocks, D.A.2
Plummer, J.D.3
-
29
-
-
4344646479
-
Tissue glutathione and cysteine levels in methionine-restricted rats
-
Richie JP Jr, Komninou D, Leutzinger Y, et al. Tissue glutathione and cysteine levels in methionine-restricted rats. Nutrition 2004;20:800-805
-
(2004)
Nutrition
, vol.20
, pp. 800-805
-
-
Richie, J.P.1
Komninou, D.2
Leutzinger, Y.3
-
30
-
-
84861657962
-
Fundamentals of FGF19 & FGF21 action in vitro and in vivo
-
Adams AC, Coskun T, Rovira AR, et al. Fundamentals of FGF19 & FGF21 action in vitro and in vivo. PLoS ONE 2012;7:e38438
-
(2012)
PLoS ONE
, vol.7
, pp. e38438
-
-
Adams, A.C.1
Coskun, T.2
Rovira, A.R.3
-
31
-
-
78650900717
-
Cysteine supplementation reverses methionine restriction effects on rat adiposity: Significance of stearoyl-coenzyme A desaturase
-
Elshorbagy AK, Valdivia-Garcia M, Mattocks DA, et al. Cysteine supplementation reverses methionine restriction effects on rat adiposity: significance of stearoyl-coenzyme A desaturase. J Lipid Res 2011;52:104-112
-
(2011)
J Lipid Res
, vol.52
, pp. 104-112
-
-
Elshorbagy, A.K.1
Valdivia-Garcia, M.2
Mattocks, D.A.3
-
32
-
-
84894061588
-
Transcriptional impact of dietary methionine restriction on systemic inflammation: Relevance to biomarkers of metabolic disease during aging
-
Wanders D, Ghosh S, Stone KP, Van NT, Gettys TW. Transcriptional impact of dietary methionine restriction on systemic inflammation: relevance to biomarkers of metabolic disease during aging. Biofactors 2014;40: 13-26
-
(2014)
Biofactors
, vol.40
, pp. 13-26
-
-
Wanders, D.1
Ghosh, S.2
Stone, K.P.3
Van Nt Gettys, T.W.4
-
33
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
Coskun T, Bina HA, Schneider MA, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008;149:6018-6027
-
(2008)
Endocrinology
, vol.149
, pp. 6018-6027
-
-
Coskun, T.1
Bina, H.A.2
Schneider, M.A.3
-
34
-
-
84877272187
-
An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice
-
Holland WL, Adams AC, Brozinick JT, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 2013;17: 790-797
-
(2013)
Cell Metab
, vol.17
, pp. 790-797
-
-
Holland, W.L.1
Adams, A.C.2
Brozinick, J.T.3
-
35
-
-
70350455732
-
Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models-association with liver and adipose tissue effects
-
Xu J, Stanislaus S, Chinookoswong N, et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models-association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab 2009;297: E1105-E1114
-
(2009)
Am J Physiol Endocrinol Metab
, vol.297
, pp. E1105-E1114
-
-
Xu, J.1
Stanislaus, S.2
Chinookoswong, N.3
-
36
-
-
84883778996
-
FGF21 regulates metabolism and circadian behavior by acting on the nervous system
-
Bookout AL, de Groot MH, Owen BM, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 2013;19:1147-1152
-
(2013)
Nat Med
, vol.19
, pp. 1147-1152
-
-
Bookout, A.L.1
De Groot, M.H.2
Owen, B.M.3
-
37
-
-
61649127208
-
Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in dietinduced obese mice
-
Xu J, Lloyd DJ, Hale C, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in dietinduced obese mice. Diabetes 2009;58:250-259
-
(2009)
Diabetes
, vol.58
, pp. 250-259
-
-
Xu, J.1
Lloyd, D.J.2
Hale, C.3
-
38
-
-
84862622024
-
FGF21: The center of a transcriptional nexus in metabolic regulation
-
Adams AC, Kharitonenkov A. FGF21: The center of a transcriptional nexus in metabolic regulation. Curr Diabetes Rev 2012;8:285-293
-
(2012)
Curr Diabetes Rev
, vol.8
, pp. 285-293
-
-
Adams, A.C.1
Kharitonenkov, A.2
-
39
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
-
Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007;5:426-437
-
(2007)
Cell Metab
, vol.5
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
Koukos, G.4
Flier, J.S.5
Maratos-Flier, E.6
-
40
-
-
84870568785
-
Circulating fibroblast growth factors as metabolic regulators-A critical appraisal
-
Angelin B, Larsson TE, Rudling M. Circulating fibroblast growth factors as metabolic regulators-a critical appraisal. Cell Metab 2012;16:693-705
-
(2012)
Cell Metab
, vol.16
, pp. 693-705
-
-
Angelin, B.1
Larsson, T.E.2
Rudling, M.3
-
41
-
-
84863012022
-
FGF21 regulates PGC-1a and browning of white adipose tissues in adaptive thermogenesis
-
Fisher FM, Kleiner S, Douris N, et al. FGF21 regulates PGC-1a and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 2012; 26:271-281
-
(2012)
Genes Dev
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
Kleiner, S.2
Douris, N.3
-
42
-
-
84893849860
-
Interplay between FGF21 and insulin action in the liver regulates metabolism
-
Emanuelli B, Vienberg SG, Smyth G, et al. Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest 2014;124:515-527
-
(2014)
J Clin Invest
, vol.124
, pp. 515-527
-
-
Emanuelli, B.1
Vienberg, S.G.2
Smyth, G.3
-
43
-
-
17844363526
-
Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue
-
Inokuma K, Ogura-Okamatsu Y, Toda C, Kimura K, Yamashita H, Saito M. Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue. Diabetes 2005;54:1385-1391
-
(2005)
Diabetes
, vol.54
, pp. 1385-1391
-
-
Inokuma, K.1
Ogura-Okamatsu, Y.2
Toda, C.3
Kimura, K.4
Yamashita, H.5
Saito, M.6
-
44
-
-
0036154102
-
Cold elicits the simultaneous induction of fatty acid synthesis and beta-oxidation in murine brown adipose tissue: Prediction from differential gene expression and confirmation in vivo
-
Yu XX, Lewin DA, Forrest W, Adams SH. Cold elicits the simultaneous induction of fatty acid synthesis and beta-oxidation in murine brown adipose tissue: prediction from differential gene expression and confirmation in vivo. FASEB J 2002;16:155-168
-
(2002)
FASEB J
, vol.16
, pp. 155-168
-
-
Yu, X.X.1
Lewin, D.A.2
Forrest, W.3
Adams, S.H.4
-
45
-
-
0028856273
-
Essential amino acids regulate fatty acid synthase expression through an uncharged transfer RNA-dependent mechanism
-
Dudek SM, Semenkovich CF. Essential amino acids regulate fatty acid synthase expression through an uncharged transfer RNA-dependent mechanism. J Biol Chem 1995;270:29323-29329
-
(1995)
J Biol Chem
, vol.270
, pp. 29323-29329
-
-
Dudek, S.M.1
Semenkovich, C.F.2
|