-
1
-
-
78649870133
-
Deficits in gastrointestinal responses controlling food intake and body weight
-
Covasa M. Deficits in gastrointestinal responses controlling food intake and body weight. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299:R1423-R1439.
-
(2010)
Am. J. Physiol. Regul. Integr. Comp. Physiol.
, vol.299
-
-
Covasa, M.1
-
2
-
-
79960429078
-
Effects of dietary fat on appetite and energy intake in health and obesity - oral and gastrointestinal sensory contributions
-
Little T.J., Feinle-Bisset C. Effects of dietary fat on appetite and energy intake in health and obesity - oral and gastrointestinal sensory contributions. Physiol. Behav. 2011, 104:613-620.
-
(2011)
Physiol. Behav.
, vol.104
, pp. 613-620
-
-
Little, T.J.1
Feinle-Bisset, C.2
-
3
-
-
76749172118
-
The role of the autonomic nervous liver innervation in the control of energy metabolism
-
Yi C.X., et al. The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim. Biophys. Acta 2010, 1802:416-431.
-
(2010)
Biochim. Biophys. Acta
, vol.1802
, pp. 416-431
-
-
Yi, C.X.1
-
4
-
-
79952806813
-
The role of gastric motility in the control of food intake
-
Janssen P., et al. The role of gastric motility in the control of food intake. Aliment. Pharmacol. Ther. 2011, 33:880-894.
-
(2011)
Aliment. Pharmacol. Ther.
, vol.33
, pp. 880-894
-
-
Janssen, P.1
-
5
-
-
0036787457
-
The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats
-
Date Y., et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 2002, 123:1120-1128.
-
(2002)
Gastroenterology
, vol.123
, pp. 1120-1128
-
-
Date, Y.1
-
6
-
-
0019890231
-
Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat
-
Smith G.P., et al. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 1981, 213:1036-1037.
-
(1981)
Science
, vol.213
, pp. 1036-1037
-
-
Smith, G.P.1
-
7
-
-
18144381593
-
The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway
-
Abbott C.R., et al. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 2005, 1044:127-131.
-
(2005)
Brain Res.
, vol.1044
, pp. 127-131
-
-
Abbott, C.R.1
-
8
-
-
34748898831
-
Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats
-
Vahl T.P., et al. Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology 2007, 148:4965-4973.
-
(2007)
Endocrinology
, vol.148
, pp. 4965-4973
-
-
Vahl, T.P.1
-
9
-
-
79551586857
-
Gut-brain signalling: how lipids can trigger the gut
-
Breen D.M., et al. Gut-brain signalling: how lipids can trigger the gut. Diabetes Metab. Res. Rev. 2011, 27:113-119.
-
(2011)
Diabetes Metab. Res. Rev.
, vol.27
, pp. 113-119
-
-
Breen, D.M.1
-
10
-
-
84856417183
-
Lipid sensing in the gut, brain and liver
-
Rasmussen B.A., et al. Lipid sensing in the gut, brain and liver. Trends Endocrinol. Metab. 2012, 23:49-55.
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 49-55
-
-
Rasmussen, B.A.1
-
11
-
-
84876107265
-
The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing
-
Delaere F., et al. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol. Metab. 2012, 2:47-53.
-
(2012)
Mol. Metab.
, vol.2
, pp. 47-53
-
-
Delaere, F.1
-
12
-
-
84864283726
-
Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake
-
Duraffourd C., et al. Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake. Cell 2012, 150:377-388.
-
(2012)
Cell
, vol.150
, pp. 377-388
-
-
Duraffourd, C.1
-
13
-
-
50049119700
-
Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice
-
Troy S., et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab. 2008, 8:201-211.
-
(2008)
Cell Metab.
, vol.8
, pp. 201-211
-
-
Troy, S.1
-
14
-
-
84862017831
-
Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes
-
Breen D.M., et al. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat. Med. 2012, 18:950-955.
-
(2012)
Nat. Med.
, vol.18
, pp. 950-955
-
-
Breen, D.M.1
-
15
-
-
42549118500
-
Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production
-
Wang P.Y., et al. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature 2008, 452:1012-1016.
-
(2008)
Nature
, vol.452
, pp. 1012-1016
-
-
Wang, P.Y.1
-
16
-
-
67849124833
-
Intestinal cholecystokinin controls glucose production through a neuronal network
-
Cheung G.W., et al. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab. 2009, 10:99-109.
-
(2009)
Cell Metab.
, vol.10
, pp. 99-109
-
-
Cheung, G.W.1
-
17
-
-
80054850433
-
Duodenal mucosal protein kinase C-δ regulates glucose production in rats
-
Kokorovic A., et al. Duodenal mucosal protein kinase C-δ regulates glucose production in rats. Gastroenterology 2011, 141:1720-1727.
-
(2011)
Gastroenterology
, vol.141
, pp. 1720-1727
-
-
Kokorovic, A.1
-
18
-
-
82255164699
-
Duodenal PKC-δ and cholecystokinin signaling axis regulates glucose production
-
Breen D.M., et al. Duodenal PKC-δ and cholecystokinin signaling axis regulates glucose production. Diabetes 2011, 60:3148-3153.
-
(2011)
Diabetes
, vol.60
, pp. 3148-3153
-
-
Breen, D.M.1
-
19
-
-
84856282510
-
Linik beetween intestinal CD36 ligand binding and satiety induced by a high protein diet in mice
-
Naville D., et al. Linik beetween intestinal CD36 ligand binding and satiety induced by a high protein diet in mice. PLoS ONE 2012, 7:e30686.
-
(2012)
PLoS ONE
, vol.7
-
-
Naville, D.1
-
20
-
-
52749087007
-
The lipid messenger OEA links dietary fat intake to satiety
-
Schwartz G.J., et al. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab. 2008, 8:281-288.
-
(2008)
Cell Metab.
, vol.8
, pp. 281-288
-
-
Schwartz, G.J.1
-
21
-
-
0022529753
-
Hepatic portal glucose infusions decrease food intake and increase food preference
-
Tordoff M.G., Friedman M.I. Hepatic portal glucose infusions decrease food intake and increase food preference. Am. J. Physiol. 1986, 251:R192-R196.
-
(1986)
Am. J. Physiol.
, vol.251
-
-
Tordoff, M.G.1
Friedman, M.I.2
-
22
-
-
0034897476
-
Intrameal hepatic-portal infusion of glucose reduces spontaneous meal size in rats
-
Langhans W., et al. Intrameal hepatic-portal infusion of glucose reduces spontaneous meal size in rats. Physiol. Behav. 2001, 73:499-507.
-
(2001)
Physiol. Behav.
, vol.73
, pp. 499-507
-
-
Langhans, W.1
-
23
-
-
77956954932
-
Hypothalamic integration of portal glucose signals and control of food intake and insulin sensitivity
-
Delaere F., et al. Hypothalamic integration of portal glucose signals and control of food intake and insulin sensitivity. Diabetes Metab. 2010, 36:257-262.
-
(2010)
Diabetes Metab.
, vol.36
, pp. 257-262
-
-
Delaere, F.1
-
24
-
-
30444460011
-
Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein
-
Mithieux G., et al. Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab. 2005, 2:321-329.
-
(2005)
Cell Metab.
, vol.2
, pp. 321-329
-
-
Mithieux, G.1
-
25
-
-
0030909446
-
Intake suppression after hepatic portal glucose infusion: all-or-none effect and its temporal threshold
-
Baird J.P., et al. Intake suppression after hepatic portal glucose infusion: all-or-none effect and its temporal threshold. Am. J. Physiol. 1997, 272:R1454-R1460.
-
(1997)
Am. J. Physiol.
, vol.272
-
-
Baird, J.P.1
-
26
-
-
48449097409
-
The locus for hypoglycemic detection shifts with the rate of fall in glycemia: the role of portal-superior mesenteric vein glucose sensing
-
Saberi M., et al. The locus for hypoglycemic detection shifts with the rate of fall in glycemia: the role of portal-superior mesenteric vein glucose sensing. Diabetes 2008, 57:1380-1386.
-
(2008)
Diabetes
, vol.57
, pp. 1380-1386
-
-
Saberi, M.1
-
27
-
-
12244305762
-
Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis
-
Thorens B., Larsen P.J. Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7:471-478.
-
(2004)
Curr. Opin. Clin. Nutr. Metab. Care
, vol.7
, pp. 471-478
-
-
Thorens, B.1
Larsen, P.J.2
-
28
-
-
84873138013
-
Nutrient sensing in the gut: new roads to therapeutics?
-
Janssen S., Depoortere I. Nutrient sensing in the gut: new roads to therapeutics?. Trends Endocrinol. Metab. 2013, 24:92-100.
-
(2013)
Trends Endocrinol. Metab.
, vol.24
, pp. 92-100
-
-
Janssen, S.1
Depoortere, I.2
-
29
-
-
84880925659
-
Luminal glucose sensing in the rat intestine has characteristics of a sodium-glucose cotransporter
-
Freeman S.L., et al. Luminal glucose sensing in the rat intestine has characteristics of a sodium-glucose cotransporter. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 8:532-539.
-
(2006)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.8
, pp. 532-539
-
-
Freeman, S.L.1
-
31
-
-
77953530150
-
Molecular mechanisms involved in the adaptation to amino acid limitation in mammals
-
Chaveroux C., et al. Molecular mechanisms involved in the adaptation to amino acid limitation in mammals. Biochimie 2010, 92:736-745.
-
(2010)
Biochimie
, vol.92
, pp. 736-745
-
-
Chaveroux, C.1
-
32
-
-
84871919301
-
Detection of amino acid deprivation in the central nervous system
-
Anthony T.G., Gietzen D.W. Detection of amino acid deprivation in the central nervous system. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16:96-101.
-
(2013)
Curr. Opin. Clin. Nutr. Metab. Care
, vol.16
, pp. 96-101
-
-
Anthony, T.G.1
Gietzen, D.W.2
-
33
-
-
20144387009
-
The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores
-
Maurin A.C., et al. The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab. 2005, 1:273-277.
-
(2005)
Cell Metab.
, vol.1
, pp. 273-277
-
-
Maurin, A.C.1
-
34
-
-
20144374658
-
Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex
-
Hao S., et al. Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 2005, 307:1776-1778.
-
(2005)
Science
, vol.307
, pp. 1776-1778
-
-
Hao, S.1
-
35
-
-
19344363584
-
Autonomic efferents affect intake of imbalanced amino acid diets by rats
-
Bellinger L.L., et al. Autonomic efferents affect intake of imbalanced amino acid diets by rats. Pharmacol. Biochem. Behav. 2005, 81:24-31.
-
(2005)
Pharmacol. Biochem. Behav.
, vol.81
, pp. 24-31
-
-
Bellinger, L.L.1
-
36
-
-
2642569414
-
A very high 70%-protein diet does not induce conditioned taste aversion in rats
-
L'Heureux-Bouron D., et al. A very high 70%-protein diet does not induce conditioned taste aversion in rats. J. Nutr. 2004, 134:1512-1515.
-
(2004)
J. Nutr.
, vol.134
, pp. 1512-1515
-
-
L'Heureux-Bouron, D.1
-
37
-
-
79955539060
-
Role of hypothalamic melanocortin system in adaptation of food intake to food protein increase in mice
-
Pillot B., et al. Role of hypothalamic melanocortin system in adaptation of food intake to food protein increase in mice. PLoS ONE 2011, 6:1-7.
-
(2011)
PLoS ONE
, vol.6
, pp. 1-7
-
-
Pillot, B.1
-
38
-
-
68049091021
-
Intestinal gluconeogenesis: key signal of central control of energy and glucose homeostasis
-
Mithieux G., et al. Intestinal gluconeogenesis: key signal of central control of energy and glucose homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12:419-423.
-
(2009)
Curr. Opin. Clin. Nutr. Metab. Care
, vol.12
, pp. 419-423
-
-
Mithieux, G.1
-
39
-
-
80053445180
-
Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis
-
Penhoat A., et al. Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis. Physiol. Behav. 2011, 105:89-93.
-
(2011)
Physiol. Behav.
, vol.105
, pp. 89-93
-
-
Penhoat, A.1
-
40
-
-
68649118810
-
'Liking' and 'wanting' food rewards: brain substrates and roles in eating disorders
-
Berridge C.W. 'Liking' and 'wanting' food rewards: brain substrates and roles in eating disorders. Physiol. Behav. 2009, 97:537-550.
-
(2009)
Physiol. Behav.
, vol.97
, pp. 537-550
-
-
Berridge, C.W.1
-
41
-
-
75449107169
-
Hypocretin/orexin in arousal and stress
-
Berridge C.W., et al. Hypocretin/orexin in arousal and stress. Brain Res. 2010, 1314:91-102.
-
(2010)
Brain Res.
, vol.1314
, pp. 91-102
-
-
Berridge, C.W.1
-
42
-
-
0018416435
-
Opioid peptides derived from food proteins. The exorphins
-
2446-1449
-
Zioudrou C., et al. Opioid peptides derived from food proteins. The exorphins. J. Biol. Chem. 1979, 254. 2446-1449.
-
(1979)
J. Biol. Chem.
, vol.254
-
-
Zioudrou, C.1
-
43
-
-
0030723999
-
Design of mu selective opioid dipeptide antagonists
-
Capasso A., et al. Design of mu selective opioid dipeptide antagonists. FEBS Lett. 1997, 417:141-144.
-
(1997)
FEBS Lett.
, vol.417
, pp. 141-144
-
-
Capasso, A.1
-
44
-
-
0021318772
-
Tripeptides acting on opioid receptors in rat colon
-
Moritoki H., et al. Tripeptides acting on opioid receptors in rat colon. Eur. J. Pharmacol. 1984, 100:29-39.
-
(1984)
Eur. J. Pharmacol.
, vol.100
, pp. 29-39
-
-
Moritoki, H.1
-
45
-
-
84864284689
-
Opioid dipeptide derivatives with a mixed μ antagonist/δ antagonist, partial μ agonist/δ antagonist or μ agonist/partial δ agonist profile
-
Schiller P., et al. Opioid dipeptide derivatives with a mixed μ antagonist/δ antagonist, partial μ agonist/δ antagonist or μ agonist/partial δ agonist profile. Am. Pept. Symp. 2002, 6:229-270.
-
(2002)
Am. Pept. Symp.
, vol.6
, pp. 229-270
-
-
Schiller, P.1
-
46
-
-
0033801280
-
Membrane transporters
-
Lee V.H. Membrane transporters. Eur. J. Pharm. Sci. 2000, 11(Suppl. 2):S41-S50.
-
(2000)
Eur. J. Pharm. Sci.
, vol.11
, Issue.SUPPL. 2
-
-
Lee, V.H.1
-
47
-
-
67349119441
-
Opioid receptors in the gastrointestinal tract
-
Holzer P. Opioid receptors in the gastrointestinal tract. Regul. Pept. 2009, 155:11-17.
-
(2009)
Regul. Pept.
, vol.155
, pp. 11-17
-
-
Holzer, P.1
-
48
-
-
66749161611
-
Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery
-
Thaler J.P., Cummings D.E. Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology 2009, 150:2518-2525.
-
(2009)
Endocrinology
, vol.150
, pp. 2518-2525
-
-
Thaler, J.P.1
Cummings, D.E.2
-
49
-
-
84857371279
-
Type 2 diabetes mellitus: a possible surgically reversible intestinal dysfunction
-
Sala P.C., et al. Type 2 diabetes mellitus: a possible surgically reversible intestinal dysfunction. Obes. Surg. 2012, 22:167-176.
-
(2012)
Obes. Surg.
, vol.22
, pp. 167-176
-
-
Sala, P.C.1
-
50
-
-
50049086795
-
A sweet spot for the bariatric surgeon
-
Perez-Tilve D., et al. A sweet spot for the bariatric surgeon. Cell Metab. 2008, 8:177-179.
-
(2008)
Cell Metab.
, vol.8
, pp. 177-179
-
-
Perez-Tilve, D.1
-
51
-
-
59649108433
-
Protein feeding promotes redistribution of endogenous glucose production to the kidney and potentiates its suppression by insulin
-
Pillot B., et al. Protein feeding promotes redistribution of endogenous glucose production to the kidney and potentiates its suppression by insulin. Endocrinology 2009, 150:616-624.
-
(2009)
Endocrinology
, vol.150
, pp. 616-624
-
-
Pillot, B.1
-
52
-
-
79956188415
-
Is intestinal gluconeogenesis a key factor in the early changes in glucose homeostasis following gastric bypass?
-
Hayes M.T., et al. Is intestinal gluconeogenesis a key factor in the early changes in glucose homeostasis following gastric bypass?. Obes. Surg. 2011, 21:759-762.
-
(2011)
Obes. Surg.
, vol.21
, pp. 759-762
-
-
Hayes, M.T.1
-
53
-
-
84878891207
-
Comment about intestinal gluconeogenesis after gastric bypass in human in relation with the paper by Hayes et al., Obes. Surg. 2011
-
Mithieux G. Comment about intestinal gluconeogenesis after gastric bypass in human in relation with the paper by Hayes et al., Obes. Surg. 2011. Obes. Surg. 2011, 22:1920-1922.
-
(2011)
Obes. Surg.
, vol.22
, pp. 1920-1922
-
-
Mithieux, G.1
-
54
-
-
84861093711
-
A synergy between incretin effect and intestinal gluconeogenesis accounting for the rapid metabolic benefits of gastric bypass surgery
-
Mithieux G. A synergy between incretin effect and intestinal gluconeogenesis accounting for the rapid metabolic benefits of gastric bypass surgery. Curr. Diab. Rep. 2012, 12:167-171.
-
(2012)
Curr. Diab. Rep.
, vol.12
, pp. 167-171
-
-
Mithieux, G.1
-
55
-
-
84873177550
-
Metabolic transceivers: in tune with the central melanocortin system
-
Warne J.P., Xu A.W. Metabolic transceivers: in tune with the central melanocortin system. Trends Endocrinol. Metab. 2013, 24:68-75.
-
(2013)
Trends Endocrinol. Metab.
, vol.24
, pp. 68-75
-
-
Warne, J.P.1
Xu, A.W.2
-
56
-
-
0017288955
-
Cholecystokinin-decreased food intake in rhesus monkeys
-
Gibbs J., et al. Cholecystokinin-decreased food intake in rhesus monkeys. Am. J. Physiol. 1976, 230:15-18.
-
(1976)
Am. J. Physiol.
, vol.230
, pp. 15-18
-
-
Gibbs, J.1
-
57
-
-
0023749466
-
The specificity of satiety: the influence of foods of different macronutrient content on the development of satiety
-
Rolls B.J., et al. The specificity of satiety: the influence of foods of different macronutrient content on the development of satiety. Physiol. Behav. 1988, 43:145-153.
-
(1988)
Physiol. Behav.
, vol.43
, pp. 145-153
-
-
Rolls, B.J.1
-
58
-
-
0035088022
-
Rat small intestine is an insulin-sensitive gluconeogenic organ
-
Croset M., et al. Rat small intestine is an insulin-sensitive gluconeogenic organ. Diabetes 2001, 50:740-746.
-
(2001)
Diabetes
, vol.50
, pp. 740-746
-
-
Croset, M.1
-
59
-
-
7244239341
-
A novel role for glucose 6-phosphatase in the small intestine in the control of glucose homeostasis
-
Mithieux G., et al. A novel role for glucose 6-phosphatase in the small intestine in the control of glucose homeostasis. J. Biol. Chem. 2004, 279:44231-44234.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 44231-44234
-
-
Mithieux, G.1
|