메뉴 건너뛰기




Volumn 24, Issue 8, 2013, Pages 378-384

Nutrient control of hunger by extrinsic gastrointestinal neurons

Author keywords

Extrinsic gastrointestinal nerves; Macronutrients; Satiation; Satiety

Indexed keywords

GLUCOSE; LIPID; PROTEIN;

EID: 84880935872     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2013.04.005     Document Type: Review
Times cited : (13)

References (59)
  • 1
    • 78649870133 scopus 로고    scopus 로고
    • Deficits in gastrointestinal responses controlling food intake and body weight
    • Covasa M. Deficits in gastrointestinal responses controlling food intake and body weight. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299:R1423-R1439.
    • (2010) Am. J. Physiol. Regul. Integr. Comp. Physiol. , vol.299
    • Covasa, M.1
  • 2
    • 79960429078 scopus 로고    scopus 로고
    • Effects of dietary fat on appetite and energy intake in health and obesity - oral and gastrointestinal sensory contributions
    • Little T.J., Feinle-Bisset C. Effects of dietary fat on appetite and energy intake in health and obesity - oral and gastrointestinal sensory contributions. Physiol. Behav. 2011, 104:613-620.
    • (2011) Physiol. Behav. , vol.104 , pp. 613-620
    • Little, T.J.1    Feinle-Bisset, C.2
  • 3
    • 76749172118 scopus 로고    scopus 로고
    • The role of the autonomic nervous liver innervation in the control of energy metabolism
    • Yi C.X., et al. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim. Biophys. Acta 2010, 1802:416-431.
    • (2010) Biochim. Biophys. Acta , vol.1802 , pp. 416-431
    • Yi, C.X.1
  • 4
    • 79952806813 scopus 로고    scopus 로고
    • The role of gastric motility in the control of food intake
    • Janssen P., et al. The role of gastric motility in the control of food intake. Aliment. Pharmacol. Ther. 2011, 33:880-894.
    • (2011) Aliment. Pharmacol. Ther. , vol.33 , pp. 880-894
    • Janssen, P.1
  • 5
    • 0036787457 scopus 로고    scopus 로고
    • The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats
    • Date Y., et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 2002, 123:1120-1128.
    • (2002) Gastroenterology , vol.123 , pp. 1120-1128
    • Date, Y.1
  • 6
    • 0019890231 scopus 로고
    • Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat
    • Smith G.P., et al. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 1981, 213:1036-1037.
    • (1981) Science , vol.213 , pp. 1036-1037
    • Smith, G.P.1
  • 7
    • 18144381593 scopus 로고    scopus 로고
    • The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway
    • Abbott C.R., et al. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 2005, 1044:127-131.
    • (2005) Brain Res. , vol.1044 , pp. 127-131
    • Abbott, C.R.1
  • 8
    • 34748898831 scopus 로고    scopus 로고
    • Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats
    • Vahl T.P., et al. Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology 2007, 148:4965-4973.
    • (2007) Endocrinology , vol.148 , pp. 4965-4973
    • Vahl, T.P.1
  • 9
    • 79551586857 scopus 로고    scopus 로고
    • Gut-brain signalling: how lipids can trigger the gut
    • Breen D.M., et al. Gut-brain signalling: how lipids can trigger the gut. Diabetes Metab. Res. Rev. 2011, 27:113-119.
    • (2011) Diabetes Metab. Res. Rev. , vol.27 , pp. 113-119
    • Breen, D.M.1
  • 10
    • 84856417183 scopus 로고    scopus 로고
    • Lipid sensing in the gut, brain and liver
    • Rasmussen B.A., et al. Lipid sensing in the gut, brain and liver. Trends Endocrinol. Metab. 2012, 23:49-55.
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 49-55
    • Rasmussen, B.A.1
  • 11
    • 84876107265 scopus 로고    scopus 로고
    • The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing
    • Delaere F., et al. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol. Metab. 2012, 2:47-53.
    • (2012) Mol. Metab. , vol.2 , pp. 47-53
    • Delaere, F.1
  • 12
    • 84864283726 scopus 로고    scopus 로고
    • Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake
    • Duraffourd C., et al. Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake. Cell 2012, 150:377-388.
    • (2012) Cell , vol.150 , pp. 377-388
    • Duraffourd, C.1
  • 13
    • 50049119700 scopus 로고    scopus 로고
    • Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice
    • Troy S., et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab. 2008, 8:201-211.
    • (2008) Cell Metab. , vol.8 , pp. 201-211
    • Troy, S.1
  • 14
    • 84862017831 scopus 로고    scopus 로고
    • Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes
    • Breen D.M., et al. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat. Med. 2012, 18:950-955.
    • (2012) Nat. Med. , vol.18 , pp. 950-955
    • Breen, D.M.1
  • 15
    • 42549118500 scopus 로고    scopus 로고
    • Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production
    • Wang P.Y., et al. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature 2008, 452:1012-1016.
    • (2008) Nature , vol.452 , pp. 1012-1016
    • Wang, P.Y.1
  • 16
    • 67849124833 scopus 로고    scopus 로고
    • Intestinal cholecystokinin controls glucose production through a neuronal network
    • Cheung G.W., et al. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab. 2009, 10:99-109.
    • (2009) Cell Metab. , vol.10 , pp. 99-109
    • Cheung, G.W.1
  • 17
    • 80054850433 scopus 로고    scopus 로고
    • Duodenal mucosal protein kinase C-δ regulates glucose production in rats
    • Kokorovic A., et al. Duodenal mucosal protein kinase C-δ regulates glucose production in rats. Gastroenterology 2011, 141:1720-1727.
    • (2011) Gastroenterology , vol.141 , pp. 1720-1727
    • Kokorovic, A.1
  • 18
    • 82255164699 scopus 로고    scopus 로고
    • Duodenal PKC-δ and cholecystokinin signaling axis regulates glucose production
    • Breen D.M., et al. Duodenal PKC-δ and cholecystokinin signaling axis regulates glucose production. Diabetes 2011, 60:3148-3153.
    • (2011) Diabetes , vol.60 , pp. 3148-3153
    • Breen, D.M.1
  • 19
    • 84856282510 scopus 로고    scopus 로고
    • Linik beetween intestinal CD36 ligand binding and satiety induced by a high protein diet in mice
    • Naville D., et al. Linik beetween intestinal CD36 ligand binding and satiety induced by a high protein diet in mice. PLoS ONE 2012, 7:e30686.
    • (2012) PLoS ONE , vol.7
    • Naville, D.1
  • 20
    • 52749087007 scopus 로고    scopus 로고
    • The lipid messenger OEA links dietary fat intake to satiety
    • Schwartz G.J., et al. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab. 2008, 8:281-288.
    • (2008) Cell Metab. , vol.8 , pp. 281-288
    • Schwartz, G.J.1
  • 21
    • 0022529753 scopus 로고
    • Hepatic portal glucose infusions decrease food intake and increase food preference
    • Tordoff M.G., Friedman M.I. Hepatic portal glucose infusions decrease food intake and increase food preference. Am. J. Physiol. 1986, 251:R192-R196.
    • (1986) Am. J. Physiol. , vol.251
    • Tordoff, M.G.1    Friedman, M.I.2
  • 22
    • 0034897476 scopus 로고    scopus 로고
    • Intrameal hepatic-portal infusion of glucose reduces spontaneous meal size in rats
    • Langhans W., et al. Intrameal hepatic-portal infusion of glucose reduces spontaneous meal size in rats. Physiol. Behav. 2001, 73:499-507.
    • (2001) Physiol. Behav. , vol.73 , pp. 499-507
    • Langhans, W.1
  • 23
    • 77956954932 scopus 로고    scopus 로고
    • Hypothalamic integration of portal glucose signals and control of food intake and insulin sensitivity
    • Delaere F., et al. Hypothalamic integration of portal glucose signals and control of food intake and insulin sensitivity. Diabetes Metab. 2010, 36:257-262.
    • (2010) Diabetes Metab. , vol.36 , pp. 257-262
    • Delaere, F.1
  • 24
    • 30444460011 scopus 로고    scopus 로고
    • Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein
    • Mithieux G., et al. Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab. 2005, 2:321-329.
    • (2005) Cell Metab. , vol.2 , pp. 321-329
    • Mithieux, G.1
  • 25
    • 0030909446 scopus 로고    scopus 로고
    • Intake suppression after hepatic portal glucose infusion: all-or-none effect and its temporal threshold
    • Baird J.P., et al. Intake suppression after hepatic portal glucose infusion: all-or-none effect and its temporal threshold. Am. J. Physiol. 1997, 272:R1454-R1460.
    • (1997) Am. J. Physiol. , vol.272
    • Baird, J.P.1
  • 26
    • 48449097409 scopus 로고    scopus 로고
    • The locus for hypoglycemic detection shifts with the rate of fall in glycemia: the role of portal-superior mesenteric vein glucose sensing
    • Saberi M., et al. The locus for hypoglycemic detection shifts with the rate of fall in glycemia: the role of portal-superior mesenteric vein glucose sensing. Diabetes 2008, 57:1380-1386.
    • (2008) Diabetes , vol.57 , pp. 1380-1386
    • Saberi, M.1
  • 27
    • 12244305762 scopus 로고    scopus 로고
    • Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis
    • Thorens B., Larsen P.J. Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7:471-478.
    • (2004) Curr. Opin. Clin. Nutr. Metab. Care , vol.7 , pp. 471-478
    • Thorens, B.1    Larsen, P.J.2
  • 28
    • 84873138013 scopus 로고    scopus 로고
    • Nutrient sensing in the gut: new roads to therapeutics?
    • Janssen S., Depoortere I. Nutrient sensing in the gut: new roads to therapeutics?. Trends Endocrinol. Metab. 2013, 24:92-100.
    • (2013) Trends Endocrinol. Metab. , vol.24 , pp. 92-100
    • Janssen, S.1    Depoortere, I.2
  • 29
    • 84880925659 scopus 로고    scopus 로고
    • Luminal glucose sensing in the rat intestine has characteristics of a sodium-glucose cotransporter
    • Freeman S.L., et al. Luminal glucose sensing in the rat intestine has characteristics of a sodium-glucose cotransporter. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 8:532-539.
    • (2006) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.8 , pp. 532-539
    • Freeman, S.L.1
  • 31
    • 77953530150 scopus 로고    scopus 로고
    • Molecular mechanisms involved in the adaptation to amino acid limitation in mammals
    • Chaveroux C., et al. Molecular mechanisms involved in the adaptation to amino acid limitation in mammals. Biochimie 2010, 92:736-745.
    • (2010) Biochimie , vol.92 , pp. 736-745
    • Chaveroux, C.1
  • 32
    • 84871919301 scopus 로고    scopus 로고
    • Detection of amino acid deprivation in the central nervous system
    • Anthony T.G., Gietzen D.W. Detection of amino acid deprivation in the central nervous system. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16:96-101.
    • (2013) Curr. Opin. Clin. Nutr. Metab. Care , vol.16 , pp. 96-101
    • Anthony, T.G.1    Gietzen, D.W.2
  • 33
    • 20144387009 scopus 로고    scopus 로고
    • The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores
    • Maurin A.C., et al. The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab. 2005, 1:273-277.
    • (2005) Cell Metab. , vol.1 , pp. 273-277
    • Maurin, A.C.1
  • 34
    • 20144374658 scopus 로고    scopus 로고
    • Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex
    • Hao S., et al. Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 2005, 307:1776-1778.
    • (2005) Science , vol.307 , pp. 1776-1778
    • Hao, S.1
  • 35
    • 19344363584 scopus 로고    scopus 로고
    • Autonomic efferents affect intake of imbalanced amino acid diets by rats
    • Bellinger L.L., et al. Autonomic efferents affect intake of imbalanced amino acid diets by rats. Pharmacol. Biochem. Behav. 2005, 81:24-31.
    • (2005) Pharmacol. Biochem. Behav. , vol.81 , pp. 24-31
    • Bellinger, L.L.1
  • 36
    • 2642569414 scopus 로고    scopus 로고
    • A very high 70%-protein diet does not induce conditioned taste aversion in rats
    • L'Heureux-Bouron D., et al. A very high 70%-protein diet does not induce conditioned taste aversion in rats. J. Nutr. 2004, 134:1512-1515.
    • (2004) J. Nutr. , vol.134 , pp. 1512-1515
    • L'Heureux-Bouron, D.1
  • 37
    • 79955539060 scopus 로고    scopus 로고
    • Role of hypothalamic melanocortin system in adaptation of food intake to food protein increase in mice
    • Pillot B., et al. Role of hypothalamic melanocortin system in adaptation of food intake to food protein increase in mice. PLoS ONE 2011, 6:1-7.
    • (2011) PLoS ONE , vol.6 , pp. 1-7
    • Pillot, B.1
  • 38
    • 68049091021 scopus 로고    scopus 로고
    • Intestinal gluconeogenesis: key signal of central control of energy and glucose homeostasis
    • Mithieux G., et al. Intestinal gluconeogenesis: key signal of central control of energy and glucose homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12:419-423.
    • (2009) Curr. Opin. Clin. Nutr. Metab. Care , vol.12 , pp. 419-423
    • Mithieux, G.1
  • 39
    • 80053445180 scopus 로고    scopus 로고
    • Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis
    • Penhoat A., et al. Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis. Physiol. Behav. 2011, 105:89-93.
    • (2011) Physiol. Behav. , vol.105 , pp. 89-93
    • Penhoat, A.1
  • 40
    • 68649118810 scopus 로고    scopus 로고
    • 'Liking' and 'wanting' food rewards: brain substrates and roles in eating disorders
    • Berridge C.W. 'Liking' and 'wanting' food rewards: brain substrates and roles in eating disorders. Physiol. Behav. 2009, 97:537-550.
    • (2009) Physiol. Behav. , vol.97 , pp. 537-550
    • Berridge, C.W.1
  • 41
    • 75449107169 scopus 로고    scopus 로고
    • Hypocretin/orexin in arousal and stress
    • Berridge C.W., et al. Hypocretin/orexin in arousal and stress. Brain Res. 2010, 1314:91-102.
    • (2010) Brain Res. , vol.1314 , pp. 91-102
    • Berridge, C.W.1
  • 42
    • 0018416435 scopus 로고
    • Opioid peptides derived from food proteins. The exorphins
    • 2446-1449
    • Zioudrou C., et al. Opioid peptides derived from food proteins. The exorphins. J. Biol. Chem. 1979, 254. 2446-1449.
    • (1979) J. Biol. Chem. , vol.254
    • Zioudrou, C.1
  • 43
    • 0030723999 scopus 로고    scopus 로고
    • Design of mu selective opioid dipeptide antagonists
    • Capasso A., et al. Design of mu selective opioid dipeptide antagonists. FEBS Lett. 1997, 417:141-144.
    • (1997) FEBS Lett. , vol.417 , pp. 141-144
    • Capasso, A.1
  • 44
    • 0021318772 scopus 로고
    • Tripeptides acting on opioid receptors in rat colon
    • Moritoki H., et al. Tripeptides acting on opioid receptors in rat colon. Eur. J. Pharmacol. 1984, 100:29-39.
    • (1984) Eur. J. Pharmacol. , vol.100 , pp. 29-39
    • Moritoki, H.1
  • 45
    • 84864284689 scopus 로고    scopus 로고
    • Opioid dipeptide derivatives with a mixed μ antagonist/δ antagonist, partial μ agonist/δ antagonist or μ agonist/partial δ agonist profile
    • Schiller P., et al. Opioid dipeptide derivatives with a mixed μ antagonist/δ antagonist, partial μ agonist/δ antagonist or μ agonist/partial δ agonist profile. Am. Pept. Symp. 2002, 6:229-270.
    • (2002) Am. Pept. Symp. , vol.6 , pp. 229-270
    • Schiller, P.1
  • 46
    • 0033801280 scopus 로고    scopus 로고
    • Membrane transporters
    • Lee V.H. Membrane transporters. Eur. J. Pharm. Sci. 2000, 11(Suppl. 2):S41-S50.
    • (2000) Eur. J. Pharm. Sci. , vol.11 , Issue.SUPPL. 2
    • Lee, V.H.1
  • 47
    • 67349119441 scopus 로고    scopus 로고
    • Opioid receptors in the gastrointestinal tract
    • Holzer P. Opioid receptors in the gastrointestinal tract. Regul. Pept. 2009, 155:11-17.
    • (2009) Regul. Pept. , vol.155 , pp. 11-17
    • Holzer, P.1
  • 48
    • 66749161611 scopus 로고    scopus 로고
    • Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery
    • Thaler J.P., Cummings D.E. Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology 2009, 150:2518-2525.
    • (2009) Endocrinology , vol.150 , pp. 2518-2525
    • Thaler, J.P.1    Cummings, D.E.2
  • 49
    • 84857371279 scopus 로고    scopus 로고
    • Type 2 diabetes mellitus: a possible surgically reversible intestinal dysfunction
    • Sala P.C., et al. Type 2 diabetes mellitus: a possible surgically reversible intestinal dysfunction. Obes. Surg. 2012, 22:167-176.
    • (2012) Obes. Surg. , vol.22 , pp. 167-176
    • Sala, P.C.1
  • 50
    • 50049086795 scopus 로고    scopus 로고
    • A sweet spot for the bariatric surgeon
    • Perez-Tilve D., et al. A sweet spot for the bariatric surgeon. Cell Metab. 2008, 8:177-179.
    • (2008) Cell Metab. , vol.8 , pp. 177-179
    • Perez-Tilve, D.1
  • 51
    • 59649108433 scopus 로고    scopus 로고
    • Protein feeding promotes redistribution of endogenous glucose production to the kidney and potentiates its suppression by insulin
    • Pillot B., et al. Protein feeding promotes redistribution of endogenous glucose production to the kidney and potentiates its suppression by insulin. Endocrinology 2009, 150:616-624.
    • (2009) Endocrinology , vol.150 , pp. 616-624
    • Pillot, B.1
  • 52
    • 79956188415 scopus 로고    scopus 로고
    • Is intestinal gluconeogenesis a key factor in the early changes in glucose homeostasis following gastric bypass?
    • Hayes M.T., et al. Is intestinal gluconeogenesis a key factor in the early changes in glucose homeostasis following gastric bypass?. Obes. Surg. 2011, 21:759-762.
    • (2011) Obes. Surg. , vol.21 , pp. 759-762
    • Hayes, M.T.1
  • 53
    • 84878891207 scopus 로고    scopus 로고
    • Comment about intestinal gluconeogenesis after gastric bypass in human in relation with the paper by Hayes et al., Obes. Surg. 2011
    • Mithieux G. Comment about intestinal gluconeogenesis after gastric bypass in human in relation with the paper by Hayes et al., Obes. Surg. 2011. Obes. Surg. 2011, 22:1920-1922.
    • (2011) Obes. Surg. , vol.22 , pp. 1920-1922
    • Mithieux, G.1
  • 54
    • 84861093711 scopus 로고    scopus 로고
    • A synergy between incretin effect and intestinal gluconeogenesis accounting for the rapid metabolic benefits of gastric bypass surgery
    • Mithieux G. A synergy between incretin effect and intestinal gluconeogenesis accounting for the rapid metabolic benefits of gastric bypass surgery. Curr. Diab. Rep. 2012, 12:167-171.
    • (2012) Curr. Diab. Rep. , vol.12 , pp. 167-171
    • Mithieux, G.1
  • 55
    • 84873177550 scopus 로고    scopus 로고
    • Metabolic transceivers: in tune with the central melanocortin system
    • Warne J.P., Xu A.W. Metabolic transceivers: in tune with the central melanocortin system. Trends Endocrinol. Metab. 2013, 24:68-75.
    • (2013) Trends Endocrinol. Metab. , vol.24 , pp. 68-75
    • Warne, J.P.1    Xu, A.W.2
  • 56
    • 0017288955 scopus 로고
    • Cholecystokinin-decreased food intake in rhesus monkeys
    • Gibbs J., et al. Cholecystokinin-decreased food intake in rhesus monkeys. Am. J. Physiol. 1976, 230:15-18.
    • (1976) Am. J. Physiol. , vol.230 , pp. 15-18
    • Gibbs, J.1
  • 57
    • 0023749466 scopus 로고
    • The specificity of satiety: the influence of foods of different macronutrient content on the development of satiety
    • Rolls B.J., et al. The specificity of satiety: the influence of foods of different macronutrient content on the development of satiety. Physiol. Behav. 1988, 43:145-153.
    • (1988) Physiol. Behav. , vol.43 , pp. 145-153
    • Rolls, B.J.1
  • 58
    • 0035088022 scopus 로고    scopus 로고
    • Rat small intestine is an insulin-sensitive gluconeogenic organ
    • Croset M., et al. Rat small intestine is an insulin-sensitive gluconeogenic organ. Diabetes 2001, 50:740-746.
    • (2001) Diabetes , vol.50 , pp. 740-746
    • Croset, M.1
  • 59
    • 7244239341 scopus 로고    scopus 로고
    • A novel role for glucose 6-phosphatase in the small intestine in the control of glucose homeostasis
    • Mithieux G., et al. A novel role for glucose 6-phosphatase in the small intestine in the control of glucose homeostasis. J. Biol. Chem. 2004, 279:44231-44234.
    • (2004) J. Biol. Chem. , vol.279 , pp. 44231-44234
    • Mithieux, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.